RU2721995C2 - Проводящий композиционный материал, полученный из порошков с покрытием - Google Patents

Проводящий композиционный материал, полученный из порошков с покрытием Download PDF

Info

Publication number
RU2721995C2
RU2721995C2 RU2017141931A RU2017141931A RU2721995C2 RU 2721995 C2 RU2721995 C2 RU 2721995C2 RU 2017141931 A RU2017141931 A RU 2017141931A RU 2017141931 A RU2017141931 A RU 2017141931A RU 2721995 C2 RU2721995 C2 RU 2721995C2
Authority
RU
Russia
Prior art keywords
conductive
composite material
particles
conductive composite
organic
Prior art date
Application number
RU2017141931A
Other languages
English (en)
Other versions
RU2017141931A (ru
RU2017141931A3 (ru
Inventor
Константин ЯКОБ
Себастьян БУШЕР
Фабрис ПРОСТ
Original Assignee
Х.Е.Ф
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Х.Е.Ф filed Critical Х.Е.Ф
Publication of RU2017141931A publication Critical patent/RU2017141931A/ru
Publication of RU2017141931A3 publication Critical patent/RU2017141931A3/ru
Application granted granted Critical
Publication of RU2721995C2 publication Critical patent/RU2721995C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/125Intrinsically conductive polymers comprising aliphatic main chains, e.g. polyactylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Изобретение относится к производству функциональных композиционных материалов (электрических проводников, проводников тепла и т.п.), которые получают из порошков с покрытием. Техническим результатом является снижение доли проводящей фазы в органической матрице при одновременном обеспечении высоких характеристик удельной проводимости. Предложен проводящий композиционный материал, содержащий взаимосвязанную структуру из проводящих частиц, причем указанные проводящие частицы содержат ядро из органического материала, плакированное по меньшей мере одним слоем электропроводящего и/или теплопроводящего материала, где указанное ядро представляет собой термопластический материал и имеет размер от 5 мкм до 300 мкм, а указанный слой проводящего материала выполнен из металлического или керамического материала, вся совокупность частиц взаимосвязана внутри структуры указанного проводящего композиционного материала с образованием тем самым непрерывной трехмерной структуры проводящего материала. Массовая доля проводящего плакирующего элемента в указанном проводящем композиционном материале составляет от 1% до 30% по массе относительно общей массы проводящего композиционного материала. 2 н. и 11 з.п. ф-лы, 9 ил., 2 табл.

