RU2693987C1 - Теплоизоляционное устройство - Google Patents

Теплоизоляционное устройство Download PDF

Info

Publication number
RU2693987C1
RU2693987C1 RU2018100415A RU2018100415A RU2693987C1 RU 2693987 C1 RU2693987 C1 RU 2693987C1 RU 2018100415 A RU2018100415 A RU 2018100415A RU 2018100415 A RU2018100415 A RU 2018100415A RU 2693987 C1 RU2693987 C1 RU 2693987C1
Authority
RU
Russia
Prior art keywords
insulating
elements
thermal insulation
heat
insulation device
Prior art date
Application number
RU2018100415A
Other languages
English (en)
Inventor
Юрген ЗЕЙДЕЛЬ
Денис АНДЕРС
Original Assignee
Смс Груп Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Смс Груп Гмбх filed Critical Смс Груп Гмбх
Application granted granted Critical
Publication of RU2693987C1 publication Critical patent/RU2693987C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/008Heat shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

Изобретение относится к области прокатки. Теплоизоляционное устройство (1) для теплоизоляции металлического материала в прокатном стане содержит несущий элемент (2), на котором расположено некоторое количество теплоизоляционных элементов (3). Для продления срока службы такого устройства изобретение предусматривает, что по меньшей мере один теплоизоляционный элемент (3) образован множеством боковых элементов (4, 5, 6, 7, 8, 9), которые образуют между собой приемное пространство для теплоизоляционного материала, причем четыре боковых элемента (4, 5, 6, 7, 8, 9) в их стыкующихся боковых областях соединены друг с другом посредством соединения (10) шарнирного типа. Изобретение обеспечивает возможность расширения элементов конструкции под воздействием тепловой нагрузки без их повреждения. 20 з.п. ф-лы, 8 ил.

