RU2685482C1 - Микроорганизмы corynebacterium sp., обладающие способностью продуцировать l-лизин, и способ продуцирования l-лизина с использованием этих микроорганизмов - Google Patents

Микроорганизмы corynebacterium sp., обладающие способностью продуцировать l-лизин, и способ продуцирования l-лизина с использованием этих микроорганизмов Download PDF

Info

Publication number
RU2685482C1
RU2685482C1 RU2018110574A RU2018110574A RU2685482C1 RU 2685482 C1 RU2685482 C1 RU 2685482C1 RU 2018110574 A RU2018110574 A RU 2018110574A RU 2018110574 A RU2018110574 A RU 2018110574A RU 2685482 C1 RU2685482 C1 RU 2685482C1
Authority
RU
Russia
Prior art keywords
lysine
microorganism
strain
producing
seq
Prior art date
Application number
RU2018110574A
Other languages
English (en)
Inventor
Хио Дзеонг БИУН
Йоон Хи ЧУНГ
Хиунг Дзоон КИМ
Сун Йоунг ЛИ
Хиун Коо НАМ
Сун Ми ПАРК
Санг Мок ЛИ
Original Assignee
СиДжей ЧЕИЛДЗЕДАНГ КОРПОРЕЙШН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by СиДжей ЧЕИЛДЗЕДАНГ КОРПОРЕЙШН filed Critical СиДжей ЧЕИЛДЗЕДАНГ КОРПОРЕЙШН
Application granted granted Critical
Publication of RU2685482C1 publication Critical patent/RU2685482C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0093Oxidoreductases (1.) acting on CH or CH2 groups (1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01011Aspartate-semialdehyde dehydrogenase (1.2.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y117/00Oxidoreductases acting on CH or CH2 groups (1.17)
    • C12Y117/01Oxidoreductases acting on CH or CH2 groups (1.17) with NAD+ or NADP+ as acceptor (1.17.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01001Aspartate transaminase (2.6.1.1), i.e. aspartate-aminotransferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02004Aspartate kinase (2.7.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/0102Diaminopimelate decarboxylase (4.1.1.20)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Группа изобретений относится к области биотехнологии. Предложен L-лизин-продуцирующий микроорганизм рода Corynebacterium, где активность белка, содержащего аминокислотную последовательность SEQ ID NO: 1, инактивирована. Предложен способ продуцирования L-лизина с использованием указанного микроорганизма. Группа изобретений позволяет увеличить L-лизин-продуцирующую способность в рекомбинантном микроорганизме по сравнению с родительским микроорганизмом. 2 н. и 2 з.п. ф-лы, 5 табл., 8 пр.

Description

[Область, к которой относится изобретение]
Настоящее изобретение относится к L-лизин-продуцирующему микроорганизму рода Corynebacterium и к способу продуцирования L-лизина с использованием такого микроорганизма.
[Предпосылки создания изобретения]
L-лизин, а именно, одна из незаменимых аминокислот, используется в кормах для животных, в фармацевтической и косметической промышленности и продуцируется посредством ферментации под действием микроорганизмов рода Corynebacterium или рода Escherichia.
Штамм рода Corynebacterium, а в частности, Corynebacterium glutamicum, представляет собой грам-положительный микроорганизм, который широко применяется для продуцирования L-аминокислоты. Для продуцирования L-лизина обычно применяются мишень-специфические подходы, такие как повышение уровня экспрессии генов, кодирующих ферменты, участвующие в биосинтезе L-лизина, в штамме рода Corynebacterium, или удаление генов, которые не являются необходимыми для биосинтеза L-лизина. Помимо этих методов был также применен метод удаления генов, которые не участвуют в биосинтезе L-лизина, или метод удаления генов, специфическая функция которых пока не известна.
В соответствии с этим, авторами настоящего изобретения были проведены крупномасштабные исследования для идентификации эффективных свойств, заключающихся в повышении уровня продуцирования лизина. В результате, авторами настоящего изобретения был проведен скрининг микроорганизма, продуцирующего высокую концентрацию L-лизина, посредством рандомизированной дизрупции эндогенных генов микроорганизма рода Corynebacterium, и было обнаружено, что если ген, функция которого пока еще не была описана, подвергается дизрупции в скринированном микроорганизме, то уровень продуцирования L-лизина этим микроорганизмом повышается, и на основе этих данных было создано настоящее изобретение.
Документы предшествующего уровня техники
(Патентный документ 1) KR 10-0838035 B1 (опубликованный 12 июня 2008).
[Раскрытие изобретения]
[Техническая проблема]
Целью настоящего изобретения является получение L-лизин-продуцирующего микроорганизма рода Corynebacterium.
Другой целью настоящего изобретения является способ продуцирования L-лизина с использованием этого микроорганизма.
[Решение технической проблемы]
Настоящее изобретение, разработанное для достижения вышеуказанных целей, относится к L-лизин-продуцирующему микроорганизму рода Corynebacterium, где белок, содержащий аминокислотную последовательность SEQ ID NO: 1, является инактивированным.
Настоящее изобретение также относится к способу продуцирования L-лизина, включающему стадии: культивирования микроорганизма согласно изобретению в среде и выделения L-лизина из микроорганизма или среды.
[Преимущественные эффекты]
Настоящее изобретение относится к рекомбинантному микроорганизму рода Corynebacterium, обладающему повышенной способностью продуцировать L-лизин, где указанный микроорганизм был получен путем инактивации белка, который содержит аминокислотную последовательность SEQ ID NO: 1, и функция которого неизвестна, в L-лизин-продуцирующем микроорганизме рода Corynebacterium. Рекомбинантный микроорганизм рода Corynebacterium может продуцировать L-лизин с высоким выходом, и таким образом он может быть использован в промышленности для продуцирования L-лизина.
[Способ осуществления изобретения]
Настоящее изобретение более подробно описано ниже.
В своем первом аспекте, настоящее изобретение относится к L-лизин-продуцирующему микроорганизму рода Corynebacterium, где белок, содержащий аминокислотную последовательность SEQ ID NO: 1, является инактивированным.
Белок, содержащий аминокислотную последовательность SEQ ID NO: 1, представляет собой белок, который является эндогенным в микроорганизме рода Corynebacterium, или гипотетический белок с неизвестной функцией.
Белок, содержащий аминокислотную последовательность, которая по меньшей мере на 80%, в частности, по меньшей мере на 90%, более конкретно, по меньшей мере на 95%, а еще более конкретно, по меньшей мере на 97% гомологична аминокислотной последовательности SEQ ID NO: 1, может также входить в объем понятия «белок, содержащий аминокислотную последовательность SEQ ID NO: 1». Кроме того, очевидно, что белок, имеющий аминокислотную последовательность, содержащую делецию, модификацию, замену или делецию одной или нескольких аминокислот, также входит в объем настоящего изобретения, при условии, что этот белок будет иметь последовательность, гомологичную последовательности SEQ ID NO: 1, и будет обладать биологической активностью, в основном, аналогичной биологической активности белка, имеющего аминокислотную последовательность SEQ ID NO: 1, или подобной активностью.
В объем настоящего изобретения входит любая нуклеотидная последовательность, обладающая способностью кодировать белок, содержащий аминокислотную последовательность SEQ ID NO: 1. В частности, ген, кодирующий белок SEQ ID NO: 1, может иметь нуклеотидную последовательность SEQ ID NO: 2. Кроме того, в объем настоящего изобретения может также входить нуклеотидная последовательность, которая по меньшей мере на 80%, в частности, по меньшей мере на 90%, более конкретно на 95%, а еще более конкретно на 97% гомологична нуклеотидной последовательности SEQ ID NO: 2. Кроме того, в объем настоящего изобретения могут также входить варианты последовательности, кодирующие одну и ту же аминокислоту, что обусловлено вырожденностью генетического кода.
Используемый здесь термин «гомология» означает идентичность данной аминокислотной последовательности или нуклеотидной последовательности и может быть выражен в процентах. В описании изобретения, гомологичная последовательность, активность которой идентична или подобна активности аминокислотной последовательности или нуклеотидной последовательности, выражена термином «% гомологии».
Гомология аминокислотной последовательности или нуклеотидной последовательности может быть определен с использованием, например, алгоритма BLAST (см. Karlin and Altschul, Pro. Natl. Acad. Sci. USA, 90, 5873 (1993)) или FASTA, Pearson (см. Methods Enzymol., 183, 63 (1990)). Программы, называемые BLASTN и BLASTX, были разработаны на основе этого алгоритма BLAST (см. http://www.ncbi.nlm.nih.gov).