Description

Введение
Настоящее изобретение относится к производству функциональных композиционных материалов (электрических проводников, проводников тепла и т.п.), которые получают из порошков с покрытием. Предложенный композиционный материал состоит из органической фазы, которая может представлять собой полимер, и теплопроводящей и/или электропроводящей фазы. Такая проводящая фаза позволяет наделить органический материал, который обычно является изоляционным, характеристикой удельной электропроводности и/или удельной теплопроводности.
В настоящее время такие свойства проводимости обеспечивают путем смешивания проводящих наполнителей, в частности, металлических или керамических наполнителей, с органическим основанием. Соответственно, для получения требуемого значения удельной теплопроводности и/или удельной электропроводности используются различные типы наполнителей пропорциях, варьирующихся в широких пределах.
В производственных процессах, применяемых в данной области техники, регулировочные параметры для получения теплопроводящего и/или электропроводящего материала являются следующими:
- природа наполнителей, включенных в органическую матрицу,
- их морфологии (формы),
- размер их частиц и
- массовая доля проводящих наполнителей относительно общей массы смеси проводящих наполнителей и органической матрицы.
При необходимости обеспечения высоких значений удельной проводимости массовые доли наполнителей, которые предполагают включить в органическую матрицу, могут быть очень значительными.
Например, чтобы обеспечить значения удельного электрического сопротивления органического материала менее 1 Ом×см, массовые доли наполнителей из проводящего материала, такого как серебро, могут превышать 50% относительно общей массы смеси.
Затем уменьшение удельного электрического сопротивления такого типа материала достигается путем формирования внутри органической матрицы взаимосвязанной структуры из проводящих частиц. Соответственно, это приводит к появлению равномерно распределенной значительной объемной доли, неизбежно высокой, указанных проводящих частиц.
Задача настоящего изобретения состоит в существенном снижении доли проводящей фазы в органической матрице при одновременном обеспечении высоких характеристик удельной проводимости. Это стало возможным благодаря применению порошков с покрытием, в которых проводящий материал А плакирует порошкообразный органический материал В, как показано на фигуре 1.
Описание настоящего изобретения
Более конкретно, в настоящем изобретении предложен проводящий композиционный материал, содержащий взаимосвязанную структуру из проводящих частиц, в которой указанные проводящие частицы содержат ядро из органического материала, плакированное по меньшей мере одним слоем материала электрического проводника и/или проводника тепла, характеризующийся
тем, что вся совокупность частиц взаимосвязана во внутренней структуре указанного формованного проводящего композиционного материала с образованием тем самым непрерывной трехмерной структуры проводящего материала, и
тем, что массовая доля проводящего плакирующего элемента в указанном проводящем композиционном материале составляет от 1% до 30% по массе относительно общей массы проводящего композиционного материала.
Для целей настоящего изобретения непрерывная трехмерная структура означает структуру, образованную за счет наличия контактов между проводящими покрытиями каждой из проводящих частиц.
Массовая доля проводящего плакирующего элемента в проводящем композиционном материале может предпочтительно составлять от 5% до 20% по массе относительно общей массы проводящего композиционного материала.
Проводящий композиционный материал предпочтительно может быть в форме пленки или трехмерного объекта.
Для настоящих целей под трехмерным объектом понимают объемный объект, который не является пленкой.
Каждая проводящая частица содержит ядро из органического материала и по меньшей мере один слой проводящего материала.
Слой или слои проводящего материала можно предпочтительно выполнить из металлического или керамического или органического материала.
Согласно первому варианту проводящий материал (плакирующий ядро из органического материала проводящих частиц) может содержать по меньшей мере один металл, выбранный из серебра, золота, меди, алюминия, титана, никеля, кобальта и железа.
Согласно второму варианту проводящий материал (плакирующий ядро из органического материала проводящих частиц) может представлять собой керамический материал, выбранный из оксидов металлов и из нитридов, карбидов, соединений на кремниевой основе и смешанных соединений на основе олова, таких как, например, ITO, представляющий собой смесь оксида индия и оксида олова.
Согласно третьему варианту проводящий материал (плакирующий ядро из органического материала проводящих частиц) может представлять собой проводящий органический материал полимерного типа, выбранный из классов полиацетиленов, полипирролов и полианилинов.
