RU2675610C1 - Способ получения пленки светопоглощающего материала с перовскитоподобной структурой - Google Patents

Способ получения пленки светопоглощающего материала с перовскитоподобной структурой Download PDF

Info

Publication number
RU2675610C1
RU2675610C1 RU2017128559A RU2017128559A RU2675610C1 RU 2675610 C1 RU2675610 C1 RU 2675610C1 RU 2017128559 A RU2017128559 A RU 2017128559A RU 2017128559 A RU2017128559 A RU 2017128559A RU 2675610 C1 RU2675610 C1 RU 2675610C1
Authority
RU
Russia
Prior art keywords
perovskite
oxides
salts
substrate
alloys
Prior art date
Application number
RU2017128559A
Other languages
English (en)
Inventor
Алексей Борисович Тарасов
Николай Андреевич Белич
Евгений Алексеевич Гудилин
Андрей Андреевич Петров
Алексей Юрьевич Гришко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2017128559A priority Critical patent/RU2675610C1/ru
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to PCT/RU2018/050093 priority patent/WO2019031991A1/ru
Priority to KR1020207003939A priority patent/KR102306250B1/ko
Priority to ES18796147T priority patent/ES2906881T3/es
Priority to CA3072159A priority patent/CA3072159C/en
Priority to AU2018312837A priority patent/AU2018312837B2/en
Priority to CN201880051659.6A priority patent/CN111051560B/zh
Priority to JP2020530414A priority patent/JP7161535B2/ja
Priority to US16/637,724 priority patent/US11081292B2/en
Priority to EP18796147.9A priority patent/EP3666921B1/en
Application granted granted Critical
Publication of RU2675610C1 publication Critical patent/RU2675610C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/811Controlling the atmosphere during processing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Изобретение относится к способу получения органо-неорганического светопоглощающего материала с перовскитоподобной структурой, который может быть использован при изготовлении перовскитных солнечных ячеек. Способ получения пленки светопоглощающего материала с перовскитоподобной структурой, имеющего структурную формулу АСВ, в котором на подложку последовательно наносят слой реагента в виде олова, свинца или висмута, или их сплавов, оксидов и солей и слой реагента АВ. Затем подложку с нанесенными слоями помещают в жидкую или газообразную среду, содержащую реагент В, на период, необходимый и достаточный для осуществления реакции реагента в виде олова, свинца или висмута, или их сплавов, оксидов и солей с реагентами в виде АВ и в виде Вс получением вещества АСВ, при этом в качестве компонента А используют CHNH, или (NH)CH, или С(NH), или Cs, или их смесь, в качестве компонента В используют Сl, или Br, или I, или их смесь, в качестве компонента С используют олово, свинец, висмут, или их сплавы. Обеспечивается получение светопоглощающих органо-неорганических материалов с перовскитоподобной структурой на подложках большой площади. 5 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Description

Область техники
Изобретение относится к способам получения органо-неорганического светопоглощающего материала со перовскитоподобной структурой, который может быть использован, например, при изготовлении перовскитных солнечных ячеек.
Уровень техники
Из уровня техники известны способы получения светопоглощающих материалов с перовскитоподобной структурой.
Под такими структурами в рамках настоящей заявки понимают, как непосредственно перовскитные структуры, так и структуры, имеющие определенные структурные отклонения (подробнее термин обоснован в источнике информации Attfield J.P., Lightfoot P., Morris R.E. Perovskites // Dalt. Trans. 2015. Vol. 44, №23. P. 10541-10542).
Так в статье [Burschka J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells //Nature. - 2013. - T. 499. - №. 7458. - C. 316.] описывается формирование тонкого слоя перовскита CH3NH3PbI3 в две стадии посредством нанесения раствора РbI2 на подложку слоем необходимой толщины посредством приведения ее во вращение на высокой скорости вокруг оси перпендикулярной ее плоскости (метод вращающейся подложки, spin-coating) с последующим погружением полученного тонкого слоя РbI2 в раствор MAI в изопропаноле.
В статье [Saliba М. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance // Science (80-.). 2016. Vol. 354, No 6309. P. 206-209.] описывается формирование тонкого слоя перовскита CH3NH3PbI3 в одну стадию посредством нанесения раствора перовскита в смеси органических растворителей на подложку тонким слоем посредством приведения ее во вращение на высокой скорости вокруг оси перпендикулярной ее плоскости.
Недостатком вышеуказанных методов является невозможность получения слоя исходного компонента (РbI2) или перовскита из раствора на подложках большой площади и, соответственно, невозможность получения перовскитных солнечных ячеек большой площади.
Известен патент CN 104250723, 09/09/2014, Zhi Zheng, Cheng Camry, Lei Yan, Jia Huimin, Ho Wei Wei, He Yingying "Chemical method for in-situ large-area controlled synthesis of perovskite type СН33РbI3 membrane material based on lead simple-substance membrane", в котором описан способ изготовления перовскита СН3NH3РbI3 в результате погружения пленок металлического свинца, легко наносимых равномерно с контролируемой толщиной на большие площади, в раствор йода и йодида метиламмония в органическом растворителе, например, этаноле. Металлический свинец в виде ровного слоя напыляют магнетронным напылением на непористую поверхность электрон-проводящего слоя после чего приводят во взаимодействие с органическим растворителем, содержащим молекулярный иод и метиламмоний иодид, в результате сплошной непористый слой свинца превращается в сплошной непористый слой перовскита
В патенте CN 105369232, 16/02/2015, Zhi Zheng, Не Yingying, Lei Yan, Cheng Camry, Jia Huimin, Ho Wei Wei, "Lead-based perovskite-type composite elemental thin-film in-situ wide area control СН3NH3PbBr3 film material chemical method" описывается способ изготовления перовскита СН33РbBr3 в результате погружения пленок металлического свинца, легко наносимых равномерно с контролируемой толщиной на большие площади в раствор бромида метиламмония в органическом растворителе, например, изопропаноле.
Недостатком вышеуказанных методов является необходимость использования растворителя и плохой контроль морфологии получаемого слоя перовскита, что усложняет и замедляет технологический процесс формирования органо-неорганического перовскита, приводит к производственным рискам, рискам для здоровья и экологии.
В статье Mater. Horiz., 2017,4, 625-632, Petrov Andrey A., Belich Nikolai A., Grishko Aleksei Y., Stepanov Nikita M., Dorofeev Sergey G., Maksimov Eugene G., Shevelkov Andrei V., Zakeeruddin Shaik M., Michael Graetzel, Tarasov Alexey В., Goodilin Eugene A., «A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts» описывается способ формирования слоя перовскита без растворителей в результате реакции слоя металлического свинца и нанесенного на него реагента с общим составом МАI3+x.
Недостатком известного метода является сложность достижения однородного распределения вязкого полииодидного (полигалидного) реагента по большой площади подложки, а также отсутствие контроля и несоблюдение стехиометрии взаимодействия, что, в частности, может привести к формированию подслоя иодида свинца. Наносимые на подложку реагенты представляют собой жидкий расплав, что приводит к определенной сложности контроля стехиометрического соотношения прекурсоров в ходе реакции образования пленки конечного продукта. Таким образом, в результате снижается качество (в частности, однородность толщины и фазовый состав) получаемой пленки, что, соответственно, негативно сказывается на эффективности конечного продукта на основе полученных пленок, например, солнечной ячейки.
Раскрытие сущности изобретения
Раскрытие сущности изобретения
Технической проблемой, решаемой посредством заявляемого изобретения, является создание технологичного способа получения светопоглощающих органо-неорганических материалов с перовскитоподобной структурой на подложках большой площади без использования растворителя.
Технический результат, достигаемый при использовании заявляемого изобретения, заключается в обеспечении возможности получения однофазной пленки без сквозных отверстий с высокой степенью равномерности, что позволит использовать полученный материал в солнечных ячейках большой площади. Способ также характеризуется технологичностью и простотой реализации, что делает его более доступным для применения в промышленном производстве. Заявляемый способ осуществляют без использования растворителя, что способствует повышению качества конечного продукта за счет исключения возможности его нежелательного взаимодействия с компонентами получаемого перовскита, а также потенциально позволяет добиться большей экологичности производства.
Поставленная задача решается тем, что для реализации способа получения пленки светопоглощающего материала с перовскитоподобной структурой, имеющего структурную формулу АСВ3, согласно техническому решению, на подложку последовательно наносят слой реагента в виде олова, свинца или висмута, или их сплавов, оксидов и солей и слой реагента АВ, после чего подложку с нанесенными слоями помещают в жидкую или газообразную среду, содержащую реагент В2, на период, необходимый и достаточный для осуществления реакции реагента в виде олова, свинца или висмута, или их сплавов, оксидов и солей с реагентами в виде АВ и в виде В2 с получением вещества АСВ3, при этом в качестве компонента А используют CH3NH3 + или (NH2)2СН+ или C(NH2)3 + или Cs+ или их смесь, в качестве компонента В используют Cl- или Br- или I- или их смесь, в качестве компонента С используют олово, свинец, висмут, или их сплавы. Жидкая среда характеризуется нерастворимостью в ней реагента АВ и растворимостью В2. Реагенты в виде металлов Sn, Pb или Bi, или их сплавов, оксидов и солей и в виде АВ наносят на единицу площади в стехиометрическом количестве, обеспечивающем получение пленки заданной толщины. Реагенты в виде металлов Sn, Pb или Bi, или их сплавов, оксидов и солей и в виде АВ наносят методом напыления, вакуумного напыления, вращающейся подложки или распыления раствора на подложку. Избыток компонента В по завершении реакции может быть удален промыванием в растворителе, накалыванием растворителя на поверхность, прокаливанием при повышенной температуре, испарением при пониженном давлении. Дополнительно, обеспечивают удаление компонента, являющегося продуктом разложения указанных оксидов или солей. В качестве газообразной фазы могут выступать содержащие пары йода (галогена или их смеси) сухой воздух, аргон, азот, пары йода без газа - носителя, а в качестве жидкой фазы, содержащей йод (галоген или их смеси), могут выступать CCl4, толуол, диэтиловый эфир и другие органические растворители.
В отличие от прототипа в рамках заявляемого изобретения возможен тонкий контроль стехиометрии реакции формировании пленки светопоглощающего материала за счет предварительного контролируемого нанесения на подложку пленок прекурсоров (реагенты в виде олова, свинца или висмута, или их сплавов, оксидов и солей и в виде АВ) в строго определенном параметрами нанесения соотношении. При дальнейшем воздействии на составную пленку, содержащую реагенты в виде олова, свинца или висмута, или их сплавов, оксидов и солей и в виде АВ, раствора или газа, содержащего компонент В2, на ее поверхности происходит образование однородной пленки реакционной смеси АВ-В2 в строго определенном количеством нанесенного ранее компонента АВ количестве. Далее данная реакционная смесь реагирует со слоем, содержащим компонент С с образованием конечного продукта, что позволяет достичь высокой однородности пленок на большой площади.
При помещении подложки со слоем реагента, содержащего компонент С, и нанесенным на него стехиометрическим количеством реагента АВ в жидкую или газообразную среду, содержащую реагент В2, происходит взаимодействие реагента АВ с реагентом В2 и образование композиции АВ-nВ2 (n≥1), реагирующей с реагентом, содержащим компонент С, с образованием перовскита состава АСВ3.
В рамках заявляемого метода достижение технического результата, а именно получение однофазных высокооднородных пленок светопоглощающего материала большой площади, достигается за счет контроля стехиометрии реакции формировании пленки светопоглощающего материала. Основными параметрами, влияющими на достижение технического результата, являются толщина и однородность наносимых на подложку пленок реагентов в виде олова, свинца или висмута, или их сплавов, оксидов и солей и в виде АВ, а также условия дальнейшего взаимодействия полученной составной пленки с раствором или газом, содержащего компонент В2. Для получения наиболее однородных однофазных пленок АСВ3 рекомендуется нанесение однородных по толщине пленок реагентов в виде олова, свинца или висмута, или их сплавов, оксидов и солей и в виде АВ с толщиной, соответствующей эквимолярному соотношению количеств АВ и С на единицу площади. В случае существенных отклонений в соотношении компонентов возможно образование неоднофазных пленок конечного продукта.
Краткое описание чертежей
Заявляемое изобретение поясняется следующими чертежами и изображениями, отражающими в том числе и результаты реализации заявляемого способа для конкретных составов.
На фиг. 1 изображена схема заявляемого способа синтеза пленок светопоглощающих материалов состава АСВ3.
На фиг. 2 изображены микрофотографии пленки светопоглощающего органо-неорганического перовскита СН33PbI3, полученной согласно заявляемой методике. Позициями на фигурах обозначены:
1 - подложка,
2 - этап нанесения реагента С,
3 - этап нанесения реагента АВ,
4 - газовая среда или раствор, содержащий В2.
Осуществление изобретения
Заявляемое изобретение может быть реализовано с использованием известных средств и методов, в том числе, и в условиях промышленного производства.
В качестве подложки может быть использован любой проводящий или непроводящий материал, а также их комбинация. Площадь и выбор материала подложки могут быть ограничены спецификой дальнейших конкретных технологических стадий формирования светопоглощающего слоя, однако. потенциально могут быть произвольными. Исходя из площади подложки и требуемой толщины формируемой пленки, определяют необходимое количество реагентов С и АВ. Для реализации способа на выбранную подложку известными способами наносят реагент С. Наиболее оптимальным является использование в качестве С металлического свинца, олова или висмута, которые наносят, например, вакуумным напылением или электрохимическим осаждением. В случае использования оксидов или солей компонента С, помимо вышеупомянутых, также возможно использование прочих методов формирования пленок, например, спинкоатинга, распыления раствора на подложку, спрей-пиролиза, химического нанесения из газовой фазы (CVD) и пр. На слой С наносят слой компонента АВ с помощью таких методов как напыление (в том числе, вакуумное), спинкоатинг, распыление раствора на подложку. Таким образом, формируется составная пленка с двумя последовательно нанесенными слоями С и АВ. Для проведения реакции формирования пленки светопоглощающего материала со перовскитоподобной структурой, полученную подложку с нанесенными слоями помещают в жидкую или газообразную среду, которая содержит В2. В качестве газообразной фазы могут выступать содержащие пары йода (других галогенов или их смеси) сухой воздух, аргон, азот, пары йода без газа - носителя, а в качестве жидкой фазы, содержащей йод (другие галогены или их смеси), могут выступать ССЦ, толуол, диэтиловый эфир и другие органические растворители. В результате проведенных экспериментов установлено, что оптимальными характеристиками для проведения описанной реакции обладают пары йода с любым из перечисленных газов-носителей или в их отсутствии, а также растворы йода в толуоле и CCI4. Рекомендуемая температура проведения реакции составляет 0-150°С. Для каждого конкретного случая длительность проведения процесса определяется скоростью протекания полной химической реакции. Полнота протекания процесса может контролироваться методом рентгенофазового анализа и пр. По окончании реакции полученную пленку на подложке изымают из камеры, содержащей среду с компонентом В2. Качество полученной пленки определяют посредством электронной микроскопии, где в ходе исследований определяются такие параметры как сплошность пленки (отсутствие сквозных отверстий) и средний размер кристаллитов. Визуально установлено, что полученная описанным способом пленка светопоглощающего соединения СН33РbI3 имеет равномерную структуру, что видно на фиг. 2, характеризуется отсутствием сквозных отверстий и средним размером кристаллитов около 800 нм.
Пример конкретного выполнения
В качестве примеров конкретного выполнения приведены сведения о реализации заявляемого способа и получении пленки светопоглощающего соединения CH3NH3PbI3 с использованием различных компонентов в качестве реагентов:
Пример 1:
На подложку, представляющую собой блокирующий слой ТiO2, нанесенный на проводящую подложку FTO (fluorinated tin oxide) или ITO (indium doped tin oxide), вакуумным термическим напылением наносился слой свинца толщиной 60 нм. Затем на слой свинца вакуумным термическим напылением наносился слой MAI в количестве, соответствующем эквимолярному соотношению меду количествами металлического свинца и MAI на единицу площади подложки. После этого подложка с нанесенными слоями вносилась в насыщенные пары йода в аргоне и выдерживалась при температуре 40°С в течение 10 - 30 минут. В результате на подложке образовался слой перовскитоподобной структуры МАРbI. Контроль морфологии и фазового состава пленки определялся методами растровой электронной микроскопии (фиг.2) и рентгенофазового анализа.
Пример 2:
На подложку, представляющую собой блокирующий слой ТЮ2, нанесенный на проводящую подложку FTO (fluorinated tin oxide) или ITO (indium doped tin oxide), вакуумным термическим напылением наносился слой свинца толщиной 250 нм. Затем на слой свинца вакуумным термическим напылением наносился слой MAI в количестве, соответствующем эквимолярному соотношению меду количествами металлического свинца и MAI на единицу площади подложки. После этого подложка с нанесенными слоями помещалась в раствор йода в ССЦ с содержанием I2 10 мг/мл и выдерживалась при комнатной температуре в течение 1.5 минут.В результате на подложке образовался слой перовскитоподобной структуры МАРЫ3. Контроль морфологии и фазового состава пленки определялся методами растровой электронной микроскопии и рентгенофазового анализа.
Пример 3.
На подложку, представляющую собой блокирующий слой ТiO2, нанесенный на проводящую подложку FTO (fluorinated tin oxide) или ITO (indium doped tin oxide), вакуумным термическим напылением наносился слой свинца толщиной 250 нм. Затем на слой свинца вакуумным термическим напылением наносился слой смеси MAI и FAI в мольном соотношении 1:1 в количестве, соответствующем соотношению меду количествами металлического свинца и MAI=2:1 на единицу площади подложки. После этого подложка с нанесенными слоями помещалась в раствор йода в в ССl4 с содержанием I2 10 мг/мл и выдерживалась при комнатной температуре в течение 1.5 минут. В результате на подложке образовался слой перовскитоподобной структуры состава MA0.5FA0.5PbI3. Контроль морфологии и фазового состава пленки определялся методами растровой электронной микроскопии и рентгенофазового анализа.
Ниже представлены примеры реализации способа с различными соединениями в качестве реагентов.
Figure 00000001
В описанных выше примерах (Таблица 1) реализации методики были получены высокооднородные пленки светопоглощающего материала АСВ3 с перовскитоподобной структурой методом, обеспечивающим возможность производства соответствующих пленок большой площади.

Claims (6)

1. Способ получения пленки светопоглощающего материала с перовскитоподобной структурой, имеющего структурную формулу АСВ3, отличающийся тем, что на подложку последовательно наносят слой реагента в виде олова, свинца или висмута, или их сплавов, оксидов и солей и слой реагента АВ, после чего подложку с нанесенными слоями помещают в жидкую или газообразную среду, содержащую реагент В2, на период, необходимый и достаточный для осуществления реакции реагента в виде олова, свинца или висмута, или их сплавов, оксидов и солей с реагентами в виде АВ и в виде В2 с получением вещества АСВ3, при этом в качестве компонента А используют CH3NH3 +, или (NH2)2CH+, или С(NH2)3 +, или Cs+, или их смесь, в качестве компонента В используют Сl-, или Br-, или I-, или их смесь, в качестве компонента С используют олово, свинец, висмут, или их сплавы.
2. Способ по п. 1, отличающийся тем, что жидкая среда характеризуется нерастворимостью в ней реагента АВ и растворимостью В2.
3. Способ по п. 1, отличающийся тем, что реагенты в виде металлов Sn, Pb или Bi, или их сплавов, оксидов и солей и в виде АВ наносят на единицу площади в стехиометрическом количестве, обеспечивающем получение пленки заданной толщины.
4. Способ по п. 1, отличающийся тем, что реагенты в виде металлов Sn, Pb или Bi, или их сплавов, оксидов и солей и в виде АВ наносят методом напыления, вакуумного напыления, спинкоатинга или распыления раствора на подложку.
5. Способ по п. 1, отличающийся тем, что при использовании в упомянутой реакции упомянутых оксидов или солей осуществляют удаление компонента, являющегося продуктом разложения указанных оксидов или солей.
6. Способ по п. 1, отличающийся тем, что избыток компонента В по завершении реакции удаляют промыванием в растворителе, накалыванием растворителя на поверхность, прокаливанием при повышенной температуре или испарением при пониженном давлении.
RU2017128559A 2017-08-10 2017-08-10 Способ получения пленки светопоглощающего материала с перовскитоподобной структурой RU2675610C1 (ru)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2017128559A RU2675610C1 (ru) 2017-08-10 2017-08-10 Способ получения пленки светопоглощающего материала с перовскитоподобной структурой
KR1020207003939A KR102306250B1 (ko) 2017-08-10 2018-08-06 페로브스카이트 유사 구조를 갖는 광-흡수 재료로 된 필름의 제조방법
ES18796147T ES2906881T3 (es) 2017-08-10 2018-08-06 Método para producir una película de material absorbente de luz con una estructura similar a la perovskita
CA3072159A CA3072159C (en) 2017-08-10 2018-08-06 Method for synthesis of films made of light-absorbing material with perovskite-like structure
PCT/RU2018/050093 WO2019031991A1 (ru) 2017-08-10 2018-08-06 Способ получения пленки светопоглощающего материала с перовскитоподобной структурой
AU2018312837A AU2018312837B2 (en) 2017-08-10 2018-08-06 Method for producing a film of light-absorbing material with a perovskite-like structure
CN201880051659.6A CN111051560B (zh) 2017-08-10 2018-08-06 生产具有钙钛矿状结构的吸光材料的膜的方法
JP2020530414A JP7161535B2 (ja) 2017-08-10 2018-08-06 ペロブスカイト様構造を有する光吸収材料で作られるフィルムを合成するための方法
US16/637,724 US11081292B2 (en) 2017-08-10 2018-08-06 Method for producing a film of light-absorbing material with a perovskite-like structure
EP18796147.9A EP3666921B1 (en) 2017-08-10 2018-08-06 Method for producing a film of light-absorbing material with a perovskite-like structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017128559A RU2675610C1 (ru) 2017-08-10 2017-08-10 Способ получения пленки светопоглощающего материала с перовскитоподобной структурой

Publications (1)

Publication Number Publication Date
RU2675610C1 true RU2675610C1 (ru) 2018-12-20

Family

ID=64051653

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017128559A RU2675610C1 (ru) 2017-08-10 2017-08-10 Способ получения пленки светопоглощающего материала с перовскитоподобной структурой

Country Status (10)

Country Link
US (1) US11081292B2 (ru)
EP (1) EP3666921B1 (ru)
JP (1) JP7161535B2 (ru)
KR (1) KR102306250B1 (ru)
CN (1) CN111051560B (ru)
AU (1) AU2018312837B2 (ru)
CA (1) CA3072159C (ru)
ES (1) ES2906881T3 (ru)
RU (1) RU2675610C1 (ru)
WO (1) WO2019031991A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708365C1 (ru) * 2018-12-27 2019-12-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения тонкопленочных структур галогенидных полупроводников (варианты)
RU2714273C1 (ru) * 2018-12-29 2020-02-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ формирования двухслойной светопоглощающей электропроводящей структуры
WO2020256594A2 (en) 2019-06-19 2020-12-24 Joint Stock Company Krasnoyarsk Hydropower Plant (Jsc Krasnoyarsk Hpp) A method for producing a semiconducting film of organic-inorganic metal-halide compound with perovskite-like structure
RU2779016C2 (ru) * 2020-10-20 2022-08-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения плёнки кристаллического материала на основе комплексных галогенидов с перовскитоподобной структурой

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2685296C1 (ru) * 2017-12-25 2019-04-17 АО "Красноярская ГЭС" Способ получения пленки светопоглощающего материала с перовскитоподобной структурой
CN111081880B (zh) * 2019-11-22 2021-10-29 武汉理工大学 一种用于钙钛矿气相生长的中间相及其制备方法与应用
CN110993804B (zh) * 2019-12-16 2023-02-28 合肥工业大学 一种无铅稳定甲胺锡碘薄膜的制备方法及基于其的光伏器件
EP4319538A4 (en) * 2021-11-22 2024-05-29 Contemporary Amperex Technology Co Ltd METHOD FOR PREPARING PEROVSKITE THIN FILM, AND PEROVSKITE THIN FILM AND SOLAR CELL ASSOCIATED THEREWITH

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2347299C1 (ru) * 2007-07-28 2009-02-20 Государственное научно-производственное объединение "Научно-практический центр Национальной академии наук Беларуси по материаловедению" (ГО "НПЦ НАН Беларуси по материаловедению") СПОСОБ ПОЛУЧЕНИЯ ПОГЛОЩАЮЩЕГО СЛОЯ Cu2ZnSnS4 ДЛЯ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
EA021602B1 (ru) * 2009-11-06 2015-07-30 Бенек Ой Способ получения электропроводной оксидной пленки, электропроводная оксидная пленка и ее применение
WO2017009688A1 (en) * 2015-07-13 2017-01-19 Tubitak Perovskite thin film production method and optoelectronic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9391287B1 (en) 2013-12-19 2016-07-12 The Board Of Regents Of The University Of Nebraska Photovoltaic perovskite material and method of fabrication
JP6362868B2 (ja) 2014-01-21 2018-07-25 国立大学法人京都大学 高効率ペロブスカイト型太陽電池の製造方法
CN104250723B (zh) * 2014-09-09 2017-02-15 许昌学院 一种基于铅单质薄膜原位大面积控制合成钙钛矿型CH3NH3PbI3薄膜材料的化学方法
EP3249708A1 (en) * 2014-11-21 2017-11-29 Heraeus Deutschland GmbH & Co. KG Pedot in perovskite solar cells
PL3075013T3 (pl) * 2014-12-19 2022-01-17 Commonwealth Scientific And Industrial Research Organisation Sposób wytwarzