RU2700792C2 - Способ получения катализатора для осуществления процесса алкилирования парафинов олефинами - Google Patents

Способ получения катализатора для осуществления процесса алкилирования парафинов олефинами Download PDF

Info

Publication number
RU2700792C2
RU2700792C2 RU2017145034A RU2017145034A RU2700792C2 RU 2700792 C2 RU2700792 C2 RU 2700792C2 RU 2017145034 A RU2017145034 A RU 2017145034A RU 2017145034 A RU2017145034 A RU 2017145034A RU 2700792 C2 RU2700792 C2 RU 2700792C2
Authority
RU
Russia
Prior art keywords
olefins
zeolite
catalyst
temperature
deactivation
Prior art date
Application number
RU2017145034A
Other languages
English (en)
Other versions
RU2017145034A3 (ru
RU2017145034A (ru
Inventor
Наталья Сергеевна Гурко
Николай Васильевич Кузичкин
Дмитрий Андреевич Сладковский
Кирилл Вадимович Семикин
Елена Викторовна Сладковская
Дарья Александровна Смирнова
Ульяна Юрьевна Осипенко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" (СПбГТИ(ТУ))
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" (СПбГТИ(ТУ)) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" (СПбГТИ(ТУ))
Priority to RU2017145034A priority Critical patent/RU2700792C2/ru
Publication of RU2017145034A3 publication Critical patent/RU2017145034A3/ru
Publication of RU2017145034A publication Critical patent/RU2017145034A/ru
Application granted granted Critical
Publication of RU2700792C2 publication Critical patent/RU2700792C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/56Addition to acyclic hydrocarbons
    • C07C2/58Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/02Alkylation

Abstract

Настоящее изобретение относится к способу получения катализатора процесса алкилирования парафинов олефинами, включающему в себя деактивацию его кислотных центров, причем в качестве катализатора используют кристаллический цеолит в водородной форме, деактивацию проводят путем его обработки в условиях алкилирования смесью парафинов С45 и олефинов С25, содержащей до 5% олефинов С25 и 95% изопарафиновых углеводородов, до момента, пока на выходе реактора не появляются непрореагировавшие олефины, с последующей обработкой цеолита растворами солей щелочных или щелочно-земельных металлов и высокотемпературной обработкой в окислительной среде. Технический результат - получение эффективного кристаллического цеолитного катализатора с повышенным содержанием сильных кислотных центров Бренстеда как на внешней поверхности, так и внутри цеолитного каркаса, способного увеличить стабильность и селективность по разветвленным высокооктановым парафинам. 4 з.п. ф-лы, 1 табл., 2 пр.