Используемый здесь термин «инактивация» означает, что экспрессия эндогенного гена была снижена по сравнению с экспрессией родительского штамма, штамма до модификации или штамма дикого типа, либо этот ген не экспрессируется или не обладает активностью или обладает пониженной активностью даже при его экспрессии. В настоящей заявке, инактивация может быть достигнута любым методом инактивации, известным специалистам. В настоящем изобретении, метод инактивации может быть осуществлен посредством введения по меньшей мере одной мутации, выбранной из группы, состоящей из инсерционной мутации, достигаемой посредством инсерции по меньшей мере одной пары оснований в ген; делеционной мутации, достигаемой посредством делеции по меньшей мере одной пары оснований в гене; и транзиционной или трансверсионной мутации пары оснований, достигаемой посредством введения в ген несмыслового кодона. Альтернативно, метод инактивации может быть осуществлен путем замены эндогенного промотора гена более слабым промотором или делеции всего гена или его части, но объем настоящего изобретения не ограничивается этим методом.
Методом дизрупции гена, применяемым в настоящем изобретении, может быть любой метод дизрупции гена, известный специалистам, и этот метод не имеет конкретных ограничений. Так, например, для индуцирования мутаций может быть применено излучение, такое как УФ-издучение, или химическое вещество, и из полученных мутантов может быть выбран штамм с дизрупцией гена-мишени. Кроме того, метод дизрупции гена может быть осуществлен, например, путем введения в микроорганизм нуклеотидной последовательности или вектора, содержащих нуклеотидную последовательность, гомологичную гену-мишени, и индуцирования гомологичной рекомбинации. Кроме того, введенная нуклеотидная последовательность или введенный вектор могут содержать маркер доминантного отбора.
Примерами вектора, который может быть использован для инактивации белка-мишени, являются природные или рекомбинантные плазмиды, космиды, вирусы и бактериофаги. Так, например, фаговым вектором или космидным вектором, используемым в настоящем изобретении, может быть pWE15, M13, λEMBL3, λEMBL4, λFIXII, λDASHII, λZAPII, λgt10, λgt11, Charon4A, Charon21A или т.п., а плазмидным вектором, используемым в настоящем изобретении, может быть вектор типа pDZ, типа pBR, типа pUC, типа pBluescriptII, типа pGEM, типа pTZ, типа pCL, типа pET или т.п. Вектор, который может быть использован в настоящем изобретении, не имеет конкретных ограничений и может представлять собой экспрессионный вектор, известный специалистам.
Введение вектора может быть легко осуществлено любым стандартным методом, известным специалистам. Вообще говоря, примерами такого метода являются метод CaCl2-преципитации, метод Анахана с повышенной эффективностью, где используется диметилсульфоксид (ДМСО) в качестве восстановителя, применяемого в методе CaCl2-преципитации; электропорация; метод преципитации фосфатом кальция; метод слияния протопластов; метод перемешивания с использованием волокон карбида кремния; метод трансформации, опосредуемый ПЭГ, сульфатом декстрана, липофектамином и сухим реагентом/супрессией и т.п.
Используемый здесь термин «трансформация» означает введение вектора, содержащего полинуклеотид, кодирующий белок-мишень, в клетку-хозяина, что приводит к экспрессии или к инактивации этого полипептида в клетке-хозяине. Полинуклеотид может включать ДНК и РНК, которые кодируют белок-мишень, или промотор, снижающий уровень экспрессии белка-мишени, или маркерный ген, способный инактивировать экспрессию белка-мишени и т.п. Полинуклеотид может быть введен в клетку-хозяина в любой форме, при условии, что он будет экспрессироваться в этой клетке.
В качестве родительского штамма, в котором белок, содержащий аминокислотную последовательность SEQ ID NO: 1, должен быть инактивирован, может быть использован любой микроорганизм без каких-либо ограничений, который обладает способностью продуцировать L-лизин. Примерами этого микроорганизма являются микроорганизмы, принадлежащие к роду Corynebacterium, к роду Brevibacterium, к роду Escherichia, к роду Enterbacter, к роду Erwinia, к роду Serratia и к роду Providencia. В частности, может быть использован микроорганизм рода Corynebacterium, а более конкретно, микроорганизм Corynebacterium glutamicum.
Используемый здесь термин «микроорганизм, обладающий способностью продуцировать L-лизин» означает микроорганизм, полученный путем модификации, по существу, известного гена так, чтобы он приобретал способность продуцировать L-лизин. Так, например, микроорганизмом может быть микроорганизм, полученный посредством повышения уровня экспрессии одного или более генов, выбранных из группы, состоящей из генов, участвующих в биосинтезе L-лизина, включая aspB (ген, кодирующий аспартат-аминотрансферазу), lysC (ген, кодирующий аспартат-киназу), asd (ген, кодирующий аспартат-полульдегид-дегидрогеназу), dapA (ген, кодирующий дигидродипиколинат-синтазу), dapB (ген, кодирующий дигидродипиколинат-редуктазу) и lysA (ген, кодирующий диаминодипимелат-декарбоксилазу), которые являются эндогенными в микроорганизме рода Corynebacterium и участвуют в продуцировании L-аминокислот. Кроме того, микроорганизмом может быть микроорганизм, полученный путем обработки мутантного штамма, ауксотрофного по L-лейцину, N-метил-N′-нитро-N-нитрозогуанидином (NTG).
Во втором своем аспекте, настоящее изобретение относится к способу продуцирования L-лизина, включающему стадии: культивирования микроорганизма согласно изобретению в среде и выделения L-лизина из микроорганизма или среды.
Микроорганизм согласно изобретению является таким, как он описан выше.
В способе согласно изобретению, культивирование микроорганизма рода Corynebacterium может быть осуществлено в любых условиях культивирования и любым методом культивирования, известным специалистам.
Так, например, среда, которая может быть использована для культивирования микроорганизма рода Corynebacterium, описана в общем руководстве Американского Бактериологического Общества по применению бактериологических методов (Washington D.C., USA, 1981).
Источниками сахара, которые могут быть использованы в среде, являются сахара и углеводы, такие как глюкоза, сахароза, лактоза, фруктоза, мальтоза, крахмал или целлюлоза; масла и жиры, такие как соевое масло, подсолнечное масло, касторовое масло или кокосовое масло; жирные кислоты, такие как пальмитиновая кислота, стеариновая кислота или линолевая кислота; спирты, такие как глицерин или этанол; и органические кислоты, такие как уксусная кислота. Эти вещества могут быть использованы отдельно или в смеси, и не рассматриваются как ограничение объема изобретения.
Источниками азота, которые могут быть использованы, являются азот-содержащие органические соединения, такие как пептон, дрожжевой экстракт, мясной экстракт, солодовый экстракт, жидкий кукурузный экстракт, соевая мука и мочевина, или неорганические соединения, такие как сульфат аммония, хлорид аммония, фосфат аммония, карбонат аммония и нитрат аммония. Эти источники азота могут быть использованы отдельно или в смеси, и не рассматриваются как ограничение объема изобретения.
Источниками фосфора, которые могут быть использованы, являются дигидрофосфат калия или бифосфат калия или соответствующие соли натрия. Среда для культивирования может также содержать соли металлов, такие как сульфат магния или сульфат железа, которые необходимы для роста. И наконец, помимо вышеупомянутых веществ могут быть использованы вещества, необходимые для роста, такие как аминокислоты и витамины. Кроме того, в культуральную среду могут быть добавлены подходящие предшественники. Указанные вещества могут быть добавлены в культуру в процессе культивирования подходящим методом периодического или непрерывного культивирования.
pH культуральной среды можно регулировать подходящим методом с использованием основных соединений, таких как гидрокисид натрия, гидрокисид калия, аммиак или водный аммиак, или с использованием кислотных соединений, таких как фосфорная кислота или серная кислота. Пенообразование можно регулировать с использованием пеногасителей, таких как полигликолевые сложные эфиры жирной кислоты. Аэробные условия могут поддерживаться путем введения в культуру кислорода или кислород-содержащих газообразных смесей (например, воздуха). Температура культивирования обычно составляет от 20°C до 45°C, а в частности, от 25°C до 40°C. Культивирование может продолжаться до достижения нужного количества продуцируемого L-лизина. В частности, время культивирования составляет от 10 до 160 часов.
В способе согласно изобретению, культивирование может быть осуществлено непрерывным или периодическим способом или периодическим способом с подпиткой или периодическим способом с повторной подпиткой. Это культивирование может быть осуществлено любым методом, хорошо известным специалистам.
L-лизин может быть выделен и проанализирован с помощью анионообменной хроматографии с последующим проведением нингидринового теста. Кроме того, способ согласно изобретению включает стадию выделения L-лизина. Способ выделения L-лизина из микроорганизма или культуральной среды хорошо известен специалистам. Примерами способа, который может быть использован для выделения L-лизина, являются, но не ограничиваются ими, фильтрация, анионообменная хроматография, кристаллизация и ВЭЖХ.
Ниже представлено более подробное описание изобретения со ссылкой на примеры. Однако, следует отметить, что эти примеры приводятся лишь в иллюстративных целях и не должны рассматриваться как ограничение объема изобретения.
Примеры
Пример 1: Конструирование рандомизированной мутантной библиотеки с использованием транспозона
Для получения штамма, обладающего повышенной способностью продуцировать L-лизин, была сконструирована векторная библиотека следующим способом.
Сначала, с использованием Corynebacterium glutamicum KCCM11016P (этот микроорганизм был описан как KFCC10881 и был повторно депонирован группой специалистов Международного Депозитария в соответствии с Будапештским Договором под регистрационным номером No. KCCM11016P; Корейский патент No. 10-0159812) в качестве родительского штамма, плазмиды, полученные с использованием набора EZ-Tn5™ <R6Kγori/KAN-2>Tnp Transposome™ (Epicentre), были превращены в родительский штамм методом подачи электрических импульсов (Appl. Microbiol. Biotechnol. (1999) 52:541-545). Затем, этот штамм был распределен по планшету с комплексной средой, содержащей канамицин (25 мг/л) с получением приблизительно 20000 колоний.
Планшет с комплексной средой (pH 7,0):
10 г глюкозы, 10 г пептона, 5 г мясного экстракта, 5 г дрожжевого экстракта, 18,5 г бульона с экстрактом головного мозга и сердца, 2,5 г NaCl, 2 г мочевины, 91 г сорбита и 20 г агара (на литр дистиллированной воды).
Пример 2: Скрининг рандомизированной мутантной библиотеки с использованием транспозона
Каждую из приблизительно 20000 колоний, полученных в Примере 1, инокулировали в 300 мкл описанной ниже селективной среды и культивировали в 96-луночном планшете с глубокими лунками при 32°C и при 1000 об/мин приблизительно в течение 24 часов.
Селективная среда (pH 8,0):
10 г глюкозы, 5,5 г сульфата аммония, 1,2 г MgSO47H2O, 0,8 г KH2PO4, 16,4 г K2HPO4, 100 мкг биотина, 1000 мкг тиамина-HCl, 2000 мкг пантотената кальция и 2000 мкг никотинамида (на литр дистиллированной воды).
Для оценки количества L-лизина, продуцируемого в культуре, был применен метод на основе нингидринового теста (Moore, S., Stein, W. H., Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem.1948, 176, 367-388).
После завершения культивирования, 10 мкл супернатанта культуры подвергали реакции взаимодействия со 190 мкл реакционного раствора нингидрина при 65°C в течение 30 минут, а затем на спектрофотометре измеряли оптическую плотность на длине волны 570 нм. Исходя из результатов измерения, приблизительно 60 колоний, оптическая плотность которых превышала оптическую плотность штамма Corynebacterium glutamicum KCCM11016P, используемого в качестве контроля, отбирали как мутантные штаммы. Другие колонии имели оптическую плотность, подобную оптической плотности штамма Corynebacterium glutamicum KCCM11016P, используемого в качестве контроля, или имели более низкую оптическую плотность.
Приблизительно 60 штаммов, отобранных как описано выше, снова культивировали способом, описанным выше, а затем подвергали реакции взаимодействия с нингидрином. В результате было отобрано десять наилучших мутантных штаммов, обладающих повышенной способностью продуцировать L-лизин по сравнению со штаммом Corynebacterium glutamicum KCCM11016P, используемым как родительский штамм.
Пример 3: Анализ на продуцирование L-лизина выбранными рандомизированными мутантными штаммами
Для конечного отбора штаммов из десяти мутантов, отобранных в примере 2, у которых способность продуцировать L-лизин репродуктивно увеличивалась, осуществляли культивирование в колбе с использованием описанной ниже среды. После завершения культивирования, концентрацию L-лизина в культуре анализировали с помощью ВЭЖХ. Концентрация L-лизина, продуцируемого каждым мутантным штаммом, представлена ниже в Таблице 1.
Среда для посева (pH 7,0):
20 г глюкозы, 10 г пептона, 5 г дрожжевого экстракта, 1,5 г мочевины, 4 г KH2PO4, 8 г K2HPO4, 0,5 г MgSO47H2O, 100 мкг биотина, 1000 мкг тиамина-HCl, 2000 мкг пантотената кальция и 2000 мкг никотинамида (на литр дистиллированной воды)
Среда для продуцирования (pH 7,0):
100 г глюкозы, 40 г (NH4)2SO4, 2,5 г соевого белка, 5 г твердого кукурузного экстракта, 3 г мочевины, 1 г KH2PO4, 0,5 г MgSO4•7H2O, 100 мкг биотина, 1000 мкг хлорида тиамина, 2000 мкг пантотената кальция, 3000 мкг никотинамида и 30 г CaCO3 (на литр дистиллированной воды).
Таблица 1: Концентрации L-лизина, продуцируемого 10 отобранными рандомизированными мутантными штаммами