Description

Изобретение относится к теплоизоляционному устройству для теплоизоляции металлического материала в прокатном стане, содержащему несущий элемент, на котором расположено некоторое количество теплоизоляционных элементов.
Теплоизоляционные устройства этого вида известны из уровня техники. На практике давно известны теплоизоляционные кожухи для сокращения тепловых потерь в горячекатаной полосе или в плоских слитках. Выполнение узла изоляционного кожуха в области рольганга линии для технологической линии горячей прокатки, показано, например, в патентном документе ЕР 0468716 А2. Согласно ему на теплой стороне кожухов расположены керамические волокна. ЕР 0059093 В1 раскрывает типы тепловых кожухов, состоящих из стержня, выполненного из теплоизолирующего материала (керамические волокна), и нанесенной снаружи на теплую сторону тонкой стенки, которая образует металлическую мембрану из жароустойчивого материала. По существу похожую конструкцию раскрывает US 4595358 А, однако в этом случае со специально формуемым изоляционным материалом, а также с металлическими мембранами. ЕР 0248674 А1 раскрывает теплоизоляционный кожух из нескольких слоев изоляционного материала. Другие решения раскрыты в DE 102013219507 A1, RU 2487769, US 5101652, WO 2010/077177 А1 и US 4524702.
Долговечность металлических мембран теплоизоляционных кожухов ограничена. Это частично обусловлено высокими температурными напряжениями, например, вследствие механических сжатий, которые воздействуют на металлические мембраны при их неблагоприятном навешивании или при больших размерах узлов металлических мембран.
Кроме того, узлы изоляционных кожухов, или металлические мембраны, в одной установке обычно выполнены одинаковыми. В уровне техники не учитывается их приспосабливание, например, по ширине установки и/или к различным температурным перепадам в различных областях. Согласование толщины листа металла мембраны по уровню температуры и/или по продолжительности тепловой нагрузки на мембраны изоляционных кожухов в пределах установки также не производится.
Вследствие не оптимальной конструкции таких узлов изоляционных кожухов в уровне техники высоки расходы на их техническое обслуживание.
В основе изобретения лежит задача такого усовершенствования обычного теплоизоляционного устройства, которое продлевает срок службы такого устройства. Кроме того, должны быть минимизированы расходы на поддержание его работоспособности и техническое обслуживание. Наконец, необходимо облегчить возможность оптимального приспосабливания теплоизоляционных элементов к условиям их применения.
Решение указанной задачи настоящим изобретением отличается тем, что по меньшей мере один теплоизоляционный элемент образуется несколькими боковыми элементами, которые образуют между собой приемное пространство для теплоизоляционного материала, причем по меньшей мере два из боковых элементов в их стыкующихся боковых областях соединены друг с другом посредством соединения шарнирного типа.
Возможно шарнирное соединение, образованное несколькими шарнирами, которые расположены вдоль стыкующихся боковых областей. В этом случае предпочтительно предусмотрено, что частичная длина шарнира составляет не более 10-кратного диаметра шарнира.
Соединение шарнирного типа может быть образовано также по меньшей мере одной проволокой в форме спирали, которая продета в отверстия, выполненные вдоль стыкующихся боковых областей.
Альтернативный вариант осуществления предусматривает, что соединение шарнирного типа образовано, по меньшей мере на участках, ослаблением механической жесткости, в частности, жесткости на изгиб, по меньшей мере одного бокового элемента. При этом указанное ослабление может быть выполнено посредством по меньшей мере одной выемки в боковом элементе. Ослабление может быть выполнено также посредством составления бокового элемента из по меньшей мере двух отдельных и соединенных друг с другом участков бокового элемента.
В соответствии с этим эффект шарнира может создаваться путем целенаправленного ослабления, в частности, листов металла продольных сторон за счет выполнения на них выемок, за счет использования более тонких промежуточных металлических листов или за счет соединений металлических листов с зазором, или также посредством комбинирования вышеназванных мер.
Наконец, еще в одном альтернативном варианте соединение шарнирного типа может быть образовано участками боковых областей и выемками в боковых областях, причем в области стыкующихся боковых областей деформированные участки помещены в выемки.
Боковые элементы предпочтительно образованы металлическими листами.
Теплоизоляционный материал предпочтительно по меньшей мере частично образован керамическими волокнами.
Некоторое количество теплоизоляционных элементов может быть расположено как в направлении поперек направления подачи металлического материала, так и в направлении подачи металлического материала.
Предпочтительно по меньшей мере один теплоизоляционный элемент имеет квадратную, прямоугольную или трапециевидную форму - при рассмотрении в направлении подачи металлического материала.
Кроме того, может быть предусмотрено множество теплоизоляционных элементов, расположенных рядом друг с другом в направлении поперек направления подачи металлического материала, причем по меньшей мере два соседних теплоизоляционных элемента имеют общий боковой элемент.
Кроме того, возможно прохождение стержня сквозь множество теплоизоляционных элементов, расположенных рядом друг с другом в направлении, поперечном направлению подачи металлического материала. При этом стержень предпочтительно проходит сквозь боковые участки несущего элемента, проходящие в вертикальном направлении, и прикреплен к ним посредством крепежных элементов, например винтов.
Кроме того, может быть предусмотрено наличие между теплоизоляционными элементами и несущим элементом вертикального зазора, предпочтительно имеющего максимальную ширину 30 мм. Зазор может быть также по меньшей мере частично заполнен теплоизоляционной ватой, предпочтительно с биосовместимыми керамическими волокнами. При помещении теплоизоляционной ваты в зазоре протяженность зазора в вертикальном направлении предпочтительно составляет не более 100 мм. Возможно также прохождение через зазор в вертикальном направлении некоторого количества распорных болтов, которые закреплены на несущем элементе и на теплоизоляционном элементе.
Кроме того, возможна по меньшей мере частично различная толщина листа металла боковых элементов, причем, в частности, боковые элементы, проходящие в направлении подачи, толще, чем боковые элементы, по отношению к которым направление подачи перпендикулярно (то есть торцевые стороны теплоизоляционных элементов).
Возможно выполнение теплоизоляционных элементов по меньшей мере частично различными по ширине в поперечном направлении.
Кроме того, возможно расположение по меньшей мере двух теплоизоляционных элементов друг за другом в направлении подачи, причем оба теплоизоляционных элемента, следующие друг за другом в направлении (F) подачи, содержат соответствующие боковые элементы, которые выполнены различными по толщине.
В соответствии с этим может быть предусмотрено применение теплоизоляционного элемента, имеющего различную толщину металлических листов, в частности, для листов на горячей стороне по сравнению с листами продольных сторон и с листами на торцевой стороне, причем, в частности, более тонкими выполнены листы предпочтительно на продольных и торцевых сторонах. Соответственно, возможно выполнение изоляционных элементов, размещаемых по длине установки в направлении подачи, с металлическими листами различной толщины, в зависимости от ожидаемой максимальной температуры металлической мембраны, в частности, на горячей стороне.
