RU2726433C1 - Способ идентификации ДНК ткани ежа обыкновенного (Erinaceus europaeus) в сухих кормах и мясных полуфабрикатах - Google Patents
Способ идентификации ДНК ткани ежа обыкновенного (Erinaceus europaeus) в сухих кормах и мясных полуфабрикатах Download PDFInfo
- Publication number
- RU2726433C1 RU2726433C1 RU2019133102A RU2019133102A RU2726433C1 RU 2726433 C1 RU2726433 C1 RU 2726433C1 RU 2019133102 A RU2019133102 A RU 2019133102A RU 2019133102 A RU2019133102 A RU 2019133102A RU 2726433 C1 RU2726433 C1 RU 2726433C1
- Authority
- RU
- Russia
- Prior art keywords
- dna
- bacteriophage
- control sample
- tissue
- hedgehog
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Изобретение относится к области биотехнологии. Изобретение представляет собой способ идентификации ДНК ткани ежа обыкновенного (Erinaceus europaeus) в сухих кормах и мясных полуфабрикатах, включающий выделение ДНК из ткани животного сорбционным методом, постановку полимеразной цепной реакции с флуоресцентной детекцией с проведением 45 циклов амплификации в реальном времени с использованием специфичных для участка генома ДНК животного олигонуклеотидных праймеров, зондов, флуоресцентных красителей: для специфического сигнала для животного - JOE/Yellow и Cy5/Red - для внутреннего контрольного образца в виде суспензии бактериофага Т4 с концентрацией 5×10фаговых частиц на 1 мкл, положительного контрольного образца в виде смеси, содержащей фрагменты геномов животного и бактериофага Т4 с нуклеотидной последовательностью:- прямой праймер- обратный праймер- зонд, взятых в соотношении 1:1, и измерение накопления флуоресцентных сигналов по каналам соответствующих флуоресцентных красителей, проведение интерпретации результатов на основании наличия или отсутствия пересечения кривой флуоресценции с пороговой линией, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции - отрицательный, согласно изобретению выделяют ДНК из ткани ежа обыкновенного (Erinaceus europaeus) и для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца - фрагменты геномов нативного бактериофага Т4 и ткани ежа обыкновенного (Erinaceus europaeus) со следующей нуклеотидной последовательностью:- прямой праймер- обратный праймер- зонд. Изобретение повышает точность идентификации видовой принадлежности, упрощение процесса подготовки образцов. 5 табл.
Description
Изобретение относится к ветеринарной микробиологии, в частности к методам определения видовой принадлежности мяса с помощью полимеразной цепной реакции.
Известно использование ПЦР в реальном времени для определения ДНК следующих животных - лошади, коровы, свиньи, осла, курицы, индейки, кошки, собаки и кролика (https://stylab.ru/netcat_files/userfiles/Files/Articles/Meat/Mea_1_04_2013.pdf.).
Наиболее близким по технической сущности является способ идентификации видовой принадлежности тканей животного в продовольственном сырье, кормах и пищевых продуктах (патент РФ №№2694713, кл. C12Q 1/68, 2019 г.), включающий выделение ДНК из ткани животного сорбционным методом, постановку полимеразной цепной реакции с флуоресцентной детекцией с проведением 45 циклов амплификации в реальном времени с использованием специфичных для участка генома ДНК животного олигонуклеотидных праймеров, зондов, флуоресцентных красителей: JOE/Yellow для специфического сигнала для животного и Cy5/Red - для внутреннего контрольного образца в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, положительного контрольного образца в виде смеси, содержащую фрагменты геномов животного и бактериофага Т4 с нуклеотидной последовательностью:
- зонд, взятых в соотношении 1:1 и измерение накопления флуоресцентных сигналов по каналам соответствующих флуоресцентных красителей:, интерпретацию результатов проводят на основании наличия или отсутствия пересечения кривой флуоресценции с пороговой линией, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции - отрицательный.
Недостатком известного технического решения является отсутствие возможности определения видовой принадлежности ткани ежа, недостаточная точность из-за использования суспензии бактериофага, которая требует предварительную обработку, включая центрифугирование, концентрирование и перевод в определенный буферный раствор, что влечет за собой значительную трудоемкость и финансовые затраты.
Техническим результатом является расширение функциональной возможности, повышение точности идентификации видовой принадлежности ткани ежа, упрощение процесса подготовки внутреннего контроля и уменьшение его стоимости.