Штаммы L-лизин (г/л)
Партия 1 Партия 2 Партия 3 Партия 4
Контроль KCCM11016P 42,9 42,5 42,4 42,6
1 KCCM11016P/mt-1 43,2 43,6 43,8 43,5
2 KCCM11016P/mt-2 43,0 43,1 43,4 43,2
3 KCCM11016P/mt-3 42,6 42,8 42,9 42,8
4 KCCM11016P/mt-4 43,1 42,8 42,9 42,9
5 KCCM11016P/mt-5 43,0 42,9 42,7 42,9
6 KCCM11016P/mt-6 41,0 41,7 41,6 41,4
7 KCCM11016P/mt-7 43,2 42,8 42,7 42,9
8 KCCM11016P/mt-8 53,2 53,1 53 53,1
9 KCCM11016P/mt-9 42,7 42,5 42 42,4
10 KCCM11016P/mt-10 48,9 48,2 48,5 48,5
Из 10 отобранных мутантных штаммов был наконец выбран KCCM11016P/mt-10 как штамм, обладающий значительно более высокой способностью продуцировать L-лизин.
Пример 4: Выявление причин повышенной способности продуцировать L-лизин конечным выбранным штаммом
В этом примере проводили эксперимент на конечном мутантном штамме, отобранном в Примере 3, в целях идентификации генов, подвергнутых дизрупции путем рандомизированного встраивания транспозона.
Геномную ДНК экстрагировали из KCCM11016P/mt-10, гидролизовали, а затем лигировали, и продукт лигирования трансформировали в DH5α E. coli. Трансформированные клетки E. coli высевали на твердую среду LB, содержащую канамицин (25 мг/л). Двадцать трансформированных колоний отбирали, а затем получали плазмиды, содержащие часть неизвестного гена. Секвенирование осуществляли с использованием праймера 1 (SEQ ID NO: 3) и праймера 2 (SEQ ID NO: 4) из набора EZ-Tn5™ <R6Kγori/KAN-2>Tnp Transposome™. В результате, исходя из нуклеотидных последовательностей, имеющихся в NIH Genbank, можно видеть, что ген, содержащий нуклеотидную последовательность SEQ ID NO: 2, был инактивирован.
Праймер 1 (SEQ ID NO: 3): ACCTACAACAAAGCTCTCATCAACC;
Праймер 2 (SEQ ID NO: 4): CTACCCTGTGGAACACCTACATCT.
Пример 5: Конструирование вектора для дизрупции гена, содержащего нуклеотидную последовательность SEQ ID NO: 2
Для конструирования рекомбинантного вектора, способного разрушать ген, содержащий нуклеотидную последовательность SEQ ID NO: 2 (идентифицированную в Примере 4) в хромосоме штамма рода Corynebacterium, были синтезированы праймеры 3-6 в целях конструирования фрагмента для дизрупции гена, и эти праймеры представлены ниже в Таблице 2.
Таблица 2: Праймеры 3-6 для конструирования фрагмента в целях дизрупции гена
Ген Используемые праймеры Нуклеотидные последовательности
SEQ ID NO. праймер 3 (SEQ ID NO: 5) CGCTCTAGATTTCATGTCTGCCTCAAGC
праймер 4 (SEQ ID NO: 6) TACTGGTGACAAACTAGTCGGACTCACACCAGAGAAA
праймер 5 (SEQ ID NO: 7) GGTGTGAGTCCGACTAGTTTGTCACCAGTATCGCACT
праймер 6 (SEQ ID NO: 8) CGCTCTAGACGCTGATAACGATGAGGTC
Для делеции области ОРС были синтезированы праймер 3 (SEQ ID NO: 5), праймер 4 (SEQ ID NO: 6), праймер 5 (SEQ ID NO: 7) и праймер 6 (SEQ ID NO: 8) (Таблица 2) на основе SEQ ID NO: 2. С использованием этих синтезированных праймеров была проведена ПЦР [Sambrook et al, Molecular Cloning, a Laboratory Manual (1989), Cold Spring Harbor Laboratories] на хромосомной ДНК штамма Corynebacterium glutamicum ATCC 13032 дикого типа, используемой в качестве матрицы. В результате был получен фрагмент ДНК, содержащий вышерасположенную область в 364 п.о. и нижерасположенную область в 375 п.о., которые соответствуют гену нуклеотидной последовательности SEQ ID NO: 2, кодирующему белок. ПЦР проводили в следующих условиях: предварительная денатурация при 95°C в течение 5 минут, а затем 30 циклов, каждый из которых состоит из денатурации при 95°C в течение 30 секунд, отжига при 56°C в течение 30 секунд и полимеризации при 72°C в течение 1 минуты, с последующей полимеризацией при 72°C в течение 7 минут. Вектор pDZ (Корейский патент No. 10-0924065), который не реплицировался в Corynebacterium glutamicum, и фрагмент, амплифицированный с помощью ПЦР, обрабатывали рестриктирующим ферментом XbaI, а затем лигировали с использованием ДНК-лигазы. Продукт лигирования трансформировали в DH5α E. coli, который затем высевали на твердую среду LB, содержащую канамицин (25 мг/л).
Колонию, трансформированную плазмидой, имеющей встроенный в нее ген, отбирали с помощью ПЦР, а затем плазмиду выделяли методом экстракции плазмид. Эта плазмида была обозначена «pDZ-ΔMT10DS1».
Пример 6: Конструирование штамма посредством дизрупции гена, содержащего нуклеотидную последовательность SEQ ID NO: 2 в Corynebacterium glutamicum KCCM11016P, и оценка способности сконструированного штамма продуцировать L-лизин
Рекомбинантную плазмиду pDZ-ΔMT10DS1, сконструированную в Примере 5, трансформировали в штамм Corynebacterium glutamicum KCCM11016P, который представлял собой штамм, продуцирующий L-лизин, посредством гомологичной рекомбинации на хромосоме (van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999).
Затем, трансформант культивировали на планшете с агаровой средой, содержащей 4% сахарозу, что приводило ко второй гомологичной рекомбинации. После завершения второй гомологичной рекомбинации, дизрупцию гена SEQ ID NO: 2 на хромосоме трансформированного штамма Corynebacterium glutamicum подтверждали с помощью ПЦР с использованием праймера 3 и праймера 6. Этот рекомбинантный штамм был обозначен «Corynebacterium glutamicum KCCM11016P-ΔMT10DS1».
Для анализа способности сконструированного штамма Corynebacterium glutamicum KCCM11016P-ΔMT10DS1 продуцировать L-лизин, этот сконструированный штамм культивировали вместе с родительским штаммом Corynebacterium glutamicum KCCM11016P следующим образом.
Родительский штамм Corynebacterium glutamicum KCCM11016P и штамм Corynebacterium glutamicum KCCM11016P-ΔMT10DS1, сконструированный как описано в Примере 6, инокулировали в 250-миллилитровую колбу с угловой перегородкой, содержащую 25 мл нижеследующей среды для посева, и культивировали в шейкере при 200 об/мин при 30°C в течение 20 часов. Затем 1 мл каждой среды для посева инокулировали в 250-миллилитровую колбу с угловой перегородкой, содержащую 24 мл нижеследующей среды для продуцирования, и культивировали в шейкере при 200 об/мин при 30°C в течение 72 часов. Состав среды для посева и состав среды для продуцирования представлены ниже.
Среда для посева (pH 7,0):
20 г глюкозы, 10 г пептона, 5 г дрожжевого экстракта, 1,5 г мочевины, 4 г KH2PO4, 8 г K2HPO4, 0,5 г MgSO47H2O, 100 мкг биотина, 1000 мкг тиамина-HCl, 2000 мкг пантотената кальция и 2000 мкг никотинамида (на литр дистиллированной воды).
Среда для продуцирования (pH 7,0):
100 г глюкозы, 40 г (NH4)2SO4, 2,5 г соевого белка, 5 г твердого кукурузного экстракта, 3 г мочевины, 1 г KH2PO4, 0,5 г MgSO4•7H2O, 100 мкг биотина, 1000 мкг тиамина-HCl, 2000 мкг пантотената кальция, 3000 мкг никотинамида и 30 г CaCO3 (на литр дистиллированной воды).
После завершения культивирования, количество продуцированного L-лизина определяли с помощью ВЭЖХ (Waters 2478), и концентрация проанализированного L-лизина представлена ниже в Таблице 3.