Description

Изобретение относится к области нефтепереработки и нефтехимии, а именно к технологии производства катализаторов для осуществления процесса алкилирования изобутана и изопентана олефинами С3-С4 (пропиленом, бутенами и амиленами), точнее к способам получения цеолитов с увеличенной долей сильных кислотных центров Бренстеда.
Особенность процесса алкилирования парафинов является возможность получения бензина, который по существу не содержит загрязняющих примесей, таких как сера и азот, которые могут присутствовать в бензине, производимом другими способами, такими как крекинг тяжелых нефтяных фракций, например, вакуумном газойле и продуктах атмосферной отгонки. Получаемые при этом изопарафины (алкилбензин, алкилат), характеризуются следующими основными показателями:
- высокие октановые числа - 93÷94 моторным методом, 96÷99 исследовательским методом;
- не содержат ароматических и непредельных углеводородов, сернистых и кислородсодержащих соединений;
- имеют ровную характеристику октановых чисел по температурам кипения в области 40÷200°С.
Такие показатели позволяют считать их ценным компонентом автомобильного топлива, учитывая мировую тенденцию снижения содержания ароматических углеводородов в составе бензина (RU 2482917, 1913).
Реакция алкилирования является кислотно катализируемой Эффективность процесса алкилирования во многом зависит от природы используемого катализатора. Ранее в процессах алкилирования, как правило, использовались жидкие кислотные катализаторы, такие как серная кислота или фтористоводородная (плавиковая) кислота. Однако применение жидких кислотных катализаторов имеет несколько недостатков. Использованные жидкие кислоты являются высококоррозивными, требуя применения более дорогостоящего оборудования специального качества. При этом, так как присутствие этих кислот в конечном топливе нежелательно, любая кислота, остающаяся в алкилате, должна быть удалена, что делает процесс сложным и дорогостоящим (RU 2419486, 2010). Чтобы устранить эти и прочие недостатки жидких кислотных катализаторов, для применения в процессах алкилирования были разработаны твердые кислотные катализаторы, содержащие кислотный носитель, в частности, цеолит и металл, который выполняет функцию гидрирования, в качестве которого обычно используют элементы из 8-10 группы периодической таблицы, такие как платина, палладий или их смеси. (US 7459412; US 20030181779; WO 2012047274, RU 2419486, RU 2482917, 1913; US 5986158, RU 2445165C1, WO 2005077866, US 20080087574 и др.).
Для повышения селективности и стабильности алкилата цеолитные катализаторы алкилирования подвергают одно или многостадийной процедуре ионного обмена промотируя, тем самым, катализатор металлами или их оксидами. Чаще в качестве промотера выступают редкоземельные металлы, среди которых наибольше распростанен лантан, а также цинк, галлий, железо, магний, кобальт, молибден.
Так, известен способ получения катализатора для алкилирования изобутана олефинами С2÷K4 с использованием фожазита (SU 1309383, 1996). Катализатор имеет следующий состав, мас. %: оксид натрия 0,26-0,8; оксид редкоземельного элемента 12,0-20,0; оксид кальция 0,8-4,2; оксид платины или палладия 0,02-1,2; оксид алюминия и диоксида кремния - остальное. Способ получения включает в себя обработку цеолита водным раствором промышленной смеси редкоземельных элементов, формование, обработку растворами нитрата аммония и соли палладия, сушку и прокалку. Испытание катализатора при алкилировании изобутана этиленом при 90°С, скорости подачи сырья 1,3 ч-1 показывает выход алкилата 19÷210 мас. %.
Недостатком предлагаемого способа является невысокая селективность катализатора по целевому продукту Σизо-С8 (суммарным изооктанам) - 67,4 мас. % при алкилировании изобутана олефинами, в частности бутенами.
Известен способ получения катализатора для получения алкилатов, представляющего собой цеолит Y с мольным отношением SiO2/Al2O3=4,5-5, в котором катионы натрия замещены на катионы NH4 + до степени обмена 95% и ионы редкоземельных элементов до 60% от обменной емкости, включающий контакт цеолита с водными растворами солей поливалентных металлов, сушку, формование с добавлением связующего (US 3549557). Алкилирование изобутана бутеном-1 с соотношением в реакционной смеси 20:1 проводили при весовой скорости подачи по олефину 0,05 ч-1, температуре 38°С и давлении 34 атм. За 6 часов работы получают алкилат со сравнительно высоким выходом - 185%, считая на бутен-1. Содержание фракции C8 в алкилате составляло около 70%, а содержание триметилпентанов в ней - около 80%.
Недостатком такого способа является сравнительно высокий расход редкоземельных элементов для проведения ионного обмена цеолита, а также н низкая нагрузка по олефинам и невысокая стабильность его работы: уже после 5-6 часов работы содержание непредельных соединений в алкилате составляет 10-20%.
