RU2809398C1 - Способ изготовления керамических плавильных тиглей - Google Patents

Способ изготовления керамических плавильных тиглей Download PDF

Info

Publication number
RU2809398C1
RU2809398C1 RU2023125360A RU2023125360A RU2809398C1 RU 2809398 C1 RU2809398 C1 RU 2809398C1 RU 2023125360 A RU2023125360 A RU 2023125360A RU 2023125360 A RU2023125360 A RU 2023125360A RU 2809398 C1 RU2809398 C1 RU 2809398C1
Authority
RU
Russia
Prior art keywords
crucible
temperature
ceramic
binder
room temperature
Prior art date
Application number
RU2023125360A
Other languages
English (en)
Inventor
Максим Сергеевич Варфоломеев
Виктор Сергеевич Моисеев
Галина Игоревна Щербакова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)"
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)"
Application granted granted Critical
Publication of RU2809398C1 publication Critical patent/RU2809398C1/ru

Links

Abstract

Изобретение относится к способу изготовления керамических тиглей, используемых для плавки и литья химически активных металлических сплавов в огнеупорной промышленности. Для приготовления формовочной массы в огнеупорный керамический порошок, выбранный из группы α-Аl2O3, Y2О3, ZrO2, MgO или их сочетаний, вводят органоэлементоксаналюмоксановое связующее в количестве 4-6 мас.% в виде 20-30%-ного раствора органоэлементоксаналюмоксанового олигомера в спирте и перемешивают до однородного состояния при комнатной температуре. Из полученной массы формуют тигель прессованием с последующим отверждением и обжигом. Отверждение тигля осуществляют при комнатной температуре с выдержкой в течение 3,0-5,0 часов, после чего тигель помещают в печь и обжигают при температуре 1500-1700°С с выдержкой при максимальной температуре не менее 1 часа. Техническим результатом изобретения является повышение огнеупорности и термостойкости тигля, а также создание более плотной структуры. 2 з.п. ф-лы, 4 пр., 4 ил.