Таблица 3: Анализ на L-лизин-продуцирующую способность KCCM11016P- Δ MT10DS1, происходящего от KCCM11016P
Штаммы L-лизин (г/л)
Партия 1 Партия 2 Партия 3 Среднее
Контрольная группа KCCM11016P 41,2 41,7 41,8 41,6
Тест-группа KCCM11016P-ΔMT10DS1 49,4 49,6 50 49,7
Исходя из результатов, представленных выше в Таблице 3, было обнаружено, что в случае дизрупции гена, содержащего нуклеотидную последовательность SEQ ID NO: 2 в Corynebacterium glutamicum KCCM11016P, который представляет собой L-лизин-продуцирующий штамм, способность рекомбинантного штамма продуцировать L-лизин повышалась в среднем на 19% по сравнению с родительским штаммом.
Таким образом, было обнаружено, что L-лизин-продуцирующая способность микроорганизма рода Corynebacterium может быть увеличена в результате дизрупции гена, содержащего нуклеотидную последовательность SEQ ID NO: 2 в микроорганизме.
Исходя из вышеописанных результатов можно видеть, что инактивация гипотетического белка с неизвестной функцией посредством дизрупции гена, содержащего нуклеотидную последовательность SEQ ID NO: 2 в L-лизин-продуцирующем штамме, была эффективной для повышения уровня продуцирования L-лизина этим штаммом. Штамм KCCM11016P-ΔMT10DS1 был обозначен «CA01-2285» и депонирован Корейским Центром культур микроорганизмов (KCCM) в Международный депозитарий 5 декабря 2014 под регистрационным номером KCCM11626P.
Пример 7: Конструирование штамма посредством дизрупции гена, содержащего нуклеотидную последовательность SEQ ID NO: 2 в Corynebacterium glutamicum KCCM11347P, и оценка способности сконструированного штамма продуцировать L-лизин
Для того, чтобы подтвердить, что другие L-лизин-продуцирующие штаммы Corynebacterium glutamicum обладают таким же действием, как и штаммы, описанные выше, штамм, в котором ген, содержащий нуклеотидную последовательность SEQ ID NO: 2, был подвергнут дизрупции, конструировали из L-лизин-продуцирующего штамма Corynebacterium glutamicum KCCM11347P (этот микроорганизм был описан как KFCC10750 и был повторно депонирован группой специалистов Международного Депозитария в соответствии с Будапештским Договором под регистрационным номером No. KCCM11347P; Корейский патент No. 10-0073610) методом, аналогичным методу, описанному в Примере 6. Сконструированный штамм был обозначен «KCCM11347P-ΔMT10DS1».
Сконструированный штамм культивировали способом, описанным в Примере 6. После завершения культивирования, количество продуцированного L-лизина определяли с помощью ВЭЖХ (Waters 2478), и концентрация проанализированного L-лизина представлена ниже в Таблице 4.
Таблица 4: Анализ на L-лизин-продуцирующую способность KCCM11347P-MT8EH, происходящего от KCCM11347P
Штамм L-лизин (г/л)
Партия 1 Партия 2 Партия 3 Партия 4
Контрольная группа KCCM11347P 37,9 38,1 37,9 38,0
Тест-группа KCCM11347P-ΔMT10DS1 45,9 45,7 45,6 45,7
Исходя из результатов, представленных выше в Таблице 4, было обнаружено, что в случае дизрупции гена, содержащего нуклеотидную последовательность SEQ ID NO: 2 в Corynebacterium glutamicum KCCM11347P, который представляет собой L-лизин-продуцирующий штамм, способность рекомбинантного штамма продуцировать L-лизин повышалась в среднем на 20%.
Таким образом, аналогично результатам Примера 6, было показано, что L-лизин-продуцирующая способность микроорганизма рода Corynebacterium может быть увеличена в результате дизрупции гена, содержащего нуклеотидную последовательность SEQ ID NO: 2 в микроорганизме.
Пример 8: Конструирование штамма посредством дизрупции гена, содержащего нуклеотидную последовательность SEQ ID NO: 2 в Corynebacterium glutamicum CJ3P, и оценка способности сконструированного штамма продуцировать L-лизин
Для того, чтобы подтвердить, что другие L-лизин-продуцирующие штаммы Corynebacterium glutamicum обладают таким же действием, как и штаммы, описанные выше, штамм, в котором ген, содержащий нуклеотидную последовательность SEQ ID NO: 2, был подвергнут дизрупции, конструировали из L-лизин-продуцирующего штамма Corynebacterium glutamicum CJ3P (Binder et al. Genome Biology 2012, 13:R40), полученного путем введения трех мутаций [pyc(P458S), hom(V59A) и lysC(T311I)] в штамм дикого типа методом, аналогичным методу, описанному в Примере 6. Сконструированный штамм был обозначен «CJ3P-ΔMT10DS1».
Сконструированный штамм культивировали способом, описанным в Примере 6. После завершения культивирования, количество продуцированного L-лизина определяли с помощью ВЭЖХ (Waters 2478), и концентрация проанализированного L-лизина представлена ниже в Таблице 5.
Таблица 5: Продуцирование L-лизина штаммом CJ3P- Δ MT10DS1, происходящим от CJ3P
Штамм L-лизин (г/л)
Партия 1 Партия 2 Партия 3 Партия 4
Контрольная группа CJ3P 8,2 8,1 8,4 8,2
Тест-группа CJ3P-ΔMT10DS1 9,5 9,6 9,7 9,6
Исходя из результатов, представленных выше в Таблице 5, было обнаружено, что в случае дизрупции гена, содержащего нуклеотидную последовательность SEQ ID NO: 2 в Corynebacterium glutamicum CJ3P, который представляет собой L-лизин-продуцирующий штамм, способность штамма продуцировать L-лизин повышалась в среднем на 17%.
Таким образом, аналогично результатам Примеров 6 и 7, было показано, что L-лизин-продуцирующая способность микроорганизма рода Corynebacterium может быть увеличена посредством дизрупции гена, содержащего нуклеотидную последовательность SEQ ID NO: 2 в микроорганизме.
Регистрационный номер
Название Депозитария: Корейский Центр культур микроорганизмов;
Регистрационный номер: KCCM11626P;
Дата депонирования: 5 декабря, 2015.
Applicant's or agent's
file reference PP16-0104
International application No.
INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL
(PCT Rule 13 bis )
A. The indications made below relate to the deposited microorganism or other biological material referred to in the description
on page __ 12 __________________________, line ______34________________________.
B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet
Name of depositary institution
Korean Culture Center of Microorganisms
Address of depositary institution (including postal code and country)
Yurim Bldg, 45, Hongjenae 2ga-gil, Seodaemun-gu, Seoul, 120-861, Korea
Date of deposit
December 5, 2015
Accession Number
KCCM11626P
C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.г., "Accession Number of Deposit")
For receiving Office use only
This sheet was received with the international application
For International Bureau use only
This sheet was received by the International Bureau on:
Authorized officer Authorized officer
Form PCT/RO/134 (July1998; reprint January 2004)
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004

Claims (6)

1. L-лизин-продуцирующий микроорганизм рода Corynebacterium, где активность белка, содержащего аминокислотную последовательность SEQ ID NO: 1, в микроорганизме рода Corynebacterium, способного продуцировать L-лизин, инактивирована.
2. L-лизин-продуцирующий микроорганизм по п. 1, где белок кодируется геном, имеющим нуклеотидную последовательность SEQ ID NO: 2.
3. L-лизин-продуцирующий микроорганизм по п. 1, где микроорганизм рода Corynebacterium представляет собой Corynebacterium glutamicum.
4. Способ продуцирования L-лизина, включающий стадии:
культивирования микроорганизма по любому из пп. 1-3 в среде; и
выделения L-лизина из микроорганизма или культуральной среды.
RU2018110574A 2015-08-27 2016-07-27 Микроорганизмы corynebacterium sp., обладающие способностью продуцировать l-лизин, и способ продуцирования l-лизина с использованием этих микроорганизмов RU2685482C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150120871A KR101740807B1 (ko) 2015-08-27 2015-08-27 L-라이신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
KR10-2015-0120871 2015-08-27
PCT/KR2016/008231 WO2017034164A1 (ko) 2015-08-27 2016-07-27 L-라이신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법

Publications (1)

Publication Number Publication Date
RU2685482C1 true RU2685482C1 (ru) 2019-04-18

Family

ID=58100525

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018110574A RU2685482C1 (ru) 2015-08-27 2016-07-27 Микроорганизмы corynebacterium sp., обладающие способностью продуцировать l-лизин, и способ продуцирования l-лизина с использованием этих микроорганизмов

Country Status (11)

Country Link
US (1) US10889843B2 (ru)
EP (1) EP3342869B1 (ru)
JP (1) JP6860565B2 (ru)
KR (1) KR101740807B1 (ru)
CN (1) CN108138191B (ru)
ES (1) ES2795437T3 (ru)
HU (1) HUE048849T2 (ru)
MY (1) MY190149A (ru)
PL (1) PL3342869T3 (ru)
RU (1) RU2685482C1 (ru)
WO (1) WO2017034164A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2793438C1 (ru) * 2021-01-29 2023-04-03 СиДжей ЧеилДжеданг Корпорейшн Новый вариант микотионредуктазы и способ получения l-лизина с его применением

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101766964B1 (ko) * 2015-08-27 2017-08-09 씨제이제일제당 (주) L-라이신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
KR102175112B1 (ko) * 2019-04-22 2020-11-06 씨제이제일제당 주식회사 L-쓰레오닌 생산능이 강화된 미생물 및 이를 이용한 쓰레오닌 생산방법
CN110804634B (zh) * 2019-12-04 2022-02-25 深圳瑞德林生物技术有限公司 酶催化法制备2,4-二氨基丁酸的工艺
CN112877269B (zh) * 2020-01-15 2021-12-24 中国科学院天津工业生物技术研究所 生产赖氨酸的微生物以及赖氨酸的生产方法
KR20230100887A (ko) 2021-12-29 2023-07-06 정재진 인공지능기반 자율비행 드론용 통합 임무비행 제어시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2000117787A (ru) * 1999-07-07 2002-12-27 Дегусса-Хюльс Акциенгезельшафт Продуцирующие l-лизин коринебактерии и способ получения лизина
US6962989B1 (en) * 1999-07-08 2005-11-08 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding novel proteins
KR20150043717A (ko) * 2013-10-15 2015-04-23 씨제이제일제당 (주) 생물막 형성 억제 활성을 가지는 유전자 및 이 유전자가 불활성화된 균주를 이용한 l-라이신 생산 방법
KR101530819B1 (ko) * 2014-05-08 2015-06-22 씨제이제일제당 (주) L-라이신 생산능이 향상된 미생물 및 이를 이용한 l-라이신 생산방법
KR20150069340A (ko) * 2013-12-13 2015-06-23 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신을 생산하는 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623825B2 (ja) 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
WO2006025735A2 (en) * 2004-09-01 2006-03-09 Agrotechnology And Food Innovations B. V. Enhanced substrate conversion efficiency of fermentation processes
KR100789270B1 (ko) * 2005-11-30 2008-01-02 씨제이 주식회사 L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용하여 l-라이신을 생산하는 방법
KR100789271B1 (ko) * 2005-11-30 2008-01-02 씨제이 주식회사 L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용하여 l-라이신을 생산하는 방법
KR100838035B1 (ko) * 2006-12-29 2008-06-12 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용한 l-라이신 생산 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2000117787A (ru) * 1999-07-07 2002-12-27 Дегусса-Хюльс Акциенгезельшафт Продуцирующие l-лизин коринебактерии и способ получения лизина
US6962989B1 (en) * 1999-07-08 2005-11-08 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding novel proteins
KR20150043717A (ko) * 2013-10-15 2015-04-23 씨제이제일제당 (주) 생물막 형성 억제 활성을 가지는 유전자 및 이 유전자가 불활성화된 균주를 이용한 l-라이신 생산 방법
KR20150069340A (ko) * 2013-12-13 2015-06-23 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신을 생산하는 방법
KR101530819B1 (ko) * 2014-05-08 2015-06-22 씨제이제일제당 (주) L-라이신 생산능이 향상된 미생물 및 이를 이용한 l-라이신 생산방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NCBI, GenBank Accession No. WP_011265442.1, 25.03.2015. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2797843C1 (ru) * 2020-01-15 2023-06-08 Тяньцзинь Инститьют Оф Индастриал Байотекнолоджи, Чайниз Экэдеми Оф Сайенсиз Микроорганизм, продуцирующий лизин, и способ продуцирования лизина
RU2797843C9 (ru) * 2020-01-15 2023-09-04 Тяньцзинь Инститьют Оф Индастриал Байотекнолоджи, Чайниз Экэдеми Оф Сайенсиз Микроорганизм, продуцирующий лизин, и способ продуцирования лизина
RU2795615C1 (ru) * 2021-01-15 2023-05-05 СиДжей ЧеилДжеданг Корпорейшн Новый вариант ABC-транспортного АТФ-связывающего белка и способ получения L-лизина с его применением
RU2793438C1 (ru) * 2021-01-29 2023-04-03 СиДжей ЧеилДжеданг Корпорейшн Новый вариант микотионредуктазы и способ получения l-лизина с его применением
RU2794484C1 (ru) * 2021-01-29 2023-04-19 СиДжей ЧеилДжеданг Корпорейшн Новый вариант dahp синтазы и способ получения l-лизина с его применением
RU2795616C1 (ru) * 2021-01-29 2023-05-05 СиДжей ЧеилДжеданг Корпорейшн Новый вариант малатдегидрогеназы и способ получения L-лизина с его применением

Also Published As

Publication number Publication date
BR112018003756A2 (pt) 2018-09-25
CN108138191A (zh) 2018-06-08
KR20170025045A (ko) 2017-03-08
EP3342869A1 (en) 2018-07-04
WO2017034164A1 (ko) 2017-03-02
US10889843B2 (en) 2021-01-12
PL3342869T3 (pl) 2020-08-24
MY190149A (en) 2022-03-31
EP3342869A4 (en) 2019-02-06
HUE048849T2 (hu) 2020-08-28
EP3342869B1 (en) 2020-03-18
JP6860565B2 (ja) 2021-04-14
ES2795437T3 (es) 2020-11-23
US20180258452A1 (en) 2018-09-13
JP2018523496A (ja) 2018-08-23
KR101740807B1 (ko) 2017-05-26
CN108138191B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
RU2687206C1 (ru) Микроорганизмы corynebacterium sp., обладающие способностью продуцировать l-лизин, и способ продуцирования l-лизина с использованием этих микроорганизмов
RU2733425C1 (ru) Новый промотор и его применение
RU2685482C1 (ru) Микроорганизмы corynebacterium sp., обладающие способностью продуцировать l-лизин, и способ продуцирования l-лизина с использованием этих микроорганизмов
EP3178926B1 (en) Feedback-resistant acetohydroxy acid synthase variant and method for producing l-valine using the same
EP2862932B1 (en) Genes encoding biofilm formation inhibitory proteins and a method for producing l-lysine using a bacterial strain with the inactivated genes
KR101721722B1 (ko) L-발린 생산능이 향상된 균주 및 이를 이용한 l-발린 생산방법
RU2663135C2 (ru) Микроорганизм, обладающий улучшенной способностью к продуцированию l-лизина, и способ производства l-лизина с использованием данного микроорганизма
RU2683551C1 (ru) Микроорганизм, обладающий продуктивностью по L-лизину, и способ получения L-лизина с использованием этого микроорганизма
RU2681475C1 (ru) Вариант репрессора глюконата, микроорганизм-продуцент L-лизина, содержащий его, и способ получения L-лизина с его использованием
TWI688649B (zh) 用於製造腐胺之微生物及使用該微生物製造腐胺之方法
KR20230092008A (ko) L-아미노산의 제조법
RU2716573C1 (ru) Микроорганизм рода Corynebacterium, продуцирующий L-аргинин, и способ получения L-аргинина с использованием этого микроорганизма
RU2805078C1 (ru) МИКРООРГАНИЗМ, СОДЕРЖАЩИЙ ВАРИАНТ LysE, И СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТЫ С ЕГО ИСПОЛЬЗОВАНИЕМ
KR102619598B1 (ko) 신규한 아세토하이드록시산 신타아제 소단위체 변이체 및 이를 이용한 l-발린 생산 방법
EP4083064A1 (en) Microorganism for producing l-amino acid having increased cytochrome c activity, and l-amino acid production method using same
BR112018003756B1 (pt) Microorganismo corynebacterium glutamicum produtor de l-lisina e método de produção de l-lisina usando os mesmos
BR112018003322B1 (pt) Microrganismo corynebacterium glutamicum produtor de l-lisina modificado e método para a produção de l-lisina utilizando o mesmo