RU2711071C1 - Способ производства непрерывно отжигаемой до мягкого состояния ленты латуни Л63 - Google Patents

Способ производства непрерывно отжигаемой до мягкого состояния ленты латуни Л63 Download PDF

Info

Publication number
RU2711071C1
RU2711071C1 RU2019111354A RU2019111354A RU2711071C1 RU 2711071 C1 RU2711071 C1 RU 2711071C1 RU 2019111354 A RU2019111354 A RU 2019111354A RU 2019111354 A RU2019111354 A RU 2019111354A RU 2711071 C1 RU2711071 C1 RU 2711071C1
Authority
RU
Russia
Prior art keywords
content
production
silicon
tape
brass
Prior art date
Application number
RU2019111354A
Other languages
English (en)
Inventor
Михаил Зиновьевич Певзнер
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет" (ВятГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет" (ВятГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет" (ВятГУ)
Priority to RU2019111354A priority Critical patent/RU2711071C1/ru
Application granted granted Critical
Publication of RU2711071C1 publication Critical patent/RU2711071C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Continuous Casting (AREA)

Abstract

Изобретение относится к производству листового проката из латуни, который может быть использован в различных областях народного хозяйства. Способ производства непрерывно отжигаемой до мягкого состояния ленты латуни Л63 включает плавку и отливку слитков, горячую и холодную прокатку, непрерывный отжиг, при этом перед горячей прокаткой определяют содержание примеси кремния в отливках, а горячей прокатке подвергают слитки с содержанием примеси кремния в пределах не более 0,05%. Изобретение направлено на получение стабильных свойств отожженного проката в мягком состоянии. 1 пр., 2 табл., 1 ил.

Description

Изобретение относится к области машиностроения и металлургии, в частности, к производству листового проката.
Лента латуни Л63 в мягком состоянии является одним из наиболее востребованных продуктов цветной лентопрокатной отрасли. Известен способ ее производства, включающий отливку слитков, горячую и холодную прокатку, а затем окончательный отжиг рулонов ленты в садочной печи [Злотин, Л.Б. Производство листов и лент из меди, никеля и их сплавов / Л.Б. Злотин, О.И. Качайник, С.Н. Портной. - М.: Металлургия, 1978. - 232 с]. Но отжиг такого рода приводит к большой неоднородности свойств, поскольку он характеризуется значительной неоднородностью температурно-временного режима нагрева и охлаждения в объеме всего рулона.
Известен способ непрерывной термообработки ленты, когда температурно-временной режим нагрева и охлаждения каждой точки материала относительно постоянен [Непрерывный отжиг алюминиевой ленты в печи с воздушной подушкой // Industrial Heating. - 1965. - V. 32. - №6. - P. 1105-1106]. Тем не менее, и при такой технологии обработки ленты латуни Л63, отжигаемой до мягкого состояния по ГОСТ 2208-2007 наблюдаются случаи, когда вся отожженная лента, изготавливаемая из одного слитка, оказывается недостаточно мягкой (σв>400 МПа). Поскольку технология производства от партии к партии сохраняется постоянной, естественно полагать, что такие случаи обусловлены неблагоприятным влиянием содержания в отдельных партиях некоторых элементов. (Содержание многих элементов в латуни Л63 ограничено в более широких пределах по сравнению с их содержанием в других двойных латунях, ГОСТ 15527-2004).
Действительно, известно, что, растворяясь в α- и β-фазах, практически все элементы за исключением никеля смещают диаграмму фазового равновесия, увеличивая «кажущуюся» концентрацию цинка и тем самым повышая прочность [Пугачева, Н.Б. Структура промышленных α+β-латуней / Н.Б. Пугачева // Металловедение и термическая обработка металлов. - 2007. - №2. - С. 23-29]. Степень такого влияния каждого элемента примеси на структуру и свойства латуней оценивают, как известно, коэффициентами замены цинка (коэффициентами эквивалентности Гийе [Осинцев, О.Е. Медь и медные сплавы. Отечественные и зарубежные марки: Справочник / О.Е. Осинцев, В.Н. Федоров. - М.: Машиностроение, 2004. - 336 с., ил.]). В частности, наиболее высокий коэффициент Гийе (10÷12) свойственен кремнию.
Известно, что степень разупрочнения металла определяется режимом термообработки [Горелик, С.С. Рекристаллизация металлов и сплавов / С.С. Горелик, С.В. Добаткин, Л.М. Капуткина. - 3-е изд. - М.: МИСИС, 2005. - 432 с ]. Как правило, режим термообработки в печах непрерывного отжига, от которого зависят структура и свойства отожженной ленты, определяется температурой в отжиговой камере и скоростью движения (временем нахождения в ней) ленты [Соколов, К.Н. Технология термической обработки и проектирование термических цехов: учебник для ВУЗов / К.Н. Соколов, И.К. Коротич. - М.: Металлургия, 1988. - 223 с.]. Но чрезмерное увеличение температуры и времени с целью компенсации упрочняющего действия примесей в тех рулонах, где их содержание превышает обычно наблюдаемое, недопустимо, так как образование чрезмерно мягкой ленты приводит к обрывам или нарушению ее плоскостности. Поэтому единственным путем исключения случаев образования брака является ограничение содержания потенциально опасных примесей в более узких пределах в сравнении с ограничениями, регламентируемыми ГОСТ 15527- 2004.
Целью заявляемого изобретения является гарантированное получение непрерывным отжигом мягкой ленты Л63 по ГОСТ 2208-2004.
Технический результат предполагаемого изобретения заключается в исключении случаев образования брака и стабильного получения отожженного проката в мягком состоянии.
Этот результат достигается путем ограничения содержания примеси кремния в пределах не более 0,05%. Химический состав шихты может существенно различаться, а при плавке различные ее компоненты подбираются произвольным образом, исходя из единственного критерия: чтобы содержание цинка в сплаве гарантированно соответствовало значениям, регламентируемым ГОСТ 15527-2004 или в более узких пределах, регламентируемых технологией. Поэтому первый контроль состава сплава производят на стадии литья, отбирая «литую пробу». При получении удовлетворительных результатов анализа на содержание цинка, производят отливку слитка, а по результатам анализа той же литой пробы на содержание примеси кремния определяют направление дальнейшей технологии обработки. Слитки, имеющие содержания примеси кремния в пределах не более 0,05%, обрабатывают до ленты нужного размера и отжигают непрерывно до мягкого состояния по принятой технологии.
Описание способа
Предлагаемый способ включает:
- плавку и отливку латуни Л63 при ограничении содержания примеси кремния в пределах не более 0,05%;
- производство холоднокатаной заготовки по принятой технологии;
- окончательный непрерывный отжиг до мягкого состояния по принятой технологии.
Пример выполнения
В ходе плавки и полунепрерывной отливки слитков производили отбор литой пробы и/или «уголка», предварительно отрезанного от слитка, для спектрального экспресс-анализа по ГОСТ 9716.2-79. Для дальнейшей обработки до мягкой ленты нужного (наиболее востребованного) типоразмера (0,8 мм) отбирали слитки с содержанием кремния менее 0,1%. После горячей прокатки, затем холодной прокатки за два перехода с промежуточным отжигом эта лента окончательно обрабатывалась по принятой для данного типоразмера технологии (700°С, 6 м/мин) в линии непрерывного отжига и травления Эртей (производство Франции).
Контролировали химический состав (содержание меди и примесей) 445 обрабатываемых партий, а также механические свойства (испытание на разрыв по ГОСТ 1497-84) отожженной ленты. Устанавливали влияние на свойства, в частности, временное сопротивление (σв, МПа) четырех элементов, два из которых точно регламентируется ГОСТ 15527-2004 (Рb≤0,07%, Fe≤0,2%), а два (Sn, Si) - в составе «суммы прочих элементов» (не более 0,5%). Исключали из массива рассматриваемых данных результаты контроля тех партий, в которых содержание кремния было меньше или равно минимальному его содержанию в имеющемся стандартном образце (0,01%). Условию Si>0,01% отвечали 111 партий, где содержание кремния контролировалось с достаточно высокой степенью точности, определяемой точностью аттестации стандартных образцов. Данные по этим партиям являлись исходным материалом дальнейших статистических расчетов (множественный регрессионный анализ [Дубров, A.M. Многомерные статистические методы / А.М. Дубров, B.C. Мхитарян, Л.И. Трошин. - М.: Финансы и статистика, 2003. - 352 с.]) влияния состава латунной ленты на ее свойства, которые проводились в рамках офисной программы MS Excel [Козлов, А.Ю. Статистический анализ данных в MS Excel: учебное пособие / А.Ю. Козлов, B.C. Мхитарян, В.Ф. Шишов. - М.: ИНФРА-М, 2012. - 320 с.].
Из таблицы 1 видно наиболее сильное влияние содержания кремния и достаточно значимое - содержания меди, тогда как существенное влияние других элементов не обнаруживается. Исключение из исходных данных факторов, существенное влияние которых не выявлено (Pb, Sn, Fe), проведенное в соответствии с [Кобзарь, А.И. Прикладная математическая статистика. Для инженеров и научных работников / А.И. Кобзарь. - М.: ФИЗМАТЛИТ, 2012.- 816 с.], повысило точность определения свободного члена регрессионной модели и, достаточно существенно (Р - значение уменьшилось более чем на порядок) - достоверность влияния меди (таблица 2). Достоверность влияния кремния (Р-значение уменьшилось еще на два порядка) практически абсолютна.
Во всех 445 обрабатываемых партиях (ограниченных по содержанию кремния в пределах Si<0,1%, см. выше) случаев брака по механическим свойствам не обнаруживалось. Однако, как можно видеть по зависимости временного сопротивления от собственно кремния (фигура), с увеличением его содержания временное сопротивление неуклонно увеличивается (см. линию тренда на фигуре), приближаясь к σв=400 МПа (верхняя допустимая граница для мягкого состояния ленты по ГОСТ 2208-2004). Вместе с тем наблюдается значительная дисперсия значений временного сопротивления относительно линии тренда, что является свидетельством действия на свойства не учитываемых здесь факторов (всех примесей кроме кремния и содержания меди) и случайных факторов. Действительно, хотя влияние кремния на σв в данном анализе, см. табл. 1 и 2, доминирует, значимого влияния содержания не только меди, но и других примесей исключать нельзя. Ведь на свойства пусть даже в меньшей степени оказывают влияние примеси многих элементов сами по себе или во взаимодействии [Influence of Fe addition on annealing behaviors of a phosphorus containing brass / Xiao Z., Yang X., Fang Z. [e.a.] // Journal of Alloys and Compounds. - 2017. - V. 712. - P. 268-276; The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials / Huang K.,
Figure 00000001
Marthinsen K., Zhao Q. // Progress in Materials Science. - 2018. - V. 92. - P. 284-359]. Исходя из наблюдаемой на фигуре дисперсии величины временного сопротивления, можно достаточно точно оценить максимально допустимое значение содержания кремния, гарантированно обеспечивающее σв≤400 МПа, - Si≤0,05%. То есть, несмотря на то, что в рассмотренном примере выполнения способа при значительно менее жестком ограничении (Si<0,1%) при производстве 445 случаев брака не было обнаружено, предлагаемым способом вводится ограничение Si≤0,05%. Это гарантирует исключение брака при всех самых неблагоприятных сочетаниях действующих факторов. При этом введение дополнительного или альтернативного ограничения по содержанию меди нецелесообразно, так как это менее значимый фактор и такое ограничение требует достаточно высокой квалификации исполнителей. Наоборот, ограничение по содержанию кремния (Si≤0,05%) еще на стадии плавки требует лишь уменьшения использования в качестве шихты ломов и отходов из кремнийсодержащих л ату ней. Альтернативное ограничение по содержанию кремния на стадии литейного и последующего производства, заключающееся в использовании слитков, содержащих Si>0,05%, для другого производства охватит лишь весьма небольшую долю от всех изготавливаемых слитков. Так из 445 опытных партий в интервал по содержанию кремния Si>0,05% попало 20 партий, то есть не более 5% партий, которые можно направлять на производство продукции, не заканчивающееся окончательным непрерывным отжигом. Таким образом, предлагаемый способ гарантирует предотвращение брака по свойствам непрерывно отожженной ленты.
Figure 00000002
Figure 00000003

Claims (1)

  1. Способ производства непрерывно отжигаемой до мягкого состояния ленты латуни Л63, включающий плавку и отливку слитков, горячую и холодную прокатку и непрерывный отжиг ленты, отличающийся тем, что перед горячей прокаткой определяют содержание примеси кремния в отлитых слитках, а горячей прокатке подвергают слитки с содержанием примеси кремния не более 0,05%.
RU2019111354A 2019-04-15 2019-04-15 Способ производства непрерывно отжигаемой до мягкого состояния ленты латуни Л63 RU2711071C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019111354A RU2711071C1 (ru) 2019-04-15 2019-04-15 Способ производства непрерывно отжигаемой до мягкого состояния ленты латуни Л63

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019111354A RU2711071C1 (ru) 2019-04-15 2019-04-15 Способ производства непрерывно отжигаемой до мягкого состояния ленты латуни Л63

Publications (1)

Publication Number Publication Date
RU2711071C1 true RU2711071C1 (ru) 2020-01-15

Family

ID=69171546

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019111354A RU2711071C1 (ru) 2019-04-15 2019-04-15 Способ производства непрерывно отжигаемой до мягкого состояния ленты латуни Л63

Country Status (1)

Country Link
RU (1) RU2711071C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU829223A1 (ru) * 1979-08-06 1981-05-15 Московский Ордена Трудового Красного Зна-Мени Институт Стали И Сплавов Способ получени холоднокатаной ленты излАТуНи
SU1577894A1 (ru) * 1987-11-09 1990-07-15 Московский институт стали и сплавов Способ реверсивной гор чей прокатки листов и полос преимущественно из латуни
RU2092609C1 (ru) * 1994-06-16 1997-10-10 Акционерное общество открытого типа "Кировский завод по обработке цветных металлов" Способ обработки латунной ленты
RU2661297C1 (ru) * 2017-03-31 2018-07-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет" Способ непрерывной термообработки плоского проката из латуни л63 в поперечном магнитном поле

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU829223A1 (ru) * 1979-08-06 1981-05-15 Московский Ордена Трудового Красного Зна-Мени Институт Стали И Сплавов Способ получени холоднокатаной ленты излАТуНи
SU1577894A1 (ru) * 1987-11-09 1990-07-15 Московский институт стали и сплавов Способ реверсивной гор чей прокатки листов и полос преимущественно из латуни
RU2092609C1 (ru) * 1994-06-16 1997-10-10 Акционерное общество открытого типа "Кировский завод по обработке цветных металлов" Способ обработки латунной ленты
RU2661297C1 (ru) * 2017-03-31 2018-07-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет" Способ непрерывной термообработки плоского проката из латуни л63 в поперечном магнитном поле

Similar Documents

Publication Publication Date Title
CN109477186B (zh) 取向性电磁钢板用热轧钢板及其制造方法、以及取向性电磁钢板的制造方法
EP3533890B1 (en) Non-oriented electrical steel sheet and method for producing same
KR102248323B1 (ko) 무방향성 전기 강판 및 그 제조 방법
KR102670094B1 (ko) 무방향성 전자 강판
JP2012126989A (ja) 方向性電磁鋼板の製造方法
EP3358027B1 (en) Non-oriented electromagnetic steel sheet and manufacturing method of same
KR20160081955A (ko) 자기 특성이 우수한 무방향성 전기 강판
JP7052391B2 (ja) 方向性電磁鋼板、および方向性電磁鋼板の製造方法
CA2860667C (en) Electrical steel processing without a post cold-rolling intermediate anneal
RU2711071C1 (ru) Способ производства непрерывно отжигаемой до мягкого состояния ленты латуни Л63
KR950005791B1 (ko) 고스(Goss) 방위로 집적한 결정방위를 갖는 방향성 규소강판의 제조방법
RU2637848C1 (ru) Способ производства высокопроницаемой анизотропной электротехнической стали
JP7323762B2 (ja) かしめ性に優れた高強度無方向性電磁鋼板
JP2009209428A (ja) 著しく磁束密度が高い方向性電磁鋼板の製造方法
JP7315857B2 (ja) 方向性電磁鋼板の製造方法
WO2021261515A1 (ja) 電磁鋼板の製造方法
JP2020164918A (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板
JP3890790B2 (ja) 高珪素鋼板
US1773157A (en) Process for the manufacture of silicon steel
WO2023248861A1 (ja) 電磁鋼板の製造方法と冷延板
Segawa Reproduction and deformation characteristics of oxide scale in hot rolling using vacuum rolling mill
JP2010236004A (ja) 方向性電磁鋼板の製造時における焼鈍分離剤の塗布方法
JPH10183244A (ja) 磁気特性の優れた無方向性電磁鋼板の製造方法
JP3805799B2 (ja) 方向性けい素鋼板の脱炭焼鈍方法
JP2004223523A (ja) 熱間圧延時のCu含有鋼材の加熱方法