RU2704139C1 - Способ получения никотиновой кислоты - Google Patents

Способ получения никотиновой кислоты Download PDF

Info

Publication number
RU2704139C1
RU2704139C1 RU2019123292A RU2019123292A RU2704139C1 RU 2704139 C1 RU2704139 C1 RU 2704139C1 RU 2019123292 A RU2019123292 A RU 2019123292A RU 2019123292 A RU2019123292 A RU 2019123292A RU 2704139 C1 RU2704139 C1 RU 2704139C1
Authority
RU
Russia
Prior art keywords
picoline
nicotinic acid
catalyst
reactor
oxygen
Prior art date
Application number
RU2019123292A
Other languages
English (en)
Inventor
Елена Викторовна Овчинникова
Виктор Анатольевич Чумаченко
Тамара Витальевна Андрушкевич
Original Assignee
Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН)
Priority to RU2019123292A priority Critical patent/RU2704139C1/ru
Application granted granted Critical
Publication of RU2704139C1 publication Critical patent/RU2704139C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/803Processes of preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pyridine Compounds (AREA)

Abstract

Изобретение относится к способу получения никотиновой кислоты путём прямого газофазного окисления 3-пиколина кислородом или обогащённым кислородом воздухом, в котором 3-пиколин, кислород, воду и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом. При доле рецикла 88-93% от общего объема реакционной смеси концентрация 3-пиколина на входе в реактор составляет 2,5-3,0 мол.%, а мольное соотношение 3-пиколина, кислорода и воды – 1:/11-21/:/17-26/. Используется бинарный ванадий-титановый оксидный катализатор. Отношение размера гранул катализатора к внутреннему диаметру трубки составляет 1:/5,8-8,4/, а максимальная температура в слое катализатора на 5-25°С выше, чем температура хладагента. После реактора реакционные газы направляют на стадию выделения никотиновой кислоты в твердую фазу, после чего часть газов отделяют и производят рецикл, а из другой части реакционных газов либо выделяют в жидкую фазу не прореагировавшие 3-пиколин и 3-пиридинкарбальдегид и возвращают их в каталитический процесс получения никотиновой кислоты, либо направляют другую часть реакционных газов на обезвреживание и последующий сброс в атмосферу. Технический результат – увеличение съема никотиновой кислоты с единицы массы катализатора и увеличение полноты использования исходного 3-пиколина. 3 з.п. ф-лы, 9 пр.

Description

Изобретение относится к способу получения никотиновой кислоты. Никотиновая (3-пиридинкарбоновая) кислота относится к жизненно важным витаминам группы В, она участвует во многих окислительно-восстановительных процессах, в липидном и углеводном обмене, используется в медицине как лекарственное средство, выступает в качестве пищевых добавок и премиксов для животных, а также широко применяется в синтезе ряда ценных органических соединений.
Современные методы получения никотиновой кислоты основаны на газофазном окислении 3-метилпиридина (3-пиколина) на твёрдых катализаторах источником кислорода. От предшествующих жидкофазных технологий данные методы выгодно отличаются отсутствием токсичных жидких стоков и газовых выбросов, простотой и компактностью производства, более высоким качеством получаемой никотиновой кислоты. Однако существующие промышленные технологии характеризуются низкими технико-экономическими показателями, что обусловлено недостаточной производительностью реакционного объема и неполной утилизацией дорогостоящего сырья.
Существующий уровень техники в данном процессе характеризуется следующими изобретениями.
Известен (РФ2049089, С07D213/803, 26.01.94; US5728837, B01J23/22, 17.03.1998) способ получения никотиновой кислоты газофазным окислением 3-пиколина кислородом воздуха в присутствии водяного пара при мольных соотношениях реагентов 1:/15-40/:/10-70/ (3-пиколин:O2:H2O) и температурах 250-290°С. Используют ванадий-титановый катализатор V2O5/TiO2, /5-75/:/95-25/ мас.%, в виде порошка 0,5-1 мм. После реактора никотиновую кислоту десублимируют при температурах 160-180°С. Выход никотиновой кислоты составляет 82-86 мол.% при времени контакта 0,27-1,5 с и исходной концентрации 3-пиколина 0,4 мол.%.
Известен (EP0984005, C07D213/803, 01.09.1998; CA2281293, C07D213/807, 01.09.1998; US6229018, C07D 213/803, 08.05.2001) способ получения никотиновой кислоты газофазным окислением 3-пиколина кислородом в присутствии водяного пара и СО2 при мольных соотношениях 1:22:50:/0-9/ (3-пиколин:O2:H2O:CO2) и температуре 275°С. Используют ванадий-титановый катализатор /18-20/:/82-80/ мас.% в виде частиц 1-1,6 мм. После реактора никотиновую кислоту десублимируют при температуре ниже 235°С, а непрореагировавший 3-пиколин направляют обратно в реактор. Выход никотиновой кислоты за проход составляет 67 мол.% при массовой нагрузке по 3-пиколину WHSV= 0,11 ч–1. С учетом рецикла общий выход никотиновой кислоты может достичь 90%.
Известен (US2005222421, B01J23/00, 05.04.2004; EP1584618, C07D 213/79, 30.06.2004) способ получения никотиновой кислоты газофазным окислением 3-пиколина кислородом (чистым, в составе воздуха или в составе обогащённого кислородом воздуха) в присутствии водяного пара при мольных соотношениях 1:/15-60/:/70-350/ (3-пиколин:O2:H2O) и температурах 250-350°С. Используют ванадий-титановый катализатор с содержанием оксида ванадия 2,5-20 мас.%, оксидов переходных металлов 0,1-10 мас.%,, остальное - оксид титана. На выходе из реактора поток, содержащий никотиновую кислоту, отмывают водой от примесей не прореагировавшего 3-пиколина, после отгонки воды и 3-пиколина при 96-100°С 3-пиколин возвращают обратно в реактор. Выход никотиновой кислоты за проход составляет 78-90 мол.% при массовой нагрузке по 3-пиколину WHSV=0,01-0,1 ч–1.
Известен (EP2428505B1, C07D213/803, 10.08.2016) способ получения никотиновой кислоты газофазным окислением 3-пиколина источником кислорода в присутствии воды при мольных соотношениях 1:/10-40/:/20-80/, а лучше 1:/15-30/:/30-60/ (3-пиколин:O2:H2O) и температурах 240-380°С, а лучше при 250-290°С. Используют ванадий-титановый катализатор c добавками оксидов металлов при массовом соотношении оксида ванадия, оксидов металлов, оксида титана 1:/0,1-0,5/:/5-15/. В трубчатом реакторе применяют многослойную загрузку катализатора и инертного материала, после реактора никотиновую кислоту подвергают сложной многоступенчатой очистке и экстракции с применением растворителя при температуре 5-120°С с последующей сушкой при температуре 80-120°С, а получаемые в процессе газы из абсорбера, очищенной жидкости и маточного раствора рециркулируют. В результате получают продукт чистотой ~99,6%. Выход никотиновой кислоты составляет 85.9% при массовой нагрузке по 3-пиколину WHSV=0,01-2 ч–1, а лучше 0,02-0,75 ч–1. Не приводятся данные об исходной концентрации 3-пиколина, об условиях реализации процесса в реакторе, а также о размерах и форме используемого катализатора.
Известен (DE102004027414A1, C07D213/80, 04.06.2004) способ получения никотиновой кислоты газофазным окислением 3-пиколина кислородом воздухом в присутствии водяного пара при мольных соотношениях 1:/16-40/:/40-100/ (3-пиколин:O2:H2O) и температурах выше 290°С в обогреваемой трубке со стационарным слоем катализатора при отношении диаметра трубки к размеру катализатора ~4. Используют кольцеобразный и сферический ванадий-титановый катализатор с содержанием оксида ванадия не более 20%. Выход никотиновой кислоты составляет 73-87% при массовой нагрузке по 3-пиколину WHSV= 0,03-0,18 ч–1.
Известен (CN104109116, C07D213/79, 11.06.2014) способ и установка получения никотиновой кислоты газофазным окислением 3-пиколина кислородом воздуха в присутствии водяного пара при мольных соотношениях 1:/10-40/:/20-40/ (3-пиколин:O2:H2O) и температурах 250-290°С. Используют ванадий-титановый катализатор с содержанием оксида ванадия 10-20%. После трубчатого реактора со стационарным слоем катализатора газовый поток охлаждают, затем никотиновую кислоту десублимируют при температуре 170-250°С, в десублиматор добавляют пар, и никотиновую кислоту выгружают в виде суспензии, а остаточные реакционные газы после десублиматора, содержащие не прореагировавший 3-пиколин, возвращают в реактор. Выход никотиновой кислоты за проход составляет 85 мол.%. при массовой нагрузке по 3-пиколину WHSV= 0,03 ч–1 и газовой нагрузке по реакционной смеси GHSV=1500-2000 ч–1. После перекристаллизации получают продукт чистотой 99.5%.
Известна (РФ 2109734, C07D213/79, 27.09.1998) установка получения никотиновой кислоты газофазным окислением 3-пиколина кислородом воздухом в присутствии водяного пара при температурах 245-270°С, с использованием катализатора в форме кольца размером 4-10 мм, включающая узел подачи реагирующих веществ, контактный трубчатый аппарат с системой циркуляции теплоносителя между трубками, десублиматор для выделения продуктов контактирования, узел сбора готовой продукции, систему автоматического управления процессом, систему трубопроводов для коммуникации потоков и рецикла газа, узел дожига части выбросных газов.
Известна также установка, усовершенствованная в части конструкции десублиматора (РФ 2275958, C07D213/79, 08.07.2004).
Согласно результатам проведенного патентного анализа, основными недостатками существующих способов получения никотиновой кислоты и установок для их реализации являются следующие:
1) Катализатор используют в виде порошка, гранул мелкого размера или в иной форме, не применимой для промышленной реализации процесса.
2) Отсутствуют количественные данные о рецикле реакционных газов.
3) Не приводятся данные об исходной концентрации 3-пиколина и не рассматривается возможность рециркуляции не прореагировавшего 3-пиколина.
4) Не рассматривается возможность сброса накапливающихся при рециркуляции избыточных продуктов - оксидов углерода и паров воды.
Наиболее близким техническим решением, выбранным в качестве прототипа, является (РФ 2371247, B01J23/22, 27.10.2009) способ получения никотиновой кислоты газофазным окислением 3-пиколина кислородом в присутствии водяного пара, который проводят при мольных соотношениях 1:/15-40/:/10-70/ и температурах 250-290°С, используют гранулированный бинарный ванадий-титановый катализатор /18-20/:/82-80/, либо ванадий-титановый катализатор, содержащий добавки оксидов металлов 1,2-10 мас.%, а после реактора никотиновую кислоту десублимируют при температурах 180-200°С. Выход никотиновой кислоты (Y) составляет 61-80 мол.%. при времени контакта τ= 3,5-5 с⋅г⋅мл–1 и исходной концентрации 3-пиколина С0=0,5-0,8 мол.%. Проведение процесса в элементе трубчатого реактора при загрузке 1,45 кг гранулированного катализатора и температуре в горячей точке 280°С приводит к увеличению активности катализатора, то есть к более высоким величинам конверсии сырья и константы скорости, но также к потере селективности по никотиновой кислоте, в результате чего удельный съём никотиновой кислоты, рассчитанный по формуле П=WHSV×0,01×Y×123/93, снижается с 32 мг/ч никотиновой кислоты с 1 г катализатора в лабораторном изотермическом реакторе до 18 мг/ч никотиновой кислоты с 1 г катализатора в элементе промышленного трубчатого реактора. Следует учесть, что съём никотиновой кислоты определен в расчете на ее полное извлечение из газовой фазы, без учета возможных потерь продукта в реальном процессе. Массовая нагрузка по 3-пиколину, рассчитанная по формуле WHSV=3600×τ–1×0,01×С0×4.15 (93/22,4=4.15 г/л – плотность 3-пиколина в газовой фазе), составила 0,02-0,03 ч–1. Бинарный ванадий-титановый катализатор не испытан в элементе промышленного реактора, недостатком также является отсутствие рецикла и низкий удельный съем никотиновой кислоты.
Изобретение решает задачу повышения эффективности процесса получения никотиновой кислоты.
Поставленная задача достигается тем, что никотиновую кислоту получают путём прямого газофазного окисления 3-пиколина кислородом или воздухом, обогащённым кислородом, при котором 3-пиколин, воду, кислород и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом, после реактора реакционные газы направляют на стадию выделения никотиновой кислоты в твердую фазу, после чего производят рецикл части реакционных газов, содержащих не прореагировавший 3-пиколин, воду и продукты реакции, обратно на вход реактора, а другую часть реакционных газов либо направляют на стадию выделения в жидкую фазу не прореагировавших 3-пиколина и 3-пиридинкарбальдегида, которые затем возвращают в каталитический процесс получения никотиновой кислоты, либо направляют на стадию обезвреживания с последующим сбросом в атмосферу.
Техническим результатом предлагаемого изобретения является повышение производительности по никотиновой кислоте и увеличение полноты использования исходного 3-пиколина.
В предлагаемом изобретении никотиновую кислоту получают путём прямого газофазного окисления 3-пиколина кислородом или воздухом, обогащённым кислородом, при котором 3-пиколин, воду, кислород и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом, процесс проводят при соотношении размеров катализатора и внутреннего диаметра трубки 1:/5,8-8,4/, разности между температурой теплоносителя и максимальной температурой в слое катализатора 5-25°С, на ванадий-титановом оксидном катализаторе, содержащем оксиды ванадия 5-20 мас.%., оксиды титана анатазной модификации не менее 80 мас. % и имеющем общую удельную поверхность 14-30 м2/г, из реактора реакционные газы направляют на стадию выделения никотиновой кислоты в твердую фазу, после чего производят рецикл части реакционных газов, содержащих не прореагировавший 3-пиколин, воду и продукты реакции, обратно на вход реактора в количестве, исключающем чрезмерное накопление продуктов реакции, паров воды и оксидов углерода и обеспечивающем концентрацию 3-пиколина на входе в реактор 2,5-3,0 мол.% при соотношении реагентов 3-пиколина, кислорода, паров воды в диапазоне 1:/11-21/:/17-26/, а другую часть реакционных газов либо направляют на стадию выделения в жидкую фазу не прореагировавших 3-пиколина и 3-пиридинкарбальдегида, которые затем возвращают в каталитический процесс получения никотиновой кислоты, либо направляют на стадию обезвреживания с последующим сбросом в атмосферу.
Предлагаемое техническое решение обеспечивает увеличение съема никотиновой кислоты с единицы массы катализатора (производительности катализатора) и способствует улучшению экономических показателей. При доле рецикла 88-93% от общего объема реакционной смеси и степени выделения в жидкую фазу и возврата 3-пиколина и 3-пиридинальдегида 85-96%, общий выход никотиновой кислоты в процессе составляет 72-80 мол.%, а съем никотиновой кислоты с единицы массы катализатора составляет 57-77 мг·ч-1·г-1.
Способ получения никотиновой кислоты согласно предлагаемому изобретению иллюстрируется следующими примерами:
В примерах 1-9 процесс проводят в элементе промышленного трубчатого реактора при соотношении размеров катализатора и внутреннего диаметра трубки 1:/5,8-8,4/. Реактор представляет собой стальную трубку длиной 6 м, омываемую хладагентом, температуру внутри реактора регулируют путем изменения температуры хладагента. В реактор загружают изготовленный согласно патенту РФ 2371247 бинарный ванадий-титановый оксидный катализатор состава, мас.%: 18-20 V2O5, 80 TiO2, с поверхностью 14-25 м2/г, в форме колец 4×2×5 мм. Эквивалентный размер гранул катализатора, определяемый как 1,5⋅d⋅h/(0.5·d+h), где d – внешний диаметр гранулы катализатора, h – высота гранулы катализатора, составил 4,3 мм. Массовую нагрузку по 3-пиколину WHSV (определяемую как отношение часового массового расхода подаваемого в реактор 3-пиколина к массе загруженного катализатора) варьируют в пределах 0,022-0,162 ч–1 изменением массы загружаемого катализатора 1,7-2,2 кг, исходной концентрации 3-пиколина в реакционной смеси 0,8-3,0 мол.% и общего потока газа, подаваемого в систему. Исходную газовую смесь подают в реактор, после реактора никотиновую кислоту кристаллизуют в емкости при температуре 100-237°С, после выделения никотиновой кислоты отделяют 0-93% общего объёма газового потока, содержащего в газовой фазе не прореагировавший 3-пиколин и 3-пиридинкарбальдегид, а также пары воды и оксиды углерода, и производят рецикл этого газового потока, который после смешения со свежими потоками 3-пиколина, воздуха и воды подают на вход указанного выше элемента промышленного трубчатого реактора.
3-Пиридинкарбальдегид является промежуточным продуктом окисления 3-пиколина и наряду с 3-пиколином является источником никотиновой кислоты.
Степень переработки сырья определяют как разность мольных потоков свежего и сбрасываемого 3-пиколина, отнесенную к потоку свежего 3-пиколина, подаваемого в систему.
Селективность по никотиновой кислоте определяют как мольный поток никотиновой кислоты на выходе из реактора, отнесенный к мольному потоку израсходованного в реакторе 3-пиколина.
Съем никотиновой кислоты определяют как массу никотиновой кислоты, собранной в емкости за единицу времени, отнесенную к массе загруженного катализатора.
Пример 1. Сравнительный.
Загружают 2,0 кг гранулированного катализатора и процесс проводят без рецикла в условиях близких к прототипу, при соотношении размеров катализатора и внутреннего диаметра трубки 1:5,8; температуру хладагента поддерживают равной 275°С, а температуру в горячей точке катализаторного слоя в реакторе на 9°С выше температуры хладагента; WHSV = 0,022 ч–1. Исходная газовая смесь содержит 0,8 мол.% 3-пиколина при соотношении реагентов 3-пиколина, кислорода, паров воды 1:21:26.
Степень переработки сырья составляет 96,7%. Селективность по никотиновой кислоте составляет 74,18 мол.%. Съем никотиновой кислоты с единицы массы катализатора составляет 20,2 мг·ч-1·г-1.
Пример 1 демонстрирует, что при ведении процесса в элементе промышленного трубчатого реактора в условиях, близких к прототипу, и с учетом достижения высокой величины степени переработки сырья – 3-пиколина, имеет место низкий съем никотиновой кислоты вследствие низкой исходной концентрации 3-пиколина и снижения селективности по никотиновой кислоте в результате ее доокисления.
Пример 2.
В элемент промышленного трубчатого реактора загружают 2,0 кг гранулированного катализатора, из них 0,16 кг разбавляют инертным материалом (керамическими кольцами Рашига сопоставимого размера) в пропорции 1:1 по объему и проводят процесс при соотношении размеров катализатора и внутреннего диаметра трубки 1:5,8; температуру хладагента поддерживают равной 260°С, а температуру в горячей точке катализаторного слоя в реакторе на 12,7°С выше температуры хладагента; WHSV = 0,082ч–1. После выделения в десублиматоре никотиновой кислоты в виде твердой фазы отделяют 92% общего объёма газового потока, содержащего не прореагировавший 3-пиколин и 3-пиридинкарбальдегид в газовой фазе, а также пары воды и оксиды углерода, и производят рецикл этого газового потока, который после смешения со свежими потоками 3-пиколина, кислорода и воды подают на вход указанного выше реактора, при соотношении реагентов 3-пиколина, кислорода, паров воды 1:12:19 и исходной концентрации 3-пиколина на входе в реактор 2,8 мол.%. Оставшиеся после отделения 8% общего объема газового потока после десублиматора направляют на обезвреживание и после сбрасывают в атмосферу.
Степень переработки сырья составляет 96,1%. Селективность по никотиновой кислоте составляет 80,3 мол. %. Съем никотиновой кислоты с единицы массы катализатора составляет 57,4 мг·ч-1·г-1.
Пример 3.
Процесс проводят как в примере 2, но на входе в реактор концентрацию 3-пиколина поддерживают на уровне 3 мол. %, а температуру в горячей точке катализаторного слоя в реакторе на 13,2°С выше температуры хладагента; WHSV= 0,088 ч-1, доля рецикла составляет 91%, а соотношение реагентов 3-пиколина, кислорода, паров воды – 1:12:17.
Степень переработки сырья в процессе составляет 95,6%. Селективность по никотиновой кислоте составляет 81,4 мол. %. Съем никотиновой кислоты с единицы массы катализатора составляет 60,7 мг·ч-1·г-1.
Пример 4.
Процесс проводят как в примере 3, но оставшиеся после отделения 9% общего объема газового потока после десублиматора перед обезвреживанием направляют на стадию выделения в жидкую фазу остаточного 3-пиколина и 3-пиридинкарбальдегида, которые затем возвращают в процесс.
Степень выделения в жидкую фазу и возврата 3-пиколина и 3-пиридинкарбальдегида составляет 89%. Степень переработки сырья в процессе составляет 99,5%.
Пример 5.
Процесс проводят как в примере 3, но температуру в горячей точке катализаторного слоя в реакторе поддерживают на 18,8°С выше температуры хладагента; доля рецикла составляет 88%, а соотношение реагентов 3-пиколина, кислорода, паров воды – 1:14:15.
Степень переработки сырья в процессе составляет 96,6%. Селективность по никотиновой кислоте составляет 74,0 мол. %. Съем никотиновой кислоты с единицы массы катализатора составляет 65,6 мг·ч-1·г-1.
Пример 6.
В элемент промышленного трубчатого реактора загружают 1,7 кг гранулированного катализатора, из них 0,23 кг разбавляют инертным материалом (керамическими кольцами Рашига сопоставимого размера) в пропорции 1:1 по объему, и проводят процесс при соотношении размеров катализатора и внутреннего диаметра трубки 1:7,0; температуру хладагента поддерживают равной 260°С, а температуру в горячей точке катализаторного слоя в реакторе на 12,1°С выше температуры хладагента; WHSV=0,151 ч–1. После выделения в десублиматоре никотиновой кислоты в твердую фазу отделяют 93% общего объёма газового потока, содержащего не прореагировавший 3-пиколин и 3-пиридинкарбальдегид в газовой фазе, а также пары воды и оксиды углерода, и производят рецикл этого газового потока, который после смешения со свежими потоками 3-пиколина, кислорода и воды подают на вход указанного выше реактора, при соотношении реагентов 3-пиколина, кислорода, паров воды 1:14:16 и исходной концентрации 3-пиколина на входе в реактор 3,0 мол.%. Оставшиеся после отделения 7% общего объема газового потока после десублиматора направляют на обезвреживание и после сбрасывают в атмосферу.
Степень переработки сырья в процессе составляет 92,3%, селективность по никотиновой кислоте – 79,2 мол. %, а съем никотиновой кислоты с единицы массы катализатора составляет 70,6 мг·ч-1·г-1.
Пример 7.
Процесс проводят как в примере 6, но оставшиеся после отделения 7% общего объема газового потока после десублиматора перед обезвреживанием направляют на стадию выделения в жидкую фазу остаточного 3-пиколина и 3-пиридинкарбальдегида, которые затем возвращают в процесс.
Степень выделения в жидкую фазу и возврата 3-пиколина и 3-пиридинкарбальдегида составляет 96%. Степень переработки сырья в процессе составляет 99,7%.
Пример 8.
В элемент промышленного трубчатого реактора загружают 2,2 кг гранулированного катализатора, из них 0,59 кг разбавляют инертным материалом (керамическими кольцами Рашига сопоставимого размера) в пропорции 1:1 по объему и проводят процесс при соотношении размеров катализатора и внутреннего диаметра трубки 1:8,4; температуру хладагента поддерживают равной 260°С, а температуру в горячей точке катализаторного слоя в реакторе на 22,6°С выше температуры хладагента; WHSV=0,162 ч–1. После выделения в десублиматоре никотиновой кислоты в твердую фазу отделяют 93% общего объёма газового потока, содержащего не прореагировавший 3-пиколин и 3-пиридинкарбальдегид в газовой фазе, а также пары воды и оксиды углерода, и производят рецикл этого газового потока, который после смешения со свежими потоками 3-пиколина, кислорода и воды подают на вход указанного выше реактора, при соотношении реагентов 3-пиколина, кислорода, паров воды 1:14:18 и исходной концентрации 3-пиколина на входе в реактор 3,0 мол.%. Оставшиеся после отделения 7% общего объема газового потока после десублиматора направляют на обезвреживание и после сбрасывают в атмосферу.
Степень переработки сырья в процессе составляет 93,0%, селективность по никотиновой кислоте – 73,7 мол. %, а съем никотиновой кислоты с единицы массы катализатора составляет 76,9 мг·ч-1·г-1.
Пример 9.
Процесс проводят как в примере 8, но оставшиеся после отделения 7% общего объема газового потока после десублиматора перед обезвреживанием направляют на стадию выделения в жидкую фазу остаточного 3-пиколина и 3-пиридинкарбальдегида, которые затем возвращают в процесс.
Степень выделения в жидкую фазу и возврата 3-пиколина и 3-пиридинкарбальдегида составляет 93%. Степень переработки сырья в процессе составляет 99,5%.
Примеры 2-9 иллюстрируют, что комплекс технических приемов по изобретению, а именно рецикл на вход трубчатого реактора 88-93% реакционных газов после выделения никотиновой кислоты, соотношение реагентов 3-пиколина, кислорода, паров воды на входе в реактор 1:/11-14/:/15-19/, соотношение размеров катализатора и внутреннего диаметра трубки 1:/5,8-8,4/, разность температур горячей точки и хладагента 13-23°С позволяет при окислении 2,8-3,0 мол.% 3-пиколина кислородом или воздухом, обогащённым кислородом, увеличить съем никотиновой кислоты с единицы массы катализатора до 57-77 мг·ч-1·г-1, по сравнению с величиной 20 мг·ч-1·г-1 при исходной концентрации 3-пиколина 0,8 мол.% в схеме без рецикла.
Большие величины соотношения размеров катализатора и внутреннего диаметра трубки и высокие температуры, а также малая доля рецикла приводят к низкой селективности по никотиновой кислоте (примеры 5, 6, 8).
Технический прием – выделение в жидкую фазу не прореагировавших 3-пиколина и 3-пиридинкарбальдегида из сбрасываемых газов и их возврат в каталитический реактор получения никотиновой кислоты – позволяет существенно увеличить степень переработки ценного исходного сырья в промышленном процессе (примеры 4, 7 и 9).

Claims (4)

1. Способ получения никотиновой кислоты газофазным окислением 3-пиколина кислородом, при котором 3-пиколин, воду, кислород или воздух, обогащённый кислородом, газы рецикла подают в реактор, состоящий из трубок, омываемых хладагентом и заполненных гранулированным катализатором, содержащим оксиды ванадия 5-20 мас.%, оксиды титана анатазной модификации не менее 80 мас.% и имеющим общую удельную поверхность 14-30 м2/г, из реактора реакционные газы направляют на стадию выделения никотиновой кислоты в твердую фазу, отличающийся тем, что отношение эквивалентного размера гранул катализатора, определяемого как 1,5⋅d⋅h/(0.5·d+h), где d – внешний диаметр гранулы катализатора, h – высота гранулы катализатора, к внутреннему диаметру трубки составляет 1:/5,8-8,4/, производят рецикл части реакционных газов, содержащих не прореагировавший 3-пиколин, воду и продукты реакции, обратно на вход реактора, а из другой части реакционных газов производят либо выделение в жидкую фазу не прореагировавших 3-пиколина и 3-пиридинкарбальдегида и их возврат в каталитический процесс получения никотиновой кислоты, либо направляют другую часть реакционных газов на обезвреживание и последующий сброс в атмосферу.
2. Способ по п.1, отличающийся тем, что доля газов рецикла составляет 88-93% общего объема реакционных газов.
3. Способ по п.1, отличающийся тем, что концентрация 3-пиколина на входе в реактор составляет 2,5-3,0 мол.% при соотношении мольных долей 3-пиколина, кислорода, паров воды в диапазоне 1:/11-21/:/17-26/.
4. Способ по п. 1, отличающийся тем, что максимальную температуру в слое катализатора поддерживают на 5-25°С выше, чем температура теплоносителя.
RU2019123292A 2019-07-24 2019-07-24 Способ получения никотиновой кислоты RU2704139C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019123292A RU2704139C1 (ru) 2019-07-24 2019-07-24 Способ получения никотиновой кислоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019123292A RU2704139C1 (ru) 2019-07-24 2019-07-24 Способ получения никотиновой кислоты