Основная проблема при использовании твердых кислотных катализаторов состоит в том, что катализатор может становиться быстро дезактивируемым вследствие образования полиалкилатов (например, продуктов С12+), которые ингибируют реакции алкилирования - в некотором отношении подобно очень мягкому коксу. Как только катализатор сформирует определенный уровень содержания полиалкилатов, катализатор по существу прекращает реакции алкилирования. Эта дезактивация катализатора приводит к необходимости периодической регенерации катализатора для обеспечения удовлетворительного выхода целевого продукта, что снижает производительность процесса и повышает затраты в процессе алкилирования.
Из уровня техники известны способы получения цеолитов с дезактивированной поверхностью, повышающей его эксплуатвционные характеристики. Известен способ получения цеолита ZSM-5, включающий его модификацию кремнийорганическими соединениями в газовой фазе. Способ включает обработку цеолита парами кремнийорганического соединения, содержащего, по крайней мере, два атома кремния. Полученный модифицированный цеолит рекомендован для превращения ароматических углеводородов в продукты, содержащие пара-изомеры диалкилбензолов (US 5516736).
Известен способ модифицирования цеолита MFI, который предварительно кальцинируют, затем модифицируют раствором кремнийорганического соединения в органическом растворителе, после чего смешивают со связующим агентом и подвергают гранулированию. Цеолит рекомендован для использования в процессах конверсии углеводородов при получении пара-ксилола (US 6066770).
Известен способ (RU 2124944, 1999) модификации формоселективности цеолитного катализатора на основе отделочной селективации включающей в себя контактирование модифицированного цеолита с разлагающимся при нагреве органическим соединением при температуре, превышающей температуру разложения разлагающегося для повышения селективности по п-ксилолу приконверсии алкилароматических соединений.
Наиболее близким по технической сущности и достигаемому результату является способ (RU 2555879, 2015) получения цеолита типа ZSM-5 (MFI) с дезактивированными кислотными центрами,
располагающимися на внешней поверхности цеолитных кристаллов путем обработки исходного цеолита раствором тетраэтилортосиликата или полиметилсилоксана в органическом растворителе и кальцинированием обработанного цеолита Полученный катализатор обеспечивает возможность производства автомобильного бензина в процессе димеризации бутан-бутиленовой фракции при температурах 300-450°С. При этом достигается высокая стабильность работы катализатора во времени.
В качестве недостатка указанного способа можно отметить недостаточную селективность процесса в связи с невозможностью влияния на побочные активные кислотные центры, распологающиеся внутри микропор цеолита, отвечающие за протекание побочных реакций.
Задача настоящего изобретения заключается в разработке технологии получения более эффективного катализатора, способного увеличить стабильность и селективность по разветвленным высокооктановым парафинам.
Задача решалась разработкой цеолитного катализатора с низким содержанием нецелевых активных центров, ускоряющих побочные реакции.
В основу изобретения были положены наблюдение авторов, что дезактивированные катализаторы все еще проявляли высокую активность в побочных превращениях, ведущих к образованию низкооктановых малоразветвленых парафинов и продуктов димеризации - олефиновых углеводородов С5+. При этом анализы функционального состава кислотных центров отработанных катализаторов показывали полное отсутсвие целевых сильных Бренстедовских кислотных центров, которые дезактивируется сорбированными высокомолекулярными углеводородами, и присутсвие только побочных слабых и сильных кислотных центров. То есть можно было предположить, что на дезактивированных катализаторах имеется возможность воздействовать только на нецелевые кислотные центры, сохраняя возможность востановления целевых центров методом окислительной регенерации.
В связи с этим технической задачей являлоссь создание способа получения цеолита с повышенным содержанием только сильных кислотных центров Бренстеда как на внешней поверхности, так и внутри цеолитного каркаса.
Технический результат достигался последовательной деактивацией сильных Бренстедовских центров протонной формы цеолита в среде олефиновых углеводородов; проведением ионного обмена в растворе щелочного или щелочноземельного металла; окислительной высокотемпературной обработкой.
В качестве цеолита используют, как правило, цеолит Y в виде порошка или гранулы. При этом наиболее предпочтительно является использование порошка с размером кристалов менее 30 мкм с его последующим формованием, что позволяет получить «селективированный» катализатор алкилирования изопарафинов олефинами С35.
Деактивацию сильных кислотных центров Бренстеда осуществляют обработкой цеолита в условиях алкилирования смесью парафинов С45 и олефинов С25, содержащая до 15% олефинов С25 и до 70% изопарафиновых углеводородов. При этом в реакторе одновременно происходят реакции алкилирования, димеризации, изомеризации и олигомеризации в, ходе которой сильные кислотные центры подвергаются дезактивиции за счет адсорбции на них высокомолекулярных углеводородов, образующихся в условиях контакта цеолита с олефинсодержащей смесью углеводородов. Процесс проводят до тех, пока на выходе реактора не появляются непрореагировавшие олефины. Их появление в количестве более 0.1% масс свидетельствует о полной дезактивации сильных кислотных центров Бренстеда.