Технический результат достигается тем, что в способе идентификации ДНК ткани ежа обыкновенного (Erinaceus europaens) в сухих кормах и мясных полуфабрикатах, включающем выделение ДНК из ткани животного сорбционным методом, постановку полимеразной цепной реакции с флуоресцентной детекцией с проведением 45 циклов амплификации в реальном времени с использованием специфичных для участка генома ДНК животного олигонуклеотидных праймеров, зондов, флуоресцентных красителей: для специфического сигнала для животного - JOE/Yellow и Cy5/Red - для внутреннего контрольного образца в виде суспензии бактериофага Т4 с концен-трацией 5×103 фаговых частиц на 1 мкл, положительного контрольного образца в виде смеси, содержащую фрагменты геномов животного и бактериофага Т4 с нуклеотидной последовательностью:
- зонд, взятых в соотношении 1:1 и измерение накопления флуоресцентных сигналов по каналам соответствующих флуоресцентных красителей, проведение интерпретации результатов на основании наличия или отсутствия пересечения кривой флуоресценции с пороговой линией, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции - отрицательный, согласно изобретению выделяют ДНК из ткани ежа обыкновенного (Erinaceus europaeus) и для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца - фрагменты геномов нативного бактериофага Т4 и ткани ежа обыкновенного (Erinaceus europaeus) со следующей нуклеотидной последовательностью:
Новизна заявляемого способа состоит в идентификации видовой принадлежности тканей ежа обыкновенного с помощью полимеразной цепной реакции (ПЦР) с флуоресцентной детекцией в режиме реального времени, что в свою очередь позволяет с высокой точностью определить наличие их ингредиентов в продовольственном сырье, кормах и пищевых продуктах.
Признаки, отличающие заявляемое техническое решение от прототипа, направлены на достижение технического результата и не выявлены при изучении данной и смежной областей науки и техники и, следовательно, соответствуют критерию «изобретательский уровень».
Заявляемый способ рекомендовано использовать в специализированных ветеринарных, санитарно-эпидемиологических, животноводческих, сельскохозяйственных предприятиях, что соответствует критерию «промышленная применимость».
Способ идентификации ДНК ткани ежа обыкновенного (Erinaceus europaeus) в сухих кормах и мясных полуфабрикатах осуществляется следующим образом.
Для исследования сухих кормов и мясных полуфабрикатов на содержание ДНК ткани ежа обыкновенного проводят полимеразную цепную реакцию с флуоресцентной детекцией с применением термоциклера типа Rotor-Gene Q при соответствующих температурно-временных режимах амплификации и измеряют накопление флуоресцентных сигналов по каналам соответствующих флуоресцентных красителей: JOE/Yellow для специфического сигнала для ДНК ткани ежа обыкновенного (Erinaceus europaeus) и Cy5/Red - для внутреннего контрольного образца. Интерпретацию результатов проводят на основании наличия или отсутствия пересечения кривой флуоресценции с пороговой линией, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции - отрицательный.
Для повышения точности идентификации мяса для внутреннего контрольного образца используют фаголизат бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, если концентрация фаговых частиц отклоняется в большую или меньшую сторону, то наблюдаются повторности сомнительных образцов. Для положительного контрольного образца используют смесь, содержащую фрагменты геномов ДНК тканей ежа обыкновенного (Erinaceus europaeus) и нативного бактериофага Т4 взятых в соотношении 1:1 со следующими нуклеотидными последовательностями:
Использование для разных видов контроля различные формы материала бактериофага Т4: фаголизата и фрагмента генома нативного бактериофага со специфическими к нему праймерами и зондом обусловлено тем, что это позволяет контролировать корректное прохождение реакции в каждой пробирки, а также контролируется этап выделения ДНК из образцов. Кроме того, использование фаголизата бактериофага Т4, представляющего собой суспензию бактериофага, полученную после лизиса зараженных фагом клеток ткани, повышает воспроизводимость, чувствительность и упрощает процесс идентификации ткани ежа обыкновенного в продуктах.
При конструировании праймеров и зонда основными требованиями были: степень гомологии (комплементарность) с выбранным участком гена; отсутствие самокоплементарных участков внутри олигонуклеотидов и комплементарности друг другу, чтобы не допускать возникновения устойчивых вторичных структур (димеров); близость значений температуры отжига праймеров.
Конструирование специфических праймеров и зонда осуществляли с помощью компьютерных программ на основании анализа нуклеотидных последовательностей референтных штаммов и изолятов, опубликованных на ресурсе GenBank и подбора условий для проведения ПЦР в реальном времени с применением разработанных праймеров и зонда, несущего флуорофор и тушитель, и комплементарного части амплифицируемого со специфическими праймерами фрагмента.
Праймеры, специфичные для ДНК ежа обыкновенного (Erinaceus europaeus) были отобраны на основе нуклеотидной последовательности ми-тохондриального гена (Erinaceus europaeus mitochondrion, complete genome. 17447 bp DNA circular MAM 10-SEP-2009) на участке между 5400 и 5800 нуклеотидами. Код доступа нуклеотидной последовательности в GeneBank NCBI: NC_002080.
Праймеры были спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы на специфичность с использованием программы BLAST на сервере NCBI. Для детекции продуктов амплификации был подобран олигонуклеотидный флуоресцентно-меченный зонд Hed-P (комплементарный участку нуклеотидной последовательности, фланкированной позициями для праймеров Hed-F и Hed-R). На 5'-конец зонда Hed-P добавлен флуоресцентный краситель карбоксифлуоресцеин (FAM).
Используя программу "Oligo 6.0" описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР. Ни одна из выбранных последовательностей не обнаружена в геномах каких либо животных и птиц (исключая Erinaceus europaeus) и любых видов растений, которые потенциально могут быть использованы при производстве кормов и пищевых продуктов.
В качестве внутреннего контроля использовался бактериофаг Т4, имеющий геномную ДНК порядка 170 тысяч пар нуклеотидов (Enterobacteria phage Т4Т, complete genome GenBank: HM137666.1). В результате анализа был выбран участок между 400 и 600 нуклеотидами, содержащий уникальные нуклеотидные последовательности, рассчитаны первичные структуры олигонуклеотидных праймеров, фланкирующих выбранный участок генома. Праймеры были спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы на специфичность с использованием программы BLAST на сервере NCBI.
Для детекции продуктов амплификации подобран олигонуклеотидный флуоресцентно-меченный зонд Т4Р, комплементарный участку нуклеотидной последовательности, ограниченной позициями отжига праймеров T4F и T4R. Зонд был помечен красителем HEX. Используя программу "Oligo 6.0" описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР. Пример конкретного осуществления способа идентификации
Для подтверждения эффективности способа были использованы сухие корма в виде рыбной и мясной муки; сырые и термически обработанные мясные продукты, т.е. мясные полуфабрикаты.
От пробы плотной консистенции отбирают на исследование общую пробу весом 10-50 г. Гранулированную или консервированную продукцию перед исследованием (10-20 г) растирают в ступке до гомогенного состояния.
Лабораторные пробы (20-40 мг) отбирают на исследование в одноразовые микропробирки вместимостью 1,5 мл в двух повторах. Отобранные лабораторные пробы направляют на выделения ДНК.
Исследование проводят с помощью набора реагентов «ПЦР-ЕЖ - ФАКТОР». Набор состоит из комплекта реагентов для проведения мультиплексной ПЦР (комплект №1) и комплекта контрольных образцов (комплект №2). Набор выпускается в двух вариантах: 1) Для анализа 55 образцов (включая контрольные образцы)
2) Для анализа 110 образцов (включая контрольные образцы). Наборы используют в соответствии с инструкцией по применению набора реагентов «ПЦР-ЕЖ-ФАКТОР» для определения ДНК ткани ежа обыкновенного (Erinaceus europaeus) методом полимеразной цепной реакции (ПЦР) с флуоресцентной детекцией в РВ ТУ 21.10.60-163-51062356-2018, для диагностики in vitro, http://www.vetfaktor.ru/. Состав набора приведен в Таблицах 1 и 2.
Исследования состоит из трех этапов:
• экстракция нуклеиновая кислота (НК);
• проведение реакции ПЦР РВ;
• учет результатов анализа.
Для экстракции (выделение) НК из исследуемых проб отбирают необходимое количество одноразовых пробирок объемом 1,5 мл, включая отрицательный контроль выделения. Во все пробирки с исследуемыми образцами, включая пробирку для отрицательного контрольного образца (ОКО), вносят по 10 мкл внутреннего контрольного образца (ВКО) для ткани ежа обыкновенного, в качестве которого, используют фаголизат бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл.
Следующий этап это подготовка образцов к проведению ПЦР.
Общий объем реакционной смеси - 25 мкл, объем ДНК-пробы - 10 мкл.
Успешное прохождение реакции контролируют использованием положительного контрольного образца (ПКО) ЕЖ, ВКО ЕЖ и ДНК буфера. В качестве ПКО используют смесь содержащую фрагменты геномов ткани ежа обыкновенного и нативного бактериофага Т4 взятых в соотношении 1:1, со следующими нуклеотидными последовательностями:
В отдельной пробирке смешивают компоненты набора из расчета на каждую реакцию:
5 мкл ПЦР СМЕСЬ ЕЖ;
10 мкл ПЦР БУФЕР ЕЖ;
0,5 мкл TAQ POLYMERASE
Перемешивают смесь на вортексе и сбросывают капли кратковременным центрифугированием.
Отбирают необходимое количество пробирок для амплификации ДНК исследуемых и контрольных проб. Вносят по 15 мкл приготовленной реакционной смеси. Помещают подготовленные для проведения ПЦР пробирки в ячейки амплификатора и используют программное обеспечение прибора. Далее проводят ПЦР РВ с флуоресцентной детекцией.
Параметры температурно-временного режима амплификации на приборе «Rotor-Gene Q» представлены в таблице 3.
Интерпретация результатов анализа.
Полученные данные - кривые накопления флуоресцентного сигнала анализируются с помощью программного обеспечения используемого прибора для проведения ПЦР в соответствии с инструкцией производителя к прибору.
Учет результатов ПЦР РВ проводится по наличию или отсутствию пересечения кривой флуоресценции с установленной на соответствующем уровне пороговой линией (что соответствует наличию или отсутствию значения порогового цикла «Ct» для исследуемого образца).
Результат считается достоверным в случае корректного прохождения положительных и отрицательных контролей амплификации и экстракции ДНК в соответствии с таблицей 4.
Появление любого значения Ct в таблице 4 результатов для отрицательного контроля этапа экстракции ВК - на канале JOE/Yellow и для отрицательного контроля этапа ПЦР К - на любом из каналов свидетельствует о наличии контаминации реактивов или образцов. В этом случае результаты анализа для всех проб считаются недействительными. Требуется повторить анализ всех проб, а также предпринять меры по выявлению и ликвидации источника контаминации.
Образцы, для которых значение Ct по каналу Cy5/Red отсутствует или превышает 35 цикл (и при этом не получен положительный результат на канале JOE/Yellow) требуют повторного проведения исследования с этапа экстракции ДНК. Задержка в значениях пороговых циклов для исследуемых образцов указывает на присутствие ингибиторов в пробе(ах) или на ошибки при экстракции ДНК или при постановке реакции ПЦР РВ.
В образце обнаружена ДНК ткани ежа обыкновенного (Erinaceus europaeus), если наблюдается экспоненциальный рост сигнала на канале JOE/Yellow, при этом значения Ct контрольных образцов находятся в пределах нормы (Табл. 4).
Если для исследуемого образца по каналам JOE/Yellow значение Ct определяется позднее 37 цикла при корректном прохождении положительных и отрицательных контролей, образец исследуется повторно с этапа экстракция ДНК. Если при повторной постановке Ct более 37 результат считается отрицательным.
Образец считается отрицательным ДНК (Erinaceus europaeus) не обнаружена), если не определяется значение Ct (не наблюдается рост специфического сигнала) на канале JOE/Yellow при этом значения Ct контрольных образцов находятся в пределах нормы (Табл. 4), а значение Ct по каналу Cy5/Red менее 35.
Для исследуемых образцов (сухой корм и мясные полуфабрикаты) предел точности содержания тканей ежа обыкновенного представлен в таблице 5.
Для доказательства эффективности использования ПЦР с флуоресцентной детекцией в режиме реального времени проводился сравнительный анализ чувствительности заявляемого с прототипом, в котором использовался метод ПЦР с использованием внутреннего контроля в виде суспензии бактериофага, а в заявляемом - использовался фаголизат бактериофага и геном нативного бактериофага. Оказалось чувствительность ПЦР при обнаружении примеси ткани ежа обыкновенного в кормах и в мясных фаршах примерно в 1,5 раза выше. Трудоемкость и стоимость процесса определения ДНК ткани ежа обыкновенного в кормах и фаршах снизилась на 3-5%.