Publications (1)

Publication Number Publication Date
RU2704139C1 true RU2704139C1 (ru) 2019-10-24

Family

ID=68318528

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019123292A RU2704139C1 (ru) 2019-07-24 2019-07-24 Способ получения никотиновой кислоты

Country Status (1)

Country Link
RU (1) RU2704139C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050222421A1 (en) * 2004-04-05 2005-10-06 Chang Chun Petrochemical Co., Ltd. Process for preparing nicotinic acid and catalyst used in the method
DE102004027414A1 (de) * 2004-06-04 2005-12-29 Basf Ag Gasphasenoxidation von alkylsubstituierten heterozyklischen Verbindungen
RU2275958C2 (ru) * 2004-07-08 2006-05-10 Закрытое акционерное общество "Холдинговая катализаторная компания" Установка для получения никотиновой кислоты
RU2371247C1 (ru) * 2008-06-10 2009-10-27 Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (статус государственного учреждения) Катализатор и способ получения никотиновой кислоты
CN104109116A (zh) * 2014-06-11 2014-10-22 浙江工业大学 一步空气催化氧化合成吡啶甲酸类化合物的方法及其装置
EP2428505B1 (en) * 2010-09-13 2016-08-10 Jubilant Life Sciences Limited Process for producing pyridine carboxylic acids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050222421A1 (en) * 2004-04-05 2005-10-06 Chang Chun Petrochemical Co., Ltd. Process for preparing nicotinic acid and catalyst used in the method
DE102004027414A1 (de) * 2004-06-04 2005-12-29 Basf Ag Gasphasenoxidation von alkylsubstituierten heterozyklischen Verbindungen
RU2275958C2 (ru) * 2004-07-08 2006-05-10 Закрытое акционерное общество "Холдинговая катализаторная компания" Установка для получения никотиновой кислоты
RU2371247C1 (ru) * 2008-06-10 2009-10-27 Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (статус государственного учреждения) Катализатор и способ получения никотиновой кислоты
EP2428505B1 (en) * 2010-09-13 2016-08-10 Jubilant Life Sciences Limited Process for producing pyridine carboxylic acids
CN104109116A (zh) * 2014-06-11 2014-10-22 浙江工业大学 一步空气催化氧化合成吡啶甲酸类化合物的方法及其装置

Similar Documents

Publication Publication Date Title
EP0274681B1 (en) Process for production of acrylic acid
KR20020032402A (ko) 알켄 및 카르복실산을 제조하기 위한 산화 방법
JP2009520747A5 (ru)
JPS6217578B2 (ru)
NO160159B (no) Forbindelsesroer for forbindelse av mantelroer av to isolerte ledningselementer.
NL7908630A (nl) Werkwijze ter bereiding van ftaalzuuranhydride alsmede katalysator voor een dergelijke werkwijze.
KR101395989B1 (ko) o-크실렌 기상 산화에 의한 프탈산 무수물의 제조
US8106220B2 (en) Preparation of phthalic anhydride by gas phase oxidation of O-xylene in a main reactor and postreactor
CN100447116C (zh) 制备烃的至少一种部分氧化和/或氨氧化产物的方法
Marx et al. Reaction scheme of o-xylene oxidation on vanadia catalyst
RU2704138C1 (ru) Способ получения никотиновой кислоты
CN111056913A (zh) 一种1,1,1,3-四氯丙烷的连续生产方法
JP2022031699A (ja) 2-クロロ-5-トリフルオロメチルピリジンの作製方法
NO328001B1 (no) Fremgangsmate og katalysator for selektiv fremstilling av eddiksyre ved katalytisk oksydasjon av etan og/eller etylen
JP2022538679A (ja) アルキルメタクリレートおよび任意にメタクリル酸の製造方法
NO328031B1 (no) Integrert fremgangsmate for fremstilling av vinylacetat
CN102399183A (zh) 一种制备吡啶羧酸的方法
RU2704139C1 (ru) Способ получения никотиновой кислоты
US9643904B2 (en) Method for preparing 2,3,3,3-tetrafluoropropene
RU2704137C1 (ru) Способ получения никотиновой кислоты
CN1927800A (zh) 2,4,6-三甲基苯甲酸的合成工艺
DE2440864C2 (de) Verfahren zur Herstellung von gesättigten polychlorierten aliphatischen Kohlenwasserstoffen durch Oxychlorierung
CN100398529C (zh) 制备马来酸酐的方法
NO932029L (no) Ftalsyre-anhydrid-prosess med hoeyt trykk
CN108101871B (zh) 一种正丁烷氧化制备顺酐的工艺方法