Description

Изобретение относится к огнеупорной промышленности, а именно к способу изготовления керамических плавильных тиглей используемых для литья металлических сплавов.
Для плавки и литья металлических сплавов в литье по выплавляемым моделям применяют керамические высокоогнеупорные тигли. Однако в промышленных условиях эти тигли недолговечны. В процессе эксплуатации происходит их преждевременное растрескивание и попадание частиц огнеупорного материала тигля в состав заливаемого сплава. Это ведет к загрязнению расплава неметаллическими включениями, что является недопустимым при получении отливок ответственного назначения.
Кроме того, ввиду невысокой температурной стойкости плавильного тигля, в процессе плавления, заливки и охлаждения происходит физико-химическое взаимодействие расплава с материалом плавильного тигля. Химически активные и тугоплавкие сплавы (жаропрочные сплавы на никелевой основе, титановые сплавы, ниобиевые сплавы и т.п.) при плавке и заливке, обладают высокой способностью вступать в химическую и механическую реакцию с огнеупорным материалом внутренней поверхности тигля, что приводит к его эрозии. Поэтому к керамическим тиглям предъявляются повышенные требования, прежде всего по огнеупорности и термохимической стойкости. Для этого, при изготовлении тигля, необходимо использовать инертные, по отношению к расплавам, исходные огнеупорные керамические и связующие материалы.
Известен способ изготовления плавильного керамического тигля, включающий смешивание огнеупорных шихтовых материалов, приготовление парафинсодержащей керамической массы, формование тигля из керамической массы в металлической форме, удаление парафинсодержащего термопластичного связующего и высокотемпературный обжиг. Заполнение формообразующей полости парафинсодержащей керамической массой проводится в режиме виброформования в условиях радиального температурного градиента на фронте затвердевания парафинсодержащей керамической массы, направленного от внутренней формообразующей поверхности к наружной формообразующей поверхности, частичное удаление парафинсодержащего термопластичного связующего проводится в засыпке глиноземом с последующей пропиткой тигля изнутри спиртовым раствором соли, содержащим ионы металлов: Al, Mg, Zr, Hf, РЗМ или их смесью, далее осуществляют высокотемпературный обжиг при температуре 1350-1550°С в течение 6-8 часов. (РФ № 2713049, 2020)
Недостатками этого способа является сложность и многостадийность процесса изготовления плавильного керамического тигля.
Известен способ изготовления изделий из корундовой керамики, при котором приготавливают формовочную смесь, содержащую электрокорундовые фракции 0,01-3,0 мм, реактивный глинозем, осуществляют ее сухое перемешивание и гомогенизацию при непрерывном помешивании. Первоначально изготавливают нанодисперсное технологическое связующее на основе оксида алюминия, полученное из сплава Д16 методом химического диспергирования, и вводят его в формовочную смесь. Формование осуществляют методом вибролитья, после которого полученную заготовку подвергают воздушному твердению, сушат и обжигают при температурах 1500-1550°С. (РФ № 2637264, 2017). Недостатком этого способа является сложность и многостадийность процесса изготовления нанодисперсного технологического связующего, а также высокая продолжительность затвердевания изделия.
Известен керамический огнеупорный материал тигля, который содержит 14,8-45,0% мас. оксида циркония, 6,80-8,54% мас. по меньшей мере одного оксида редкоземельного металла, выбранного из группы: гадолиний, неодим, самарий, лантан, празеодим и диспрозий, оксид иттрия – остальное. Смешение компонентов проводят в три этапа. На первом этапе получают спекающую добавку, состоящую из порошков тонких фракций оксида циркония, оксида иттрия и оксида редкоземельного металла; на втором этапе ее всухую смешивают с зернистыми порошками оксида циркония и оксида иттрия, получая сухую керамическую шихту; на третьем этапе указанную шихту смешивают с суспензией, содержащей частицы оксида иттрия. Полученную пластичную массу формуют и сушат в течение 12-25 ч, получая заготовку тигля, которую впоследствии подвергают высокотемпературному спеканию при температуре от 1650 до 1750°С в течение 3-5 часов. (РФ № 2760814, 2021)
Недостатками этого способа является сложность и многостадийность процесса приготовления формовочной массы, необходимость добавки дорогостоящих редкоземельных металлов, высокая температура обжига изделий, что требует больших энергозатрат.