Процесс проводят с использованием реактора смешения (автоклава) или реактора со станционарным слоем, при этом последнее является предпочтительным. В качестве олефинов более предпочтительными являются бутены, среди которых наиболее предпочтителен изобутилен, который характеризуется высокой реакционной способностью. В качестве изопарафинов могут выступать изобутан и изопентан.
Оптимально после прекращения подачи олефинсодержащих углеводородов проводить термообработку цеолита. Для этого цеолит отделяют от реакционной смеси и подвергают нагреванию до температуры 250-450°С в условиях атмосферного или избыточного давления (от 1 до 5 МПа) в течении от 10 минут до 24-х часов. При этом происходит конверсия адсорбированных высокомолекуляных углеводородов с образованием ациклических, алкилароматических и полиароматических соединенней (кокса), которые более прочно связываются с активными центрами, тем самым предотвращая их удаление на следующих стадиях процесса. Термообработка не является ключевой и может быть исключена из процесса модификации цеолита.
После деактивации цеолитный материал подвергается обработке растворами солей щелочных или щелочноземельных металлов с целью проведения ионного обмена в слабых кислотных центрах - замещения ионов водорода катионами металлов. При этом сильные кислотные центры Бренстеда «закрыты» высокомолекулярными углеводородными отложениями и воздействию практически не подвергаются. Используемый раствор, содержит, например, NaNO3, Na2SO4, CaSO4, NaCl, CaCl2 в концентрации от 0.5% до 35%, при этом предпочтительным является концентрация 1% и использование составлять быть. Температура обработки от 20°С до 100°С, (более предпочтительно 50°С, время обработки от 20 минут до 10-ти часов в зависимости от выбранной концентрации раствора и количества повторений процедуры обработки.
После окончания ионного обмена выполняется фильтрация и промывка цеолитного материала водой для извлечения солей металлов с последующей сушкой в течении не менее 24 часов.
Полученный цеолитный материал подвергается высокотемпературной обработке (прокалке) в окислительной среде, которой может быть атмосферный воздух или его смесь с инертными газами с целью удалению с активной поверхности катализатора высокомолекулярных углеводородных отложений и кокса. Прокалка ведется при температуре от 450°С до 700°С в течение не менее 3 часов. При этом сильные кислотные центры Бренстеда становятся активными в целевой реакции алкилирования, а ускоряющие побочные реакции слабые/средние Бренстедовские и Льюисовские кислотные центры, приводящие к снижению селективности и стабильности катализатора алкилирования, остаются в связанном виде с металлами.
Сущность и особенности заявленного процесса модифицирования цеолита и результаты по его использованию в качестве катализатора алкилирования изобутана олефинами С4 иллюстрируются следующими примерами. Пример 1. В качестве исходного цеолита использовали натриевую форму цеолита Y с модулем (SiO2/Al2O5=5.1) и содержанием Na2O 13%. Водородную форму цеолита Y получали путем ионного обмена с раствором хлорида аммония. Для приготовления 10 г катализатора, брали навеску порошка NH4Cl с массой 42.8 г добавляли в 200 мл воды. Затем 10 г цеолита пересыпали в раствор хлорида аммония и перемешивали в течение 2 часов при 70°С. После оставляли при комнатной температуре на ночь. Далее цеолит отфильтровывали и промывали. Сушку производили при 110°С в течение 3 часов, затем образец прокаливали в муфеле при 525°С 3 часа.
Полученный катализатор помещали в проточный реактор, продували азотом при температуре 350°С и давлении 1,7 МПа, затем при температуре 80°С начинали подачу олефинового сырья, содержащего 4,8% изобутилена, 95% изобутана и 0,2% н-бутана. Массовая скорость подачи олефинов 0,2 ч-1. По истечении 210 минут подачу олефинового сырья останавливали и выполняли продувку реактора азотом и последующее нагревание до 350 при атмосферном давлении с выдержкой в течении 1 часа.
Затем цеолитный материал подвергали обработке 0.1 М раствором NaNO3 в течении 1,5 часов при температуре 50°С, а затем сушили при температуре 50°С в течение 2 ч, промывали дистиллированной водой и сушили при температуре 110°С, а затем прокаливали 3 часа в муфеле при температуре 550°С.
Полученный цеолитный катализатор испытывали в реакции алкилирования. Процесс алкилированния изобутана олефинами С4 в общем виде осуществляли следующим образом. Предварительную подготовку катализатора производили путем его нагревания в токе инертного газа до 350°С и выдержки при этой температуре в течение 60 мин. Сырье содержало 5% изобутилена и 95% изобутана. Процесс проводили при температуре 80°С, давлении 1,7 МПа, объемной скорости подачи жидкого сырья 4 ч-1 на стационарном слое твердых частиц катализатора.
Пример 2. (сравнительный). В качестве катализатора алкилирования использовали Н-форму цеолита Yc модулем (SiO2/Al2O5=5) и остаточным содержанием Na2O 0,08% без дополнительных обработок. Образец испытывали в ре-акции алкилирования, как в примере 1.
Figure 00000001
Сравнение данных примеров 1 и 2 показывает преимущества заявляемого способа в отношении увеличения селективности и стабильности катализатора.

Claims (5)

1. Способ получения катализатора процесса алкилирования парафинов олефинами, включающий в себя деактивацию его кислотных центров, отличающийся тем, что в качестве катализатора используют кристаллический цеолит в водородной форме, деактивацию проводят путем его обработки в условиях алкилирования смесью парафинов С45 и олефинов С25, содержащей до 5% олефинов С25 и 95% изопарафиновых углеводородов, до момента, пока на выходе реактора не появляются непрореагировавшие олефины, с последующей обработкой цеолита растворами солей щелочных или щелочно-земельных металлов и высокотемпературной обработкой в окислительной среде.
2. Способ по п. 1, отличающийся тем, что при обработке цеолита углеводородной смесью процесс проводят при температуре 40-100°С, давлении 0,6-5 МПа, массовой скорости подачи олефинов 0,5-3 г олефина на г катализатора в час и времени, соответствующем появлению олефинов на выходе из реактора с концентрацией более 0,1% мас.
3. Способ по п. 1, отличающийся тем, что после деактивации цеолит дополнительно выдерживают при температуре 250-450°С, давлении 1-5 МПа, в течение от 10 минут до 24-х часов.
4. Способ по п. 1, отличающийся тем, что при ионном обмене используют растворы нитратов, хлоридов или сульфатов щелочных и/или щелочно-земельных металлов с концентрацией соли в растворе от 0,5 до 35%, при этом температура обработки составляет от 20 до 100°С в течение от 20 до 600 минут.
5. Способ по п. 1, отличающийся тем, что при высокотемпературной обработке в окислительной среде процесс проводят при температуре от 450 до 700°С в течение более 3 часов при контакте с газом, содержащим воздух и инертные газы.
RU2017145034A 2017-12-25 2017-12-25 Способ получения катализатора для осуществления процесса алкилирования парафинов олефинами RU2700792C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017145034A RU2700792C2 (ru) 2017-12-25 2017-12-25 Способ получения катализатора для осуществления процесса алкилирования парафинов олефинами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017145034A RU2700792C2 (ru) 2017-12-25 2017-12-25 Способ получения катализатора для осуществления процесса алкилирования парафинов олефинами

Publications (3)

Publication Number Publication Date
RU2017145034A3 RU2017145034A3 (ru) 2019-06-25
RU2017145034A RU2017145034A (ru) 2019-06-25
RU2700792C2 true RU2700792C2 (ru) 2019-09-23

Family

ID=67002487

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017145034A RU2700792C2 (ru) 2017-12-25 2017-12-25 Способ получения катализатора для осуществления процесса алкилирования парафинов олефинами

Country Status (1)

Country Link
RU (1) RU2700792C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713449C1 (ru) * 2019-04-18 2020-02-05 Федеральное государственное бюджетное научное учреждение Уфимский федеральный исследовательский центр Российской академии наук Гранулированный цеолит zsm-5 без связующего и способ его получения