Что касается ядра из органического материала, его можно предпочтительно выбрать из:
- термопластических материалов, таких как полиэтилены (РЕ), полипропилены (РР), полиэфирэфиркетоны (РЕЕК), полиэфиркетонкетоны (РЕКК), поливинилхлориды (PVC), поливинилиденфториды (PVDF), политетрафторэтилены (PTFE) и силиконы, и
- термореактивных материалов, таких как эпоксидные смолы, сложные полиэфиры, полиуретаны и акриловые смолы.
Ядро из органического материала может предпочтительно иметь размер частиц от 300 нм до 10 мм и предпочтительно от 5 мкм до 300 мкм.
Для получения плакированных проводящих частиц порошки органического материала, характеризующиеся любым типом морфологи, размером частиц и природой, покрывают путем плакирования.
Ядро из органического материала может предпочтительно иметь сферическую или пластинчатую форму или форму чешуйки, нити или гранулы губчатой, неправильной формы.
Проводящий композиционный материал согласно настоящему изобретению может предпочтительно иметь удельное электрическое сопротивление от 16×10-9 Ом×м до 100 Ом×м.
Проводящий композиционный материал согласно настоящему изобретению может предпочтительно иметь удельную теплопроводность от 2 Вт×м-1×К-1 до 50 Вт×м-1×К-1 и предпочтительно от 5 Вт×м-1×К-1 до 10 Вт×м-1×К-1 (Вт×м-1×К-1=Вт×м-1×0С-1).
Ядро из органического материала может предпочтительно содержать теплопроводящие и/или электропроводящие наполнители.
Указанные теплопроводящие и/или электропроводящие наполнители могут иметь покрытие из материала проводника тепла и/или электрического проводника, такого как материалы, определенные в настоящем описании выше.
Указанные теплопроводящие и/или электропроводящие наполнители предпочтительно могут иметь покрытие из материала проводника тепла и/или электрического проводника, состоящего из графита, графена, углеродной нанотрубки, растительного волокна или проводящего полимера.
В настоящем изобретении продемонстрировано преимущество применения порошков с покрытием для получения функциональных композиционных материалов (с удельной электропроводностью и/или удельной теплопроводностью).
Функциональность удельной проводимости значительно усиливается благодаря присутствию на поверхности частиц проводящей фазы.
Идеальные микроструктуры наблюдаются при наличии взаимосвязанной проводящей структуры, подобно своего рода трехмерной сетки.
Наряду с аспектом экономической выгодности этой концепции, обеспечивающей характеристики высокой удельной проводимости при применении низких долей наполнителя, использование такого порошка упрощает его применение за счет устранения виртуозных и сложных операций по смешиванию компонентов, которые неизбежно приводят к проблемам, связанным с неоднородностью.
Кроме того, значения удельной теплопроводности композиционных материалов, полученных согласно настоящему изобретению с помощью плакированных серебром порошков, превосходят значения лучших современных композиционных материалов (от 1 Вт×м-1×К-1 до 3 Вт×м-1×К-1) и составляют от 2 Вт×м-1×К-1 до 50 Вт×м-1×К-1 и предпочтительно от 5 Вт×м-1×К-1 до 10 Вт×м-1×К-1.
Композиционные материалы могут быть получены в виде готового компонента (спекание, литьевое формование и т.п.) или в виде полосы или пленки, которые поддаются деформации, например, путем термоформования.
Такие порошки можно использовать сами по себе для получения функциональных покрытий путем покрытия их порошком. Композиционные порошки с покрытием также можно использовать для пропитки технических тканей.
Следует также отметить, что могут быть получены материалы, поглощающие радиоволны (или RAM: «радиопоглощающие материалы»).
В настоящем изобретении также предложен способ получения проводящего композиционного материала, определенного согласно настоящему изобретению, включающий стадии:
а) обеспечение и/или получение заряженных или незаряженных органических частиц;
b) плакирование указанных органических частиц одним или более слоями по меньшей мере одного электропроводящего и/или теплопроводящего материала с получением проводящих частиц,
c) формование указанных проводящих частиц с получением проводящей пленки или компонента заранее заданной формы,
при этом указанный способ характеризуется тем, что стадию b) плакирования указанных органических частиц выполняют:
- или с применением технологии сухой обработки поверхности, когда указанные частицы помещают в суспензию в двухфазном псевдоожиженном слое, или с применением механических средств вращения или вибрации;
- или с применением технологии влажной обработки поверхности, включающей окислительно-восстановительные реакции осаждения или полимеризации на поверхности частиц, при этом указанные частицы помещают в суспензию в трехфазном псевдоожиженном слое, или с применением механических или магнитных средств перемешивания.
В качестве химических сухих способов нанесения покрытия можно упомянуть, в частности, химические или физические способы нанесения покрытий, а также способы термохимической обработки с рассеянием.