Наиболее близким к заявляемому объекту по совокупности существенных признаков и достигаемому техническому результату является способ получения керамических изделий по патенту РФ № 2342344, 2008.
Способ получения керамических изделий может быть использован при изготовлении плавильных тиглей, заключающийся в том, что для приготовления формовочной массы в порошок оксида магния вводят связующее, ингредиенты перемешивают при комнатной температуре до однородного состояния и выдерживают 5-10 ч, затем из полученной формовочной массы проводят формование изделий и их термообработку. В качестве связующего используют безводный дигидроортофосфат магния. Приготовление формовочной массы осуществляется смешением 5-15% мас. связующего и 85-95% мас. оксида магния. Перед выдерживанием к смеси также при перемешивании добавляют 2-7% мас. воды по отношению к массе связующего, а термообработку отформованных изделий проводят при температуре 150-300°С. Формование изделий осуществляют прессованием с усилием 700-1200 кг/см2.
Недостатком известного способа-прототипа является то, что в качестве связующего материала используют дигидроортофосфат магния, что может приводить к загрязнению фосфором металлического сплава при его плавке и заливке.
Предлагаемый способ основан на использовании в процессе приготовления керамической формовочной массы органоэлементоксаналюмоксанового связующего.
Техническим результатом изобретения является повышение огнеупорности и термической стойкости материала тигля к воздействию высокотемпературных химически активных и тугоплавких металлических расплавов, а также создание более плотной структуры тигля, которая менее чувствительна к проникновению расплавов. Кроме того, предложенный способ позволяет упростить стадию приготовления формовочной массы.
Технический результат достигается тем, что предложен способ изготовления керамических плавильных тиглей, заключающийся в том, что для приготовления формовочной массы в огнеупорный зернистый порошок (выбирают из группы α-Аl2O3, Y2О3, ZrO2, MgO или их сочетаний) вводят органоэлементоксаналюмоксановое связующее в количестве 4-6% мас. и перемешивают до однородного состояния при комнатной температуре. Из полученной массы проводят формование тигля прессованием с последующим отверждением и обжигом тигля.
Сущность изобретения поясняется чертежами, где на фигурах 1-4 представлены внешний вид, элементный состав и рентгеновский спектр плавильных тиглей.
На фигуре 1 - для монооксидного плавильного тигля, полностью состоящего из оксида алюминия.
На фигуре 2 - для плавильного тигля, состоящего из огнеупорного порошка оксида иттрия и оксида алюминия от связующего.
На фигуре 3 - для плавильного тигля, состоящего из огнеупорного порошка оксида алюминия и алюмоиттриевого граната Y3Al5O12 от связующего.
На фигуре 4 для плавильного тигля, состоящего из огнеупорного порошка оксида алюминия и алюмомагниевой шпинели MgAl2O4 от связующего.
Получение керамических плавильных тиглей осуществляют следующим образом: органоэлементоксаналюмоксановое связующее, полученное, например, согласно одному из изобретений, описанных в патентах РФ 2276155, 2006; РФ 2451687, 2012; РФ 2615147, 2017; РФ № 2668226, 2018, в количестве 4-6% мас. смешивают с зернистым керамическим порошком 94-96 мас. % (выбирают из группы α-Аl2O3, Y2О3, ZrO2, MgO или их сочетаний), данную смесь перемешивают при комнатной температуре до однородного состояния.
Связующее - 20-30%-ый спиртовой раствор органоэлементоксаналюмоксанового олигомера, придает керамической массе в процессе формования определенную пластичность и свойства формуемости, а в процессе обжига формируются алюмооксидные структуры или алюмооксидные структуры, модифицированные иттрием, магнием, тугоплавкими соединениями (цирконием, гафнием или хромом).
Формование тигля из полученной керамической массы проводят прессованием в металлической форме при комнатной температуре.
В процессе формования керамического тигля зернистый порошок выполняет роль огнеупорной основы, а связующее придает изделию необходимую прочность и пористость при спекании и во многом определяет эксплуатационные характеристики изделия.