При этом изоляционные элементы предпочтительно выполнены таким образом, что возможно расположение по выбору на горячей стороне верхних и нижних поверхностей элемента, что обеспечено возможностью соответствующего поворота.
Кроме того, может быть предусмотрено комбинирование размещаемых в пределах установки, в направлении подачи, изоляционных элементов с металлической листовой обшивкой, изоляционных элементов без металлической листовой обшивки (т.е. с керамическими волокнами на горячей стороне) и/или изоляционных элементов, выполненных в виде зеркал.
Таким образом, изобретение основано на применении гибких подвижных соединений соседних металлических листов (металлических мембран) теплоизоляционного элемента, что позволяет благодаря этому существенно снизить температурные напряжения.
Предложенное решение предпочтительно находит применение в технологических линиях горячей прокатки широких полос, где описанное устройство выполнено в виде теплоизоляционного кожуха.
Предложенный вариант осуществления позволяет достигать улучшенной термоизоляции теплоизоляционного кожуха и продления срока службы устройства.
В соответствии с ним, в частности, повышается срок службы применяемых металлических листов (металлических мембран) и тем самым сокращается интенсивность технического обслуживания изоляционного кожуха.
Предложенная конструкция позволяет уменьшать температурные напряжения в металлических мембранах, а также в боковых листах теплоизоляционных элементов, вследствие чего продлевается срок службы металлических листов. В результате этого благодаря надлежащему выбору толщины листа металла мембраны и ширины изоляционного элемента оптимизируется эффективность изоляции и повышается срок службы.
Таким образом, обеспечена возможность присоединения металлических мембран (боковых элементов) к верхней стороне (горячей стороне) и к боковым поверхностям теплоизоляционного элемента, которое выполнено с возможностью качания или свободного поступательного перемещения и поворота. Это подвижное, маятниковое присоединение к кромкам боковых элементов осуществляется с использованием соединения шарнирного типа, которое обеспечивает возможность гибкого подвижного соединения двух соседних металлических листов.
Предпочтительна также возможность использования теплоизоляционных элементов, выполненных с возможностью их поворота (т.е. с возможностью смены верхней стороны), то есть возможностью для каждой из сторон-поверхностей, по выбору, выполнять функцию горячей стороны.
Предпочтительно использование по ширине теплоизоляционного устройства теплоизоляционных элементов различной ширины.
Кроме того, посредством соответствующего исполнения теплоизоляционных элементов возможно согласование с уровнем температуры поверхности металлической мембраны или, соответственно, с температурой полосы и с соответствующей продолжительностью нагревания.
В частности, обеспечена возможность комбинирования в одной установке изоляционных кожухов, имеющих тонкую металлическую мембрану, и/или изоляционных кожухов без металлической мембраны и/или зеркальных изоляционных кожухов, с изоляционными кожухами, имеющими более толстые металлические мембраны.
На чертеже представлены варианты осуществления изобретения.
На фиг. 1 схематично показано теплоизоляционное устройство, рассматриваемое в направлении подачи металлического материала, подлежащего термическому экранированию, причем ниже теплоизоляционного устройства показаны два плоских слитка,
на фиг. 2 показаны в аксонометрическом изображении два варианта осуществления теплоизоляционного элемента теплоизоляционного устройства,
на фиг. 3 схематично показано теплоизоляционное устройство с двумя представленными теплоизоляционными элементами, рассматриваемое в направлении подачи металлического материала, подлежащего термическому экранированию,
на фиг. 4 показан вариант теплоизоляционного устройства в представлении, соответствующем фиг. 3,
на фиг. 5 схематично показан еще один вариант теплоизоляционного устройства, рассматриваемого в направлении подачи металлического материала, подлежащего термическому экранированию,
на фиг. 6 схематично показано оснащение теплоизоляционного устройства, причем теплоизоляционные элементы оснащены применяемыми металлическими листами различной толщины,
на фиг. 7а показан теплоизоляционный элемент, рассматриваемый в направлении подачи, согласно следующему варианту осуществления изобретения,
на фиг. 7b показан вид сбоку, относящийся к фиг. 7а,
на фиг. 8а показан теплоизоляционный элемент согласно следующему варианту осуществления изобретения, рассматриваемый в направлении подачи, и
на фиг. 8b показан вид сбоку, относящийся к фиг. 8а.
На фиг. 1 видно теплоизоляционное устройство 1, содержащее несущий элемент 2, на котором расположено некоторое количество теплоизоляционных элементов 3. Ширина теплоизоляционного элемента 3 указана обозначением В, а именно в горизонтальном направлении Q, поперечном по отношению к направлению F подачи транспортируемой полосы или транспортируемого плоского слитка 19. Максимальное и минимальное значения ширины плоского слитка или полосы, подлежащих термическому изолированию, указаны обозначениями Bmin и Bmax.
Ширина элементов 3 изоляционных кожухов поперек направления транспортировки (направления F подачи) определяет разность температур в пределах элемента и тем самым уровень температурных напряжений в металлической мембране (под ней следует понимать тот боковой лист теплоизоляционного элемента 3, который обращен к полосе или плоскому слитку, см. ниже). Поэтому предпочтительной является как можно меньшая ширина элемента. С другой стороны, большое количество мелких элементов изоляционных кожухов дороже в изготовлении. Поэтому узкие элементы предпочтительно применяются только там, где это имеет смысл для увеличения срока службы. Это область, находящаяся в пределах от примерно 90% минимальной ширины до полной максимальной ширины полосы, т.е. та область, в которой ожидаемо находятся края полосы. Области в центре рольганга, которые меньше минимальной ширины плоского слитка или полосы, а также, возможно, наружные области на краях могут выполняться более широкими.
Минимальная ширина элемента изоляционного кожуха в областях краев полосы зависит от расстояния между полосой или, соответственно, плоским слитком и металлической мембраной теплоизоляционных элементов, и от ожидаемого максимального уровня температуры кожуха или, соответственно, от температуры полосы либо плоского слитка и от времени воздействия тепловой нагрузки, и определяется при оформлении линии изоляционных кожухов.
Например, чем ближе к полосе или плоскому слитку помещен кожух, тем более резким будет температурный перепад и тем более узким следует выполнять элемент. Предпочтительной является минимальная ширина изоляционного элемента менее 200 мм. Поэтому предпочтительно устройство изоляционного кожуха, оптимизированное по ширине таким образом.
Как видно на фиг. 1, относительно широкий теплоизоляционный элемент 3 применен в данном случае в середине теплоизоляционного устройства 1, в то время как по направлению к краям предусмотрены изоляционные элементы уменьшенной ширины. Например, чем ближе теплоизоляционное устройство 1 помещено к плоскому слитку 19, тем более резким является перепад температур и тем более узким следует выполнять теплоизоляционный элемент 3. Это следует из фиг. 1, из хода изменения температуры мембраны в центре изображения, представленного в направлении Q, а именно для случая плоского слитка 19, имеющего минимальную ширину Bmin.