За плакированием органических частиц (стадия b) следует формование проводящих частиц, полученных таким образом (стадия с).
Формование указанных композиционных частиц различными методами, обычно используемыми в области технологии пластмасс, приводит к получению готовых или полуготовых компонентов с довольно специфическими структурами. Это связано с тем, что присутствие проводящей фазы на поверхности органических частиц естественным образом позволяет получить трехмерную проводящую структуру, которая является взаимосвязанной после уплотнения, как схематически показано на фигуре 2.
Стадию с) формования плакированных проводящих частиц можно предпочтительно осуществить с применением методов, выбранных из спекания с последующей прокаткой, прототипирования, термоформования или термического напыления.
Дополнительные характеристики и преимущества настоящего изобретения станут более понятными при прочтении приведенного ниже описания, которое приведено в качестве иллюстративного и неограничивающего примера и которое относится к прилагаемым фигурам, на которых:
- на фигуре 1 показано схематическое изображение проводящих частиц согласно настоящему изобретению;
- на фигуре 2 показано схематическое изображение структуры, полученной после формования проводящих частиц;
- на фигуре 3А показано микроскопическое изображение органических полиэтиленовых ядер до плакирования;
- на фигуре 3В показано микроскопическое изображение полиэтиленовых частиц после плакирования серебром путем нанесения покрытий химическим методом;
- на фигуре 4А показан микроскопический вид в разрезе органических полиэтиленовых ядер, покрытых 20% по массе серебра;
- на фигуре 4В показан микроскопический вид в разрезе органических полиэтиленовых ядер, покрытых 20% по массе серебра;
- на фигурах 5А и 5В показаны микроскопические виды в разрезе органических PTFE ядер, покрытых 40% по массе серебра;
- на фигурах 6А и 6В показаны микроскопические виды в разрезе органических РЕКК ядер, покрытых 30% по массе оксида олова;
- на фигуре 7 показан компонент, полученный после спекания покрытых серебром полиэтиленовых (РЕ) частиц;
- на фигуре 8 показана микроструктура конечного компонента после спекания покрытых серебром РЕ частиц;
- на фигуре 9 показана микроструктура проводящего материала, полученного из смеси полиэтиленового порошка и порошка серебра.
В приведенных примерах, если не указано иное, все проценты и части выражены в процентных концентрациях по массе.
ПРИМЕРЫ
Пример 1, согласно изобретению
Испытания по плакированию серебром были проведены с применением порошка из полиэтилена низкой плотности с размером частиц от 50 до 500 мкм и нерегулярной морфологией. Покрытие серебром осуществляли в автокаталитической химической ванне (трехфазный псевдоожиженный слой).
Массовые доли серебра, составляющие 10% (пример 1В) и 20% (пример 1А) относительно общей массы смеси полиэтилена+серебра, наносили на поверхность полиэтиленовых (РЕ) частиц в форме равномерного покрытия, как показано на изображениях, приведенных на фигурах 3А, 3В, 4А и 4В.
После анализа поперечного сечения частиц, покрытых 20% по массе серебра, на поверхности полиэтиленовых частиц было обнаружено плотное и непрерывное покрытие из серебра толщиной приблизительно 1 мкм (фигуры 4А и 4В).
Указанные порошки с покрытием можно использовать в качестве любого компонента в соответствии с категориями, обычно применяемыми в технологии пластмасс. При формовании указанных порошков с применением методов, таких как экструзия, литьевое формование, спекание, прототипирование и т.п., получают полуготовые или готовые продукты. Следует отметить, что технологии формования, приводящие к высоким значениям напряжения сдвига материала, не являются наиболее подходящими с точки зрения обеспечения оптимальных характеристик удельной проводимости.
Далее полиэтиленовые частицы, покрытые, как указано выше, подвергаются формованию путем спекания (литья) при нагрузке с получением диска с диаметром 30 мм и толщиной 5 мм. В случае полиэтилена формование осуществляют при температуре 160°С. Целью указанных предварительных испытаний является исследование структуры материалов, с одной стороны, и значений их удельного электрического сопротивления, с другой стороны (и, следовательно, значений их удельной электропроводности). Полученный компонент показан на фигуре 7.
Микроструктуру материала анализируют с помощью оптической микроскопии после шлифования ее поверхности. Изображения показаны на фигуре 8. Шлифование материала на основе полиэтилена затруднено вследствие его эластичности, что приводит к пластической деформации в процессе операции. Поэтому продемонстрировать прозрачную микроструктуру непросто. Тем не менее, наличие серебра на периферии частиц можно увидеть и указанное серебро также образует там трехмерную взаимосвязанную структуру.
Пример 2, сравнительный