Компактирование керамической массы является одной из главных технологических операций, обеспечивающей получение плотной керамики с высокими механическими свойствами. Однако в очень плотной структуре керамических изделий распространение микротрещин увеличивается, а наличие пористой структуры приводит к снижению механической прочности керамики. Процесс развития микротрещин может быть предотвращен увеличением размера пор в процессе выгорания органоэлементоксаналюмоксанового связующего. Кроме того, пористость керамических изделий регулируют путем введения огнеупорной основы различного фракционного состава (50-600 мкм.).
Отверждение тигля осуществляют при комнатной температуре с выдержкой на воздухе в течение 3,0-5,0 часов, после чего тигель помещают в печь (электрическую или газовую) и обжигают при температуре 1500-1700°С с выдержкой при максимальной температуре не менее 1 часа, что приводит к выгоранию органических составляющих, присутствующих в керамической массе и приданию плавильному тиглю необходимых механических свойств.
Таким образом, заявленный способ позволяет изготавливать высокотемпературные и термически стойкие плавильные тигли различного химического состава, используемые для плавки и литья химически активных и тугоплавких металлических сплавов. Кроме того, предложенный способ позволяет упростить стадию приготовления формовочной массы.
Ниже приведены примеры осуществления заявленного способа, которые иллюстрируют способ, но не ограничивают его.
Пример 1.
В 96% мас. плавленого зернистого корунда α-Аl2O3 в качестве наполнителя вводят 4% мас. связующего – 30%-ого спиртового раствора органоалюмоксана, затем формовочную массу перемешивают шнековой мешалкой до однородного состояния при комнатной температуре в течение 10 минут. После этого из полученной смеси прессованием формуют тигель в металлической форме при комнатной температуре. Отверждение тигля после формования осуществляют при комнатной температуре с выдержкой на воздухе в течение 4,0 часов, после чего тигель помещают в печь и обжигают при температуре 1600°С с выдержкой при этой температуре 1 час. В результате получают монооксидные керамические тигли, состоящие полностью из одной фазы корунда α-Al2O3 (Фиг. 1).
Пример 2.
В 96% мас. оксида иттрия в качестве наполнителя вводят 4% мас. связующего – 30%-ого спиртового раствора органоалюмоксана, затем формовочную массу перемешивают шнековой мешалкой до однородного состояния при комнатной температуре в течение 10 минут. После этого из полученной смеси прессованием формуют тигель в металлической форме при комнатной температуре. Отверждение тигля после формования осуществляют при комнатной температуре с выдержкой на воздухе в течение 4,0 часов, после чего тигель помещают в печь и обжигают при температуре 1600°С с выдержкой при этой температуре 1 час. В результате, получают керамические плавильные тигли смешанного состава, состоящие из оксида иттрия Y2O3 и корунда α-Al2O3 (Фиг. 2).
Пример 3.
В 95% мас. плавленого зернистого корунда α-Аl2O3 в качестве наполнителя вводят 5% мас. связующего – 25%-ого спиртового раствора органоиттрийоксаналюмоксана, затем формовочную массу перемешивают шнековой мешалкой до однородного состояния при комнатной температуре в течение 10 минут. После этого из полученной смеси прессованием формуют тигель в металлической форме при комнатной температуре. Отверждение тигля после формования осуществляют при комнатной температуре с выдержкой на воздухе в течение 5,0 часов, после чего тигель помещают в печь и обжигают при температуре 1600°С с выдержкой при этой температуре 1 час. В результате, получают керамические плавильные тигли смешанного состава, состоящие из корунда α-Al2O3 и алюмоиттриевого граната Y3Al5O12 (Фиг. 3).
Пример 4.
В 94% мас. плавленого зернистого корунда α-Аl2O3 в качестве наполнителя вводят 6% мас. связующего – 20%-ого спиртового раствора органомагнийалюмоксана, затем формовочную массу перемешивают шнековой мешалкой до однородного состояния при комнатной температуре в течение 10 минут. После этого из полученной смеси прессованием формуют тигель в металлической форме при комнатной температуре. Отверждение тигля после формования осуществляют при комнатной температуре с выдержкой на воздухе в течение 4,0 часов, после чего тигель помещают в печь и обжигают при температуре 1600°С с выдержкой при этой температуре 1 час. В результате, получают керамические плавильные тигли смешанного состава, состоящие из корунда α-Al2O3 и алюмомагниевой шпинели MgAl2O4 (Фиг. 4).
Изучение элементного состава осуществляют с использованием сканирующего электронного микроскопа (СЭМ) совмещенного с энергодисперсионным анализатором (ЭДС). Результаты анализа и внешний вид плавильных тиглей представлены на фиг. 1-4.

Claims (3)

1. Способ изготовления керамических тиглей, заключающийся в формовании тигля методом прессования в металлической форме керамической формовочной массы, которую готовят смешением органоэлементоксаналюмоксанового связующего в количестве 4-6 мас.% с огнеупорным керамическим порошком 94-96 мас.% до однородного состояния при комнатной температуре, затем проводят отверждение тигля при комнатной температуре с выдержкой на воздухе в течение 3,0-5,0 часов, после чего тигель помещают в печь и обжигают при температуре 1500-1700°С с выдержкой при максимальной температуре не менее 1 часа.
2. Способ изготовления керамических тиглей по п.1, отличающийся тем, что в качестве органоэлементоксаналюмоксанового связующего используют 20-30%-ный раствор органоэлементоксаналюмоксанового олигомера в спирте.
3. Способ изготовления керамических тиглей по п.1, отличающийся тем, что огнеупорный керамический порошок выбирают из группы α-Аl2O3, Y2О3, ZrO2, MgO или их сочетаний.
RU2023125360A 2023-10-03 Способ изготовления керамических плавильных тиглей RU2809398C1 (ru)

Publications (1)

Publication Number Publication Date
RU2809398C1 true RU2809398C1 (ru) 2023-12-11

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110124483A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
RU2644950C1 (ru) * 2017-02-09 2018-02-15 Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") Способ получения органомагнийоксаниттрийоксаналюмоксанов, связующие и пропиточные материалы на их основе
RU2668226C1 (ru) * 2017-10-10 2018-09-27 Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") Способ получения органометаллоксаниттрийоксаналюмоксанов, связующие и пропиточные материалы на их основе
CN110540410A (zh) * 2018-05-29 2019-12-06 山东工业陶瓷研究设计院有限公司 一种氧化铝陶瓷注射成型用喂料及其制备方法
RU2803087C1 (ru) * 2022-11-29 2023-09-06 Акционерное общество "Композит" (АО "Композит") Способ изготовления керамических заготовок на основе нитрида кремния

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110124483A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
RU2644950C1 (ru) * 2017-02-09 2018-02-15 Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") Способ получения органомагнийоксаниттрийоксаналюмоксанов, связующие и пропиточные материалы на их основе
RU2668226C1 (ru) * 2017-10-10 2018-09-27 Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") Способ получения органометаллоксаниттрийоксаналюмоксанов, связующие и пропиточные материалы на их основе
CN110540410A (zh) * 2018-05-29 2019-12-06 山东工业陶瓷研究设计院有限公司 一种氧化铝陶瓷注射成型用喂料及其制备方法
RU2803087C1 (ru) * 2022-11-29 2023-09-06 Акционерное общество "Композит" (АО "Композит") Способ изготовления керамических заготовок на основе нитрида кремния

Similar Documents

Publication Publication Date Title
JP4762392B2 (ja) ガスタービン用途の鋳造に用いる性能の優れたコア組成物および物品
US9803923B2 (en) Crucible and extrinsic facecoat compositions and methods for melting titanium and titanium aluminide alloys
CN109311760B (zh) 氧化锆陶瓷、由其制成的多孔材料和用于制造氧化锆陶瓷的方法
JP5925411B2 (ja) 鋳造プロセス及びそのためのイットリア含有フェースコート材料
JP6334526B2 (ja) るつぼ及びフェースコート組成物、並びにチタン及びチタンアルミナイド合金の溶融方法
RU2809398C1 (ru) Способ изготовления керамических плавильных тиглей
US3473599A (en) Production of metal castings
JP2013071169A (ja) 精密鋳造用セラミック中子と、その製造方法
JPH0122221B2 (ru)
RU2098220C1 (ru) Смесь и способ изготовления литейных керамических стержней
JP6194257B2 (ja) マグネシアカーボンれんが
JP2006290657A (ja) 耐火物およびその製造方法
CN110028313B (zh) 一种刚玉坩埚及其制备方法
JP4399579B2 (ja) キャスタブル成形品、及びその製造方法
Otroj et al. Behaviour of alumina-spinel self-flowing castables with nano-alumina particles addition
SU1435374A1 (ru) Керамическа смесь дл изготовлени литейных стержней
RU2713049C1 (ru) Способ изготовления керамических плавильных тиглей
JP2508511B2 (ja) アルミナ複合体
SU1217550A1 (ru) Керамическа смесь дл изготовлени литейных стержней
JPH11240773A (ja) キャスタブル耐火物
RU2284974C1 (ru) Способ изготовления муллитокорундовых огнеупорных изделий
JP5002087B2 (ja) クロミア焼結体とその製造方法
JP2000191364A (ja) マグネシア・クロム定形耐火物
Abolfazli et al. Effect of MgO on the Properties of Alumina-Graphite Based Refractory Including 20 wt% Non-Stabilized ZrO2
JPH1150173A (ja) 金属−セラミックス複合材料の製造方法