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115254090B (zh) * 2022-08-30 2023-10-27 华东理工大学 一种生产烷基萘的白土催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2102369C1 (ru) * 1992-04-08 1998-01-20 Маттиас Анна Мария Местерс Способ алкилирования парафинового сырья олефинами
RU2191204C1 (ru) * 2001-08-13 2002-10-20 Научно-инженерный центр "Цеосит" Объединенного института катализа СО РАН Способ переработки олефинсодержащего сырья
RU2208624C2 (ru) * 2001-09-03 2003-07-20 Научно-инженерный центр "Цеосит" Объединенного института катализа СО РАН Способ получения высокооктановых бензиновых фракций и ароматических углеводородов (варианты)
EP1478611A1 (en) * 2002-02-28 2004-11-24 Uop Llc Solid catalyst alkylation process with regeneration section and hydrogen fractionation zone
WO2005077866A1 (en) * 2004-02-09 2005-08-25 Abb Lummus Global Inc. Hydrocarbon alklyation using a nanocrystalline zeolite y catalyst
RU2440190C1 (ru) * 2010-09-24 2012-01-20 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Способ получения катализатора алкилирования парафиновых углеводородов олефинами

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2102369C1 (ru) * 1992-04-08 1998-01-20 Маттиас Анна Мария Местерс Способ алкилирования парафинового сырья олефинами
RU2191204C1 (ru) * 2001-08-13 2002-10-20 Научно-инженерный центр "Цеосит" Объединенного института катализа СО РАН Способ переработки олефинсодержащего сырья
RU2208624C2 (ru) * 2001-09-03 2003-07-20 Научно-инженерный центр "Цеосит" Объединенного института катализа СО РАН Способ получения высокооктановых бензиновых фракций и ароматических углеводородов (варианты)
EP1478611A1 (en) * 2002-02-28 2004-11-24 Uop Llc Solid catalyst alkylation process with regeneration section and hydrogen fractionation zone
WO2005077866A1 (en) * 2004-02-09 2005-08-25 Abb Lummus Global Inc. Hydrocarbon alklyation using a nanocrystalline zeolite y catalyst
RU2440190C1 (ru) * 2010-09-24 2012-01-20 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Способ получения катализатора алкилирования парафиновых углеводородов олефинами

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713449C1 (ru) * 2019-04-18 2020-02-05 Федеральное государственное бюджетное научное учреждение Уфимский федеральный исследовательский центр Российской академии наук Гранулированный цеолит zsm-5 без связующего и способ его получения

Also Published As

Publication number Publication date
RU2017145034A3 (ru) 2019-06-25
RU2017145034A (ru) 2019-06-25

Similar Documents

Publication Publication Date Title
US3851004A (en) Hydrocarbon alkylation process using catalyst regeneration
US3549557A (en) Isoparaffin alkylation process and catalyst for use therein
TWI433829B (zh) 使用含稀土元素之沸石及氫化金屬之催化劑的烷化法
CA2989428A1 (en) Catalyzed alkylation, alkylation catalysts, and methods of making alkylation catalysts
WO2008088997A1 (en) Dual zone aromatic alkylation process
CZ114594A3 (en) Regeneration process based on solvent extraction of defined acid catalysts for the conversion of hydrocarbons and the use of such catalysts
KR20110111484A (ko) 방향족 탄화수소의 알킬화에 유용한 촉매
US20120325724A1 (en) Recovery of alkyl chloride adsorbtion capacity by basic solution treatment of spent adsorbent
RU2700792C2 (ru) Способ получения катализатора для осуществления процесса алкилирования парафинов олефинами
CN103796748A (zh) 集成的腈毒物吸附及解吸系统
US20170368540A1 (en) Isoparaffin-olefin alkylation
US3840613A (en) Paraffin alkylation with olefin using highly active crystalline zeolite catalyst
RU2644781C2 (ru) Способ получения бензиновых фракций углеводородов из олефинов
RU2482917C1 (ru) Способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов
CA3054985C (en) Alkylation process with improved octane number
RU2031900C1 (ru) Способ алкилирования изопарафина олефином
EP2744875B1 (en) Process for reducing the benzene content gasoline
EP2673246B1 (en) Process for reducing the benzene content of gasoline
JPH08501975A (ja) ルイス酸で促進される、改良された転移アルミナ触媒、およびこれらの触媒を用いたイソパラフィンのアルキル化プロセス
RU2101269C1 (ru) Способ повышения качества парафинового сырья
US9598330B2 (en) Process for reducing the benzene content of gasoline
US3795714A (en) Isoparaffin alkylation process and catalyst for use therein
RU2161147C1 (ru) Способ получения алкилбензина (варианты)
JP3589669B2 (ja) パラフィン系原料改質方法
US9200215B2 (en) Process for reducing the benzene content of gasoline

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191226