Снизу на фиг. 1 показаны минимальная и максимальная ширина плоского слитка или листового металла 19, обрабатываемого на данной установке.
На фиг. 2 видны варианты осуществления узких прямоугольных теплоизоляционных элементов 3, которые расположены на несущем элементе 2.
Как можно видеть, теплоизоляционный элемент 3 образован несколькими боковыми элементами 4, 5, 6, 7, 8, 9, между которыми образовано приемное пространство для теплоизоляционного материала (металлические листы 8 и 9 на торцевых сторонах не обязательны), причем по меньшей мере два из боковых элементов 4, 5, 6, 7 в их стыкующихся боковых областях соединены друг с другом посредством соединения 10 шарнирного типа.
В теплоизоляционном устройстве 1 располагаются рядом и последовательно множество указанных теплоизоляционных элементов 3. Теплоизоляционный элемент 3 при рассмотрении в направлении F подачи может иметь квадратное, прямоугольное или трапециевидное сечение, а также может быть выполнено в остроугольной форме или аналогичной. Кроме того, предпочтительно предусмотрено, что теплоизоляционные элементы 3 могут устанавливаться с возможностью поворота, т.е. оба боковых элемента 4 или 5, по выбору, могут быть обращены к горячей стороне, или выполнять функцию горячей стороны. В результате этого гибкость применения элемента 3 и коэффициент его использования повышается, т.е. после выхода из строя одной из сторон (например, вследствие повреждения) возможно его повторное использование после переворачивания - еще раз, то есть вдвое дольше, до его окончательной замены.
Наряду с шириной изоляционного элемента 3, упомянутой в связи с фиг. 1, для срока службы устройства в целом важно как можно более свободное подвешивание или, соответственно, присоединение мембран (т.е. боковых элементов) к несущему элементу 2. Особенно предпочтительно качающееся (маятниковое) или, соответственно, гибкое присоединение мембраны на горячей стороне, а также поверхностей продольных сторон (боковые элементы 6 и 7). Горячая сторона (боковой элемент 5 или, соответственно, после разворота элемента 3, боковой элемент 4) может свободно расширяться, а поверхности продольных сторон (боковые элементы 6 и 7) могут свободно отклоняться в обоих направлениях в заданных пределах и нести горячую сторону. Качающееся или, соответственно, гибкое соединение осуществляется посредством упомянутого соединения 10 шарнирного типа.
В двух вариантах осуществления, изображенных на фиг. 2, находят применение в верхнем случае шарниры 10', а в нижнем случае -спиралевидная проволока 10''. Другими альтернативами являются, например, вставленные друг в друга и деформированные выемки в соседних металлических листах или аналогично действующее поворотное соединение, которое позволяет осуществлять гибкое подвижное соединение двух соседних металлических листов.
Чтобы меньше препятствовать расширению боковых элементов (металлических мембран) на горячей стороне, в альтернативном варианте предусмотрена также различная, предпочтительно меньшая, толщина листа металла мембраны для продольных и торцевых листов (боковых элементов 6, 7, 8 и 9) по сравнению с боковыми элементами 4 и 5.
По причине температурного напряжения частичные длины Ls шарниров предпочтительно выполнены относительно небольшими (см. фиг. 2 вверху). Частичная длина Ls шарнира не должна превышать десятикратного диаметра Ds шарнира. Диаметр шарнира предпочтительно выбирают меньшим, чем 10 мм.
Боковые элементы 8 и 9 теплоизоляционного элемента 3 представляют собой торцевые стороны, боковые кромки которых не связаны с продольными боковыми сторонами, чтобы не препятствовать возможности качания этих сторон. Кроме того, зазор в шарнире на торцевых сторонах выбран большим, чем на других сторонах (верхняя, нижняя и продольная стороны), чтобы учитывать различную интенсивность качания разных сторон.
На фиг. 3 представлен вариант осуществления, при котором показано теплоизоляционное устройство 1 с двумя теплоизоляционными элементами 3. Оба теплоизоляционных элемента 3 представляют собой изолирующие кассеты, которые рассматриваются в разрезе перпендикулярно направлению F подачи. Фиксация теплоизоляционных элементов 3 относительно несущей конструкции, т.е. на несущем элементе 2, здесь осуществляется посредством по меньшей мере одного стержня 11, который закреплен на несущем элементе 2 снаружи посредством крепежных элементов в форме винтов 12; несущий элемент 2 в данном случае выполнен U-образным по форме сечения, перпендикулярного направлению F подачи. Металлические мембраны (боковые элементы) на каждой из всех четырех сторон здесь снабжены соединениями 10' шарнирного типа, чтобы обеспечивать свободное расширение и возможность качания боковых поверхностей. Указанное колебательное или поворотное движение показано на фиг. 3 обозначением S. Возможность расширения металлической мембраны 5 показана пунктиром. В соответствии с этим вариантом устойчивая к высоким температурам прямая проволока в качестве оси шарнира 10' образует связь отдельных боковых элементов 4, 5, 6, 7. Под диаметром Ds шарнира следует понимать наружный диаметр изогнутого металлического листа шарнира.
Достаточный зазор в шарнире допускает перемещение во всех направлениях. Между двумя теплоизоляционными элементами 3 предусмотрен компенсационный зазор 16 в направлении Q.
Если боковой элемент, обращенный к плоскому слитку или листовому металлу (боковой элемент 5), поврежден, то во время остановки для технического обслуживания имеется возможность путем поворота теплоизоляционного элемента 3 обратить к горячей стороне противоположный боковой элемент 4. Возможная деформация мембраны на ранее использованной стороне при повернутом положении находится в зазоре 13 между теплоизоляционным элементом 3 и несущем элементом 2. Размер этого зазора 13 предпочтительно составляет от 0 до 30 мм. В альтернативном варианте возможно также заполнение зазора мягкой, легко деформируемой изоляционной ватой. Изоляционный материал 15 (керамические волокна) внутри кассеты, т.е. в пределах теплоизоляционного элемента 3, располагают таким образом, чтобы избегать ненужной мешающей нагрузки давлением на мембрану горячей стороны, см. фиг. 3. Керамические волокна предпочтительно имеют опору в области шарниров 10', спиралевидной проволоки 10'' (на фиг. 3 не показана) и/или стержня 11. При необходимости изоляционное керамическое волокно в теплоизоляционном элементе 3 может состоять из различных материалов различной жесткости.
На фиг. 4 представлено по существу то же самое устройство, что и на фиг. 3. Однако в этом случае в порядке альтернативы две соседние кассеты (теплоизоляционные элементы 3) разделены на боковой стороне только посредством общего бокового элемента, выполненного с возможностью качания, и тем самым осуществляется соединение между верхними сторонами и нижними сторонами соседних кассет. Здесь альтернативный вариант осуществления теплоизоляционных элементов 3 выполнен таким образом, что относительно жесткий изоляционный материал 15 является несущим для теплоизоляционных элементов 3, например, вверху, и опирается на стержень 11.