Для сравнения, из обычной смеси полиэтиленового порошка и порошка серебра был получен проводящий композиционный материал. Массовую долю порошка серебра устанавливали равной 70% относительно общей массы смеси. Смесь такого рода позволила получить проводящий композиционный материал со свойствами удельной проводимости, эквивалентными свойствам композиционного материала, полученного согласно настоящему изобретению, а именно, содержащий покрытые серебром органические частицы, но с очень большой долей порошка серебра. Микроструктура такого материала показана на фигуре 9. Совершенно очевидным является присутствие значительной доли серебра в порошкообразной форме. Объемная доля серебра такого рода позволяет сформировать здесь достаточно непрерывную структуру из частиц серебра и обеспечить низкое удельное сопротивление внутри материала.
Сравнение свойств проводящих композиционных материалов, полученных в соответствии с примером 1 согласно изобретению и в соответствии со сравнительным примером
Электрическое сопротивление было измерено с помощью микроомметра с межэлектродным расстоянием 2 см и без давления в контактах. Полученные результаты занесены в таблицу 1, приведенную ниже:
Figure 00000001
Ниже в таблице 2 в качестве примера приведены значения удельного электрического сопротивления и удельной теплопроводности некоторых материалов:
Figure 00000002
В таблице 1 приведены результаты измерений сопротивления различных проводящих материалах (изобретательских или иных).
Было установлено очень низкое сопротивление (или удельное сопротивление) исследуемых материалов. Было отмечено, что в случае композиционных материалов, полученных из порошков с покрытием, для обеспечения максимальной удельной электрической проводимости было достаточно очень низкой доли серебра. Для сравнения, для обеспечения удельного сопротивления того же порядка в обычном материале (пример 2), полученном из порошковой смеси, требовалось в 3,5 раза больше серебра, чем в композиционном материале согласно настоящему изобретению (пример 1). Более того, можно также отметить, что было обеспечено очень существенное увеличение плотности указанных композиционных материалов, что является прямым следствием более низкой доли серебра. Для данного удельного сопротивления плотность изменяется от 3,1 г/см3 для композиционного материала до 6,3 г/см3 для смеси порошков.
Наконец, механическая характеристика гибкости полиэтилена только незначительно зависит от композиционного материала, тогда как материал, полученный путем смешивания, обычно становится довольно жестким.
Следует отметить, что при нанесении покрытий могут быть также предусмотрены разные вспомогательные порошки для придания композиционным материалам большей или меньшей эластичности и/или большей или меньшей твердости (термопластические материалы, термореактивные материалы и эластомеры с переменными молекулярными массами и переменными плотностями, как, например PEs, PPs, PEEK, РЕКК, PVC, PVDF, PTFE, силикон, эпоксидные смолы, сложные полиэфиры, полиуретаны и т.п.).
Возможны различные покрытия на частицах помимо Ag: Cu, Nb, SnCh, A1N, Ti и т.п.
Некоторые из перечисленных композиционных материалов, полученных соответствующим образом, очень хорошо поддаются механической обработке.
Пример 3, согласно изобретению
Испытания по плакированию серебром были проведены с применением PTFE порошка с размером частиц от 10 мкм до 100 мкм и нерегулярной морфологией. Нанесение серебра осуществляли в автокаталитической химической ванне (трехфазный псевдоожиженный слой).
Массовую долю серебра, составляющую 40% относительно общей массы смеси PTFE+серебра, наносили в форме покрытия с толщиной приблизительно 1 мкм, которое было плотным и непрерывным на поверхности PTFE частиц, как продемонстрировано с помощью анализов поперечного сечения и показано на фигурах 5А и 5В.
Формование указанных частиц с покрытием с применением таких методов, как спекание, как описано выше, позволяет придать материалу не только удельную электропроводность, связанную с серебром, но также сделать его самосмазывающимся и не прилипающим, что присуще PTFE.
Пример 4, согласно изобретению
Испытания по плакированию оксидом олова были проведены с применением порошка РЕКК (полиэфирэфиркетона) с размером частиц от 50 мкм до 300 мкм и губчатой морфологией. Нанесение оксида олова обеспечивали посредством влажного осаждения (используя трехфазный псевдоожиженный слой).
Массовую долю оксида олова, составляющую 30% относительно общей массы смеси РЕКК+оксида олова, наносили в форме покрытия с толщиной от 1 до 2 мкм, которое было равномерным на поверхности РЕКК частиц, как продемонстрировано с помощью анализов поперечного сечения и показано на фигурах 6А и 6В.
Формование указанных частиц с покрытием с применением таких методов, как спекание, как описано выше, позволяет придать материалу антистатические свойства, связанным с присутствием оксида олова, и обеспечить очень высокую максимально допустимую температуру эксплуатации (~250°С непрерывно), которая является одной из характеристик, присущих РЕКК.

Claims (24)

1. Проводящий композиционный материал, содержащий взаимосвязанную структуру из проводящих частиц, причем указанные проводящие частицы содержат ядро из органического материала, плакированное по меньшей мере одним слоем электропроводящего и/или теплопроводящего материала,
характеризующийся тем, что указанное ядро из органического материала представляет собой термопластический материал, выбранный из полиэтилена (PE), полипропилена (PP), полиэфир-эфиркетона (PEEK), полиэфир-кетонкетона (PEKK), поливинилхлорида (PVC), поливинилиденфторида (PVDF), политетрафторэтилена (PTFE) и силикона,
где указанное ядро из органического материала имеет размер от 5 мкм до 300 мкм,
где указанный слой проводящего материала выполнен из металлического или керамического материала,
вся совокупность частиц взаимосвязана внутри структуры указанного проводящего композиционного материала с образованием тем самым непрерывной трехмерной структуры проводящего материала, и
характеризующийся тем, что массовая доля проводящего плакирующего элемента в указанном проводящем композиционном материале составляет от 1% до 30% по массе относительно общей массы проводящего композиционного материала.
2. Проводящий композиционный материал по п. 1, отличающийся тем, что массовая доля проводящего плакирующего элемента в указанном проводящем композиционном материале составляет от 5% до 20% по массе относительно общей массы проводящего композиционного материала.
3. Проводящий композиционный материал по любому одному из пп. 1 или 2, отличающийся тем, что указанный проводящий композиционный материал представлен в форме пленки или трехмерного объекта.
4. Проводящий композиционный материал по п. 1, отличающийся тем, что металлический проводящий материал содержит по меньшей мере один металл, выбранный из серебра, золота, меди, алюминия, титана, никеля, кобальта и железа.
5. Проводящий композиционный материал по п. 1, отличающийся тем, что керамический проводящий материал выбран из оксидов металлов и из нитридов, карбидов, соединений кремния и смешанных соединений на основе олова.
6. Проводящий композиционный материал по любому из пп. 1-5, отличающийся тем, что указанное ядро из органического материала имеет сферическую или пластинчатую форму или форму чешуйки, пленки или гранулы губчатой неправильной формы.
7. Проводящий композиционный материал по любому из пп. 1-6, имеющий удельное электрическое сопротивление от 16×10-9 Ом×м до 100 Ом×м.
8. Проводящий композиционный материал по любому из пп. 1-7, имеющий удельную теплопроводность от 2 Вт×м-1×К-1 до 50 Вт×м-1×К-1.
9. Проводящий композиционный материал по п. 8, имеющий удельную теплопроводность от 5 Вт×м-1×К-1 до 10 Вт×м-1×К-1.
10. Проводящий композиционный материал по любому из пп. 1-9, отличающийся тем, что указанное ядро из органического материала содержит теплопроводящие и/или электропроводящие наполнители.
11. Проводящий композиционный материал по п. 10, отличающийся тем, что указанные проводящие наполнители имеют покрытие из электропроводящего и/или теплопроводящего материала из графита, графена, углеродной нанотрубки, растительного волокна или проводящего полимера.
12. Способ получения проводящего композиционного материала по любому из пп. 1-11, включающий следующие стадии:
a) обеспечение и/или получение заряженных или незаряженных органических частиц;
b) плакирование указанных органических частиц одним или более слоями по меньшей мере одного электропроводящего и/или теплопроводящего материала с получением проводящих частиц,
c) формование указанных проводящих частиц с получением проводящей пленки или компонента заранее заданной формы,
при этом указанный способ характеризуется тем, что стадию b) плакирования указанных органических частиц выполняют:
- или с применением технологии сухой обработки поверхности, когда указанные частицы помещают в суспензию в двухфазном псевдоожиженном слое, или с применением механических средств вращения или вибрации;
- или с применением технологии влажной обработки поверхности, включающей окислительно-восстановительные реакции осаждения или полимеризации на поверхности частиц, при этом указанные частицы помещают в суспензию в трехфазном псевдоожиженном слое, или с применением механических или магнитных средств перемешивания.
13. Способ получения проводящего композиционного материала по п. 12, отличающийся тем, что стадию c) формования указанных проводящих частиц осуществляют с применением методов, выбранных из спекания с последующей прокаткой, прототипирования, термоформования или термического напыления.
RU2017141931A 2015-07-01 2016-07-01 Проводящий композиционный материал, полученный из порошков с покрытием RU2721995C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1556210 2015-07-01
FR1556210A FR3038446B1 (fr) 2015-07-01 2015-07-01 Materiau composite conducteur elabore a partir de poudres revetues
PCT/FR2016/051671 WO2017001805A1 (fr) 2015-07-01 2016-07-01 Matériau composite conducteur élabore á partir de poudres revêtues

Publications (3)

Publication Number Publication Date
RU2017141931A RU2017141931A (ru) 2019-08-01
RU2017141931A3 RU2017141931A3 (ru) 2019-10-24
RU2721995C2 true RU2721995C2 (ru) 2020-05-25

Family

ID=54478146

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017141931A RU2721995C2 (ru) 2015-07-01 2016-07-01 Проводящий композиционный материал, полученный из порошков с покрытием

Country Status (12)

Country Link
US (1) US11001678B2 (ru)
EP (1) EP3317887B1 (ru)
JP (1) JP6911770B2 (ru)
KR (1) KR102637613B1 (ru)
CN (2) CN107851475A (ru)
BR (1) BR112017028216B1 (ru)
CA (1) CA2989983C (ru)
ES (1) ES2807875T3 (ru)
FR (1) FR3038446B1 (ru)
MX (1) MX2017016693A (ru)
RU (1) RU2721995C2 (ru)
WO (1) WO2017001805A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018232119A1 (en) 2017-06-15 2018-12-20 Arkema Inc. Production of semicrystalline parts from pseudo-amorphous polymers
KR102451386B1 (ko) * 2018-03-30 2022-10-07 다이킨 고교 가부시키가이샤 전파 흡수 재료 및 전파 흡수 시트
CN108689726B (zh) * 2018-05-25 2020-08-18 中国科学院过程工程研究所 一种镍包覆陶瓷复合粉体的制备方法
KR102153964B1 (ko) * 2018-10-12 2020-09-09 주식회사 멕스플로러 기능성 소재 표면코팅에 의한 복합소재 및 그 제조방법
CN110684512B (zh) * 2019-10-18 2021-04-20 吉林大学 一种高导热球型磺化聚醚醚酮/石墨核壳结构填料及其制备方法
FR3104589B1 (fr) * 2019-12-13 2022-03-25 Irt Antoine De Saint Exupery Procédé de préparation d’un matériau composite électriquement conducteur et matériau composite électriquement conducteur obtenu par un tel procédé
RU2724650C1 (ru) * 2020-01-22 2020-06-25 ООО "РТ-технологии" Электропроводящие материалы, диспергированные в непроводящем органическом материале
CN115594931B (zh) * 2022-12-13 2023-03-28 四川省众望科希盟科技有限公司 一种航天航空导电膨化聚四氟乙烯密封材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965064A (en) * 1997-10-28 1999-10-12 Sony Chemicals Corporation Anisotropically electroconductive adhesive and adhesive film
EP1775786A1 (fr) * 2002-07-12 2007-04-18 Hydro-Quebec Particules comportant un noyau non conducteur ou semi conducteur enrobées par une couche conductrice hybride, leurs procédés d'obtention et leurs utilisations dans des dispositifs electriques
US20080268318A1 (en) * 2006-12-26 2008-10-30 Jang Bor Z Carbon cladded composite flow field plate, bipolar plate and fuel cell
US20090127516A1 (en) * 2005-07-20 2009-05-21 Masaya Kotaki Electroconductive curable resins
RU2444416C2 (ru) * 2010-05-21 2012-03-10 Владимир Сергеевич Колеров Способ получения изделия из слоистого композита на основе пеноалюминия
WO2013178692A1 (en) * 2012-05-29 2013-12-05 Conpart As Isotropic conductive adhesive

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132645A (en) * 1992-08-14 2000-10-17 Eeonyx Corporation Electrically conductive compositions of carbon particles and methods for their production
JPH10237184A (ja) * 1996-12-25 1998-09-08 Sekisui Chem Co Ltd 帯電防止熱可塑性樹脂成形体及びその製造方法
US20030113531A1 (en) * 2001-12-19 2003-06-19 Karel Hajmrle Conductive fillers and conductive polymers made therefrom
JP2004018755A (ja) * 2002-06-19 2004-01-22 Asahi Kasei Corp 樹脂組成物
US20040113531A1 (en) * 2002-12-17 2004-06-17 Maytag Corporation Dishwasher door balancing system
JP4963831B2 (ja) * 2005-12-22 2012-06-27 昭和電工株式会社 半導電性構造体、導電性及び/又は熱伝導性構造体、該構造体の製造方法、およびその用途
JP4793456B2 (ja) * 2009-02-20 2011-10-12 トヨタ自動車株式会社 熱伝導性絶縁樹脂成形体
US20120138868A1 (en) * 2009-04-28 2012-06-07 Hitachi Chemical Company, Ltd. Circuit connecting material, film-like circuit connecting material using the circuit connecting material, structure for connecting circuit member, and method for connecting circuit member
KR101025620B1 (ko) * 2009-07-13 2011-03-30 한국과학기술원 초음파 접합용 이방성 전도성 접착제 및 이를 이용한 전자부품 간 접속방법
WO2011112042A2 (ko) * 2010-03-11 2011-09-15 주식회사 엘지화학 유기고분자-규소 복합체 입자 및 그 제조방법과 이를 포함하는 음극 및 리튬 이차전지
GB201018380D0 (en) * 2010-10-29 2010-12-15 Conpart As Process
CN104718579A (zh) * 2012-07-24 2015-06-17 株式会社大赛璐 被导电性纤维包覆的粒子以及固化性组合物及其固化物
WO2015054493A1 (en) * 2013-10-09 2015-04-16 Nanocomposix, Inc. Encapsulated particles
WO2016024842A1 (ko) * 2014-08-14 2016-02-18 주식회사 한국알테코 전도성 복합체 및 이의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965064A (en) * 1997-10-28 1999-10-12 Sony Chemicals Corporation Anisotropically electroconductive adhesive and adhesive film
EP1775786A1 (fr) * 2002-07-12 2007-04-18 Hydro-Quebec Particules comportant un noyau non conducteur ou semi conducteur enrobées par une couche conductrice hybride, leurs procédés d'obtention et leurs utilisations dans des dispositifs electriques
US20090127516A1 (en) * 2005-07-20 2009-05-21 Masaya Kotaki Electroconductive curable resins
US20080268318A1 (en) * 2006-12-26 2008-10-30 Jang Bor Z Carbon cladded composite flow field plate, bipolar plate and fuel cell
RU2444416C2 (ru) * 2010-05-21 2012-03-10 Владимир Сергеевич Колеров Способ получения изделия из слоистого композита на основе пеноалюминия
WO2013178692A1 (en) * 2012-05-29 2013-12-05 Conpart As Isotropic conductive adhesive

Also Published As

Publication number Publication date
ES2807875T3 (es) 2021-02-24
KR20180048557A (ko) 2018-05-10
EP3317887B1 (fr) 2020-06-24
BR112017028216A2 (pt) 2018-08-28
CA2989983A1 (fr) 2017-01-05
FR3038446B1 (fr) 2017-07-21
WO2017001805A1 (fr) 2017-01-05
BR112017028216B1 (pt) 2022-05-03
CN111768888B (zh) 2022-10-11
US20180201739A1 (en) 2018-07-19
CN111768888A (zh) 2020-10-13
FR3038446A1 (fr) 2017-01-06
JP2018523267A (ja) 2018-08-16
CN107851475A (zh) 2018-03-27
US11001678B2 (en) 2021-05-11
RU2017141931A (ru) 2019-08-01
CA2989983C (fr) 2023-11-07
JP6911770B2 (ja) 2021-07-28
EP3317887A1 (fr) 2018-05-09
RU2017141931A3 (ru) 2019-10-24
MX2017016693A (es) 2018-03-15
KR102637613B1 (ko) 2024-02-16

Similar Documents

Publication Publication Date Title
RU2721995C2 (ru) Проводящий композиционный материал, полученный из порошков с покрытием
Xu et al. Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic
Li et al. Quick heat dissipation in absorption-dominated microwave shielding properties of flexible poly (vinylidene fluoride)/carbon nanotube/Co composite films with anisotropy-shaped Co (flowers or chains)
Mishra et al. Macroporous epoxy-carbon fiber structures with a sacrificial 3D printed polymeric mesh suppresses electromagnetic radiation
Ameli et al. Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding
Mei et al. Preparation of flexible carbon fiber fabrics with adjustable surface wettability for high-efficiency electromagnetic interference shielding
Khurram et al. Correlation of electrical conductivity, dielectric properties, microwave absorption, and matrix properties of composites filled with graphene nanoplatelets and carbon nanotubes
Rohini et al. Electrodeposited carbon fiber and epoxy based sandwich architectures suppress electromagnetic radiation by absorption
KR100898900B1 (ko) 전도성 복합재와 그 제조방법
Wu et al. High conductivity and low percolation threshold in polyaniline/graphite nanosheets composites
Zhang et al. Asymmetric electromagnetic shielding performance based on spatially controlled deposition of nickel nanoparticles on carbon nanotube sponge
KR20180047410A (ko) 이중 퍼콜레이션을 이용한 전자기 간섭 차폐용 조성물
US11046058B2 (en) Composite material
CN114147955A (zh) 一种热塑性介电功能梯度复合材料及其制备方法和应用
Lin et al. Electromagnetic shielding of multiwalled, bamboo-like carbon nanotube/methyl vinyl silicone composite prepared by liquid blending
Nguyen et al. Recent advances in multifunctional electromagnetic interference shielding materials
Xu et al. A high performance electromagnetic interference shielding epoxy composite with multiple conductive networks in the matrix
Misiura et al. Influence of the type of filler distribuition on the electrical and thermal conductivity of metal-filled polymer composite
Sain et al. Fabrication and characterization of homogenous and functionally graded glass fiber reinforced polymer composites
Brito-Pereira et al. High-dielectric mouldable and printable wax reinforced with ceramic nanofillers and its suitability for capacitive sensing
WO2024069580A1 (en) Electromagnetic wave shielding thermoplastic composition
Mironov et al. Electrical properties of polyethylene composite films filled with nickel powder and short carbon fiber hybrid filler
Nan et al. A Review of the Establishment of Effective Conductive Pathways of Conductive Polymer Composites and Advances in Electromagnetic Shielding
JP2023120694A (ja) 射出成形用粉末、射出成形用粉末の製造方法および金属焼結体の製造方法
Ali et al. Majid TabkhPaz, Kaushik Parmar