--->
Перечень последовательностей
<110> Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный аграрный университет имени И.Т. Трубилина».
<120> Способ идентификации днк ткани ежа обыкновенного (Еrinaceus europaeus) в сухих кормах и мясных полуфабрикатах
<140> 2019133102
< 160> 6
< 210> 1
< 211> 22
< 212> ДНК
< 213> Еrinaceus europaeus
< 400> 1
agtctattgattcgaatagagc 22
< 210> 2
< 211> 20
< 212> ДНК
< 213> Еrinaceus europaeus
< 400> 2
catgagaggtactaaccagt 20
< 210> 3
< 211> 26
< 212> ДНК
< 213> Еrinaceus europaeus
< 400> 3
caggagctttattaggtgatgatcag 26
< 210> 4
< 211> 21
< 212> ДНК
< 213> Бактериофаг Т4
< 400> 4
tacatataaatcacgcaaagc 21
< 210> 5
< 211> 21
< 212> ДНК
< 213> Бактериофаг Т4
< 400> 5
tagtatggctaatcttattgg 21
< 210> 6
< 211> 21
< 212> ДНК
< 213> Бактериофаг Т4
< 400> 6
acattggcactgaccgagttc 21
<---
Claims (7)
- Способ идентификации ДНК ткани ежа обыкновенного (Erinaceus europaeus) в сухих кормах и мясных полуфабрикатах, включающий выделение ДНК из ткани животного сорбционным методом, постановку полимеразной цепной реакции с флуоресцентной детекцией с проведением 45 циклов амплификации в реальном времени с использованием специфичных для участка генома ДНК животного олигонуклеотидных праймеров, зондов, флуоресцентных красителей: для специфического сигнала для животного - JOE/Yellow и Cy5/Red - для внутреннего контрольного образца в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, положительного контрольного образца в виде смеси, содержащей фрагменты геномов животного и бактериофага Т4 с нуклеотидной последовательностью:
- T4F: 5'-TACATATAAATCACGCAAAGC-3' - прямой праймер
- T4R: 5'-TAGTATGGCTAATCTTATTGG-3' - обратный праймер
- T4P: HEX-5'- ACATTGGCACTGACCGAGTTC-3'-BHQ1 - зонд, взятых в соотношении 1:1, и измерение накопления флуоресцентных сигналов по каналам соответствующих флуоресцентных красителей, проведение интерпретации результатов на основании наличия или отсутствия пересечения кривой флуоресценции с пороговой линией, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции - отрицательный, отличающийся тем, что выделяют ДНК из ткани ежа обыкновенного (Erinaceus europaeus) и для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца - фрагменты геномов нативного бактериофага Т4 и ткани ежа обыкновенного (Erinaceus europaeus) со следующей нуклеотидной последовательностью:
- Hed-F: 5'-AGTCTATTGATTCGAATAGAGC-3' - прямой праймер
- Hed-R: 5'-CATGAGAGGTACTAACCAGT-3' - обратный праймер
- Hes-P: FAM-5'-CAGGAGCTTTATTAGGTGATGATCAG-3-BHQ1 - зонд.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019133102A RU2726433C1 (ru) | 2019-10-16 | 2019-10-16 | Способ идентификации ДНК ткани ежа обыкновенного (Erinaceus europaeus) в сухих кормах и мясных полуфабрикатах |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019133102A RU2726433C1 (ru) | 2019-10-16 | 2019-10-16 | Способ идентификации ДНК ткани ежа обыкновенного (Erinaceus europaeus) в сухих кормах и мясных полуфабрикатах |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2726433C1 true RU2726433C1 (ru) | 2020-07-14 |
Family
ID=71616725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019133102A RU2726433C1 (ru) | 2019-10-16 | 2019-10-16 | Способ идентификации ДНК ткани ежа обыкновенного (Erinaceus europaeus) в сухих кормах и мясных полуфабрикатах |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2726433C1 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106435008A (zh) * | 2016-12-26 | 2017-02-22 | 河南科技大学 | 用于检测鹌鹑性别的引物、试剂盒及检测方法 |
CN108624659A (zh) * | 2018-06-22 | 2018-10-09 | 武汉轻工大学 | 一种检测肉类制品成分的实时定量pcr方法 |
RU2694713C1 (ru) * | 2018-10-01 | 2019-07-16 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" | Способ идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах |
-
2019
- 2019-10-16 RU RU2019133102A patent/RU2726433C1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106435008A (zh) * | 2016-12-26 | 2017-02-22 | 河南科技大学 | 用于检测鹌鹑性别的引物、试剂盒及检测方法 |
CN108624659A (zh) * | 2018-06-22 | 2018-10-09 | 武汉轻工大学 | 一种检测肉类制品成分的实时定量pcr方法 |
RU2694713C1 (ru) * | 2018-10-01 | 2019-07-16 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" | Способ идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2700480C1 (ru) | Тест-система для определения видовой принадлежности тканей кур и свиней в продовольственном сырье, кормах и пищевых продуктах | |
RU2694713C1 (ru) | Способ идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах | |
CN111876502A (zh) | 双重实时荧光定量pcr鉴定布鲁氏菌s2疫苗株的方法及其使用的成套试剂 | |
RU2726555C1 (ru) | Тест-система для выявления ДНК ткани домашнего осла (Equus asinus) в сухих кормах и мясных полуфабрикатах | |
CN114774563B (zh) | 一种犬种布鲁氏菌病的检测试剂及应用 | |
Barry et al. | A probe-based real-time PCR assay for the detection of Neospora caninum in clinical samples from cattle | |
CN113186312A (zh) | 一种区分布鲁氏菌a19疫苗株与野毒株的分子标记 | |
RU2725539C1 (ru) | Тест-система для идентификации ДНК тканей крыс и мышей в сухих кормах и мясных полуфабрикатах | |
RU2726433C1 (ru) | Способ идентификации ДНК ткани ежа обыкновенного (Erinaceus europaeus) в сухих кормах и мясных полуфабрикатах | |
RU2700479C1 (ru) | Способ определения видовой принадлежности тканей кур и свиней в продовольственном сырье, кормах и пищевых продуктах | |
CN116814857A (zh) | 猫细小病毒及其试剂盒和荧光重组酶聚合酶扩增的方法 | |
RU2726427C1 (ru) | Способ идентификации ДНК ткани медведя (Ursus) в сухих кормах и мясных полуфабрикатах | |
RU2734035C1 (ru) | Способ идентификации ДНК ткани перепелки обыкновенной (Coturnix coturnix) в сухих кормах и мясных полуфабрикатах | |
RU2728612C1 (ru) | Способ идентификации ДНК ткани собаки домашней (Canis lupus familiaris) в сухих кормах и мясных полуфабрикатах | |
RU2742952C1 (ru) | Способ идентификации видовой принадлежности тканей крыс и мышей в сухих кормах и мясных полуфабрикатах | |
RU2726429C1 (ru) | Тест-система для идентификации ДНК ткани медведя (Ursus) в сухих кормах и мясных полуфабрикатах | |
RU2726248C1 (ru) | Способ выявления ДНК ткани домашнего осла (Equus asinus) в сухих кормах и мясных полуфабрикатах | |
RU2728382C1 (ru) | Тест-система для идентификации ДНК ткани собаки домашней (Canis lupus familiaris) в сухих кормах и мясных полуфабрикатах | |
RU2728662C1 (ru) | Способ идентификации ДНК ткани кошки домашней (Felis silvestris catus) в сухих кормах и мясных полуфабрикатах | |
RU2728639C1 (ru) | Тест-система для идентификации ДНК ткани кошки домашней (Felis silvestris catus) в сухих кормах и мясных полуфабрикатах | |
RU2714287C1 (ru) | Способ определения ДНК ткани дятла (Picidae) в сухих кормах и мясных полуфабрикатах | |
RU2725215C1 (ru) | Тест-система для идентификации ДНК ткани ежа обыкновенного (Erinaceus europaeus) в сухих кормах и мясных полуфабрикатах | |
RU2726242C1 (ru) | Тест-система для выявления ДНК вируса нодулярного дерматита (LSDV) в биологическом материале животных с помощью полимеразной цепной реакции в режиме реального времени | |
RU2725210C1 (ru) | Тест-система для идентификации ДНК ткани перепелки обыкновенной (Coturnix coturnix) в сухих кормах и мясных полуфабрикатах | |
RU2725216C1 (ru) | Тест-система для определения ДНК ткани дятла (Picidae) в сухих кормах и мясных полуфабрикатах |