На фиг. 5 представлен теплоизоляционный элемент 3 в сочетании с упомянутыми выше свойствами, т.е. состоящий из изоляционной кассеты (теплоизоляционного элемента 3), имеющей металлические мембраны (боковые элементы), устойчивые к воздействию высоких температур, и качающееся гибкое присоединение сторон мембран, а также низкотемпературную изоляцию 17 (например, биосовместимые керамические волокна), жестко нанесенную на несущий элемент 2. Здесь минимизирована доля дорогого листового металла металлических мембран 4, 5, 6, 7, 8, 9, устойчивого к воздействию высоких температур, и термостойкой керамики. Например, отдельные теплоизоляционные элементы 3 закреплены на несущем элементе 2 посредством распорных болтов 14 или аналогичных соединительных элементов и выполнены с возможностью их замены по отдельности. Распорные болты 14, например, привинчиваются к "холодному боковому листу" или привариваются к нему, см. крепежное средство 18. Степень заполнения изоляционным материалом выбрана такой, что не создается препятствий качающемуся перемещению, и создается лишь минимальная нагрузка на металлическую мембрану, обращенную к полосе или плоскому слитку 19, или такая нагрузка вообще отсутствует.
На фиг. 5 показаны в качестве примера теплоизоляционные элементы 3, имеющие в сечении трапециевидную форму контура. Конструкции теплоизоляционного устройства, разъясненные выше, описаны применительно к теплоизоляции верхней стороны полосы или плоского слитка. На термоизоляцию нижней поверхности ленты или плоского слитка распространяется аналогичная концепция согласно тем же представленным принципам.
В вальцовочной установке могут быть выполнены теплоизоляционные кожухи 1 с различной толщиной d металлической мембраны (см. фиг. 6). С точки зрения технологии при высокой тепловой нагрузке, т.е. при высокой ожидаемой температуре поверхности мембраны или высокой температуре полосы в сочетании с высокой продолжительностью нагревания, целесообразно выполнение более толстых мембран (боковых элементов). При относительно коротком времени воздействия нагрузки желателен, напротив, быстрый нагрев изоляционного кожуха до как можно более высокой температуры мембраны. В этом случае должна применяться тонкая мембрана. В особом случае предпочтителен также отказ от мембраны и использование только керамических волокон. Предпочтительно выполняется мембрана толщиной от 0 до 4 мм.
На фиг. 6 представлен в варианте осуществления рациональный выбор различных диапазонов значений для толщины d листа металла мембраны между черновым и чистовым прокатным станом. Показаны последняя черновая клеть 20 чернового прокатного стана и первая чистовая клеть 21 чистового прокатного стана. Между ними расположено теплоизоляционное устройство 1.
Итак, в положении непосредственно перед чистовым прокатным станом заготовка полосы пребывает относительно долго (время t, увеличивается слева направо); в соответствии с этим здесь предпочтительна более толстая металлическая мембрана (боковой элемент). За черновым прокатным станом тепловая нагрузка (температура Т, увеличивается слева направо) листов металла действует кратковременно; соответственно, здесь предпочтительна тонкая металлическая мембрана (боковой элемент). Таким образом, здесь технологически обеспечена возможность повышения эффективности изоляции при оптимальных затратах на обслуживание.
Вместо применения тонкой металлической мембраны или изоляционного кожуха без металлической мембраны допускается также комбинирование в одной установке зеркального изоляционного кожуха (в нем тепловое излучение отражается, и изолирующий эффект действует непосредственно) с изоляционными элементами, имеющими металлические мембраны с большой толщиной листов металла.
Описанная конструкция, конечно, не ограничивается примером применения согласно фиг. 6, она может быть перенесена и на другие варианты осуществления установки, а также на другие агрегаты (клети, ножницы и т.д.) между различными видами изоляционных кожухов или различными значениями толщины металлических мембран.
На фигурах 7 и 8 можно видеть два следующих варианта осуществления изобретения, из которых видно, каким образом может осуществляться соединение 10 шарнирного типа.
Для этого, как видно на фигуре 7, в обеих боковых элементах 6 и 7 в их верхней области выполнены выемки 22 (например, посредством штамповки), выполненные таким образом, что между двумя выемками 22 оставлена лишь тонкая перемычка 23. Соответственно, в области перехода от бокового элемента 6 к боковому элементу 4 или, соответственно, от бокового элемента 7 к боковому элементу 4 осуществляется функция соединения шарнирного типа в области чаши.
Соединение 10 шарнирного типа может достигаться также за счет ослабления продольных боковых листов теплоизоляционного элемента 3 путем размещения указанных вырезов или выемок 22. В результате этого металлический лист продольной стороны слегка упруго изгибается и действует - по отношению к условиям на горячей стороне - как шарнир.
Другое возможное решение показано на фигуре 8. Здесь боковые элементы 6 или 7 выполнены не в виде сплошных листов металла, а состоят из трех участков 6', 6'' и 6''' бокового элемента каждый (аналогично также боковой элемент 7). Соединения 24 между отдельными участками бокового элемента, которые могут быть выполнены относительно свободными, вызывают такое механическое ослабление и желаемый эффект шарнира.
Может предусматриваться также участок 6'' бокового элемента, выполненный в виде тонкого промежуточного металлического листа (например, с толщиной 0,5 мм, в то время как другие боковые элементы имеют толщину, например 1,5 мм), что также воздействует на эластичность при изгибе. Возможно целенаправленное свободное (с зазором в соединительном элементе 24) помещение промежуточных металлических листов 6'', что в этом случае позволяет в порядке дополнения или альтернативы достичь желаемой подвижности и, таким образом, эффекта шарнира. Если комбинировать вышеуказанные меры, то квази-шарнирный эффект соответственно усилится.
Таким образом, сравнимый эффект может достигаться путем дополнительного монтажа промежуточного металлического листа 6'', предпочтительно существенно более тонкого и тем самым более эластичного при изгибе (имеющего значительно меньшую толщину металла, чем на соседних боковых элементах), на продольной стороне.
Соединительные элементы 24 на фигуре 8 могут быть, как упоминалось, целенаправленно смонтированы свободно или выполнены свободными, что позволяет дополнительно или альтернативно обеспечить подвижность.
Описанные выше мероприятия для получения воздействия в виде шарнира могут также комбинироваться для достижения дальнейшего усиления квази-шарнирного эффекта.
Перечень обозначений:
1 теплоизоляционное устройство
2 несущий элемент
3 теплоизоляционный элемент
4 боковой элемент
5 боковой элемент
6 боковой элемент
6' участок бокового элемента
6'' участок бокового элемента
6''' участок бокового элемента
7 боковой элемент
8 боковой элемент
9 боковой элемент
10 соединение шарнирного типа
10' шарнир
10'' проволока в форме спирали
11 стержень
12 крепежный элемент (винт)
13 зазор
14 распорный болт
15 изоляционный материал (керамические волокна)
16 компенсационный зазор
17 низкотемпературная изоляция
18 крепежное средство (резьбовое/сварное соединение)
19 горячекатаная полоса/плоский слиток
20 последняя черновая клеть
21 первая чистовая клеть
22 выемка
23 перемычка
24 соединение
В ширина теплоизоляционного элемента в поперечном направлении Q
Ls частичная длина шарнира
Ds диаметр шарнира
F направление подачи
Q горизонтальное направление, поперечное направлению подачи
S поворотное движение
d толщина металлической мембраны

Claims (23)

1. Теплоизоляционное устройство (1) для теплоизоляции металлического материала в прокатном стане, содержащее несущий элемент (2), на котором расположено некоторое количество теплоизоляционных элементов (3),
отличающееся тем, что
по меньшей мере один теплоизоляционный элемент (3) образован множеством боковых элементов (4, 5, 6, 7, 8, 9), которые образуют между собой приемное пространство для теплоизоляционного материала, причем указанное приемное пространство ограничено четырьмя соединенными друг с другом боковыми элементами (4, 5, 6, 7) и указанные четыре боковых элемента (4, 5, 6, 7) в их стыкующихся боковых областях соединены друг с другом соответственно посредством соединения (10) шарнирного типа.
2. Теплоизоляционное устройство по п. 1, отличающееся тем, что соединение (10) шарнирного типа образовано некоторым количеством шарниров (10'), которые расположены вдоль стыкующихся боковых областей.
3. Теплоизоляционное устройство по п. 2, отличающееся тем, что частичная длина (Ls) шарнира составляет не более 10-кратного диаметра (Ds) шарнира.
4. Теплоизоляционное устройство по п. 1, отличающееся тем, что соединение (10) шарнирного типа образовано по меньшей мере одной спиралевидной проволокой (10"), которая продета в отверстия, выполненные вдоль стыкующихся боковых областей.
5. Теплоизоляционное устройство по п. 1, отличающееся тем, что соединение (10) шарнирного типа образовано по меньшей мере на участках ослаблением механической жесткости, в частности жесткости на изгиб, по меньшей мере одного бокового элемента (6, 7, 8, 9).
6. Теплоизоляционное устройство по п. 5, отличающееся тем, что ослабление механической жесткости выполнено посредством по меньшей мере одной выемки (22) в боковом элементе (6, 7).
7. Теплоизоляционное устройство по п. 5, отличающееся тем, что ослабление механической жесткости выполнено посредством составления бокового элемента (6, 7) из по меньшей мере двух отдельных и соединенных друг с другом участков (6', 6", 6"') бокового элемента.
8. Теплоизоляционное устройство по одному из пп. 1–7, отличающееся тем, что боковые элементы (4, 5, 6, 7, 8, 9) образованы металлическими листами.
9. Теплоизоляционное устройство по одному из пп. 1–8, отличающееся тем, что теплоизоляционный материал по меньшей мере частично образован керамическими волокнами.
10. Теплоизоляционное устройство по одному из пп. 1–9, отличающееся тем, что некоторое количество теплоизоляционных элементов (3) расположено как в направлении (Q), поперечном направлению (F) подачи металлического материала, так и в направлении (F) подачи металлического материала.
11. Теплоизоляционное устройство по одному из пп. 1–10, отличающееся тем, что по меньшей мере один теплоизоляционный элемент (3) имеет квадратную, прямоугольную или трапециевидную форму при рассмотрении в направлении (F) подачи металлического материала.
12. Теплоизоляционное устройство по одному из пп. 1–11, отличающееся тем, что оно имеет множество теплоизоляционных элементов (3), расположенных рядом друг с другом в направлении (Q), поперечном направлению (F) подачи металлического материала, причем по меньшей мере два соседних теплоизоляционных элемента (3) имеют общий боковой элемент (6, 7).
13. Теплоизоляционное устройство по одному из пп. 1–12, отличающееся тем, что сквозь множество теплоизоляционных элементов (3), расположенных рядом друг с другом в направлении (Q), поперечном направлению (F) подачи металлического материала, проходит по меньшей мере один стержень (11).
14. Теплоизоляционное устройство по п. 13, отличающееся тем, что стержень (11) проходит сквозь боковые участки несущего элемента (2), проходящие в вертикальном направлении, и прикреплен к ним посредством крепежных элементов (12), в частности винтов.
15. Теплоизоляционное устройство по одному из пп. 1–14, отличающееся тем, что между теплоизоляционными элементами (3) и несущим элементом (2) имеется зазор (13) в вертикальном направлении, предпочтительно имеющий ширину не более 30 мм.
16. Теплоизоляционное устройство по п. 15, отличающееся тем, что при размещении в зазоре (13) теплоизоляционной ваты максимальная протяженность зазора (13) в вертикальном направлении составляет 100 мм.
17. Теплоизоляционное устройство по п. 15 или 16, отличающееся тем, что зазор (13) по меньшей мере частично заполнен теплоизоляционной ватой, предпочтительно биосовместимыми керамическими волокнами.
18. Теплоизоляционное устройство по одному из пп. 15–17, отличающееся тем, что через зазор (13) проходит в вертикальном направлении некоторое количество соединительных элементов, предпочтительно распорных болтов (14), которые закреплены на несущем элементе (2) и на теплоизоляционном элементе (3).
19. Теплоизоляционное устройство по одному из пп. 1–18, отличающееся тем, что толщина листа металла боковых элементов (4, 5, 6, 7, 8, 9) по меньшей мере частично различна, в частности боковые элементы (4, 5, 6, 7), проходящие в направлении (F) подачи, толще, чем боковые элементы (8, 9), по отношению к которым направление (F) подачи проходит перпендикулярно.
20. Теплоизоляционное устройство по одному из пп. 1–19, отличающееся тем, что теплоизоляционные элементы (3) выполнены по меньшей мере частично различными по ширине в поперечном направлении (Q).
21. Теплоизоляционное устройство по одному из пп. 1–20, отличающееся тем, что в направлении (F) подачи по меньшей мере два теплоизоляционных элемента (3) расположены друг за другом, причем оба теплоизоляционных элемента (3), следующие друг за другом в направлении (F) подачи, содержат соответствующие боковые элементы (4, 5, 6, 7, 8, 9), которые выполнены различными по толщине.
RU2018100415A 2015-07-10 2016-07-01 Теплоизоляционное устройство RU2693987C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015212976.4A DE102015212976A1 (de) 2015-07-10 2015-07-10 Wärmedämmvorrichtung
DE102015212976.4 2015-07-10
PCT/EP2016/065608 WO2017009074A1 (de) 2015-07-10 2016-07-01 Wärmedämmvorrichtung

Publications (1)

Publication Number Publication Date
RU2693987C1 true RU2693987C1 (ru) 2019-07-08

Family

ID=56321952

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018100415A RU2693987C1 (ru) 2015-07-10 2016-07-01 Теплоизоляционное устройство

Country Status (12)

Country Link
US (1) US11318512B2 (ru)
EP (1) EP3319741B1 (ru)
JP (1) JP6486546B2 (ru)
KR (1) KR102050782B1 (ru)
CN (1) CN107921499B (ru)
BR (1) BR112018000487B1 (ru)
DE (1) DE102015212976A1 (ru)
MY (1) MY187002A (ru)
PL (1) PL3319741T3 (ru)
RU (1) RU2693987C1 (ru)
UA (1) UA119401C2 (ru)
WO (1) WO2017009074A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU208967U1 (ru) * 2021-10-08 2022-01-25 Публичное акционерное общество «Северсталь» (ПАО «Северсталь») Теплоизоляционная секция экранирующей установки рольганга полосового стана горячей прокатки
DE102022203635A1 (de) 2022-04-11 2023-10-12 Sms Group Gmbh Reflektorelement für eine Wärmedämmhaube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1217515A1 (ru) * 1984-09-29 1986-03-15 Донецкий научно-исследовательский институт черной металлургии Способ гор чей прокатки металлов с узким температурным интервалом пластичности и устройство дл регулировани тепловых потерь металла при гор чей прокатке
US4803864A (en) * 1986-11-24 1989-02-14 Usinor Aciers Removable tunnel for maintaining the temperature of a product hot rolled in a continuous rolling train
RU2399441C1 (ru) * 2009-04-07 2010-09-20 Виктор Николаевич Хлопонин Труба к кассете-панели теплоизоляционного экрана рольганга стана горячей полосовой прокатки
RU2480298C1 (ru) * 2011-11-15 2013-04-27 Виктор Николаевич Хлопонин Теплоизоляционный экран стана для прокатки широких балок (рельсов)

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2182201A (en) * 1937-07-28 1939-12-05 Henry H Harris Carburizing box
GB659218A (en) * 1948-09-04 1951-10-17 Lundqvist Oskar Harald Improvements in or relating to foldable boxes, cartons or like packings
US3080087A (en) * 1961-04-07 1963-03-05 Union Carbide Corp Beverage case
US3962750A (en) * 1975-04-07 1976-06-15 Gott Manufacturing Co., Inc. Hinge construction
EP0059093B1 (en) 1981-02-23 1984-05-16 Encomech Product Development Limited Heat shields
JPS5893510A (ja) * 1981-11-28 1983-06-03 Kawasaki Steel Corp 熱間圧延鋼材の徐冷装置
US4524702A (en) 1984-07-30 1985-06-25 Eltech Systems Corporation Readily repairable and lightweight cover for a heated vessel
GB8428129D0 (en) * 1984-11-07 1984-12-12 Encomech Eng Services Heat retaining means
JPS61180608A (ja) * 1985-02-06 1986-08-13 Nippon Steel Corp 高温鋼材の保温カバ−
GB8507858D0 (en) * 1985-03-26 1985-05-01 Encomech Eng Services Ltd Heat shield arrangements
US4595358A (en) 1985-04-26 1986-06-17 Wean United, Inc. Re-radiating heat shield
GB8613841D0 (en) 1986-06-06 1986-07-09 Encomech Eng Services Ltd Heat insulating panels
GB2203372A (en) * 1987-04-15 1988-10-19 British Steel Corp Heat conservation of hot metal slabs
FR2630533B1 (fr) * 1988-04-25 1992-05-22 Clecim Sa Enceinte thermique
JPH02147113A (ja) * 1988-11-29 1990-06-06 Sumitomo Metal Ind Ltd 高温鋼材用保温カバー
CN1043891A (zh) * 1989-01-04 1990-07-18 沃洛格达工学院 金属扁材热轧温度调节方法和实施该方法的装置
EP0426821A1 (fr) * 1989-05-26 1991-05-15 Societe Civile Kester Conteneur isotherme mobile et transportable
US5101652A (en) 1990-07-26 1992-04-07 Allegheny Ludlum Corporation Insulating heat retention system and method
CN2215668Y (zh) * 1994-11-25 1995-12-20 冶金工业部建筑研究总院 带转动接头的拱形炉顶
US5709409A (en) * 1996-04-10 1998-01-20 Engel; Peter H. Magnetic spiral bound book
GB9905936D0 (en) * 1999-03-15 1999-05-05 Encomech Eng Services Heat shields
JP5063845B2 (ja) * 2001-09-07 2012-10-31 臼井国際産業株式会社 ワークの熱処理用治具
DE10223905A1 (de) * 2002-05-29 2003-12-11 Sms Demag Ag Coilbox, die zwischen Vor- und Fertigwalzstraßen angeordnet ist
US8066143B2 (en) * 2005-02-22 2011-11-29 Rehrig Pacific Company Storage container with hinged lid
RU2395355C1 (ru) 2008-12-30 2010-07-27 Виктор Николаевич Хлопонин Секция (модуль) теплосохраняющей установки для экранирования верхней поверхности раската на рольганге широкополосового стана горячей прокатки
RU2487769C1 (ru) 2012-01-17 2013-07-20 Виктор Николаевич Хлопонин Экранирующая панель секции установки сохранения тепла металлом на рольганге полосового стана горячей прокатки
KR101412102B1 (ko) * 2012-04-26 2014-06-27 현대제철 주식회사 슬라브 보온 장치
CN203221071U (zh) * 2013-05-03 2013-10-02 山西江晔重工机械有限公司 一种线材风冷辊道运输线
DE102013219507A1 (de) 2013-05-03 2014-11-06 Sms Siemag Aktiengesellschaft Warmwalzwerk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1217515A1 (ru) * 1984-09-29 1986-03-15 Донецкий научно-исследовательский институт черной металлургии Способ гор чей прокатки металлов с узким температурным интервалом пластичности и устройство дл регулировани тепловых потерь металла при гор чей прокатке
US4803864A (en) * 1986-11-24 1989-02-14 Usinor Aciers Removable tunnel for maintaining the temperature of a product hot rolled in a continuous rolling train
RU2399441C1 (ru) * 2009-04-07 2010-09-20 Виктор Николаевич Хлопонин Труба к кассете-панели теплоизоляционного экрана рольганга стана горячей полосовой прокатки
RU2480298C1 (ru) * 2011-11-15 2013-04-27 Виктор Николаевич Хлопонин Теплоизоляционный экран стана для прокатки широких балок (рельсов)

Also Published As

Publication number Publication date
JP2018521858A (ja) 2018-08-09
BR112018000487B1 (pt) 2022-06-21
WO2017009074A1 (de) 2017-01-19
MY187002A (en) 2021-08-26
DE102015212976A1 (de) 2017-01-12
KR102050782B1 (ko) 2019-12-02
KR20180050295A (ko) 2018-05-14
US20180214920A1 (en) 2018-08-02
PL3319741T3 (pl) 2020-06-01
JP6486546B2 (ja) 2019-03-20
CN107921499A (zh) 2018-04-17
UA119401C2 (uk) 2019-06-10
BR112018000487A2 (pt) 2018-09-18
CN107921499B (zh) 2020-11-10
EP3319741A1 (de) 2018-05-16
US11318512B2 (en) 2022-05-03
EP3319741B1 (de) 2019-12-11

Similar Documents

Publication Publication Date Title
RU2693987C1 (ru) Теплоизоляционное устройство
RU2317379C2 (ru) С-образный профиль
RU2325492C2 (ru) Удерживающее металлическое крепление и строительно-монтажная конструкция наружных стен
US20130000357A1 (en) Glass-bending apparatus and method
EP0049000B1 (en) Heat shields for rolling mills
CN108026724B (zh) 用于线性天花板镶板的托架
UA101613C2 (ru) Опорная конструкция для выравнивания поверхности покрытия стен здания и крепежная скоба, применяемая в такой опорной конструкции
US10273681B2 (en) Support for fastening facade elements
US10513844B2 (en) Bracket anchor for fastening a facing in a supporting wall, and web plate of a bracket anchor
JP4709427B2 (ja) 電気ヒーター
RU99127395A (ru) Устройство для крепления облицовочных плит
KR102572860B1 (ko) 벽면 모서리용 진공단열재 설치 브라켓
JP2002013252A (ja) 断熱外装材およびこの断熱外装材を用いた外装構造
KR102313011B1 (ko) 커튼월의 수직바를 건물벽면에 장착하는 구조
JP3358576B2 (ja) 被加熱材の保温部材
KR101621972B1 (ko) 철골구조용 시스템 에이치 형강
WO2008056386A1 (en) Modular radiant panel with simplified installation
RU2285092C2 (ru) Профилированный разделительный профиль из тонкого листового металла, предназначенный для поддержки наружной облицовки стен
RU2292430C1 (ru) Устройство для крепления облицовочных панелей
JP7350575B2 (ja) エキスパンションジョイントの天井構造
CN217427524U (zh) 一种安全性高的电缆桥架
RU2198754C2 (ru) Валковая арматура прокатного стана
KR100815694B1 (ko) 휨 방지용 트로리 고정크립
EP1281819B1 (en) Vaulted cover structure made of key-pattern pressed steel sheet
JP2000087505A (ja) フレーム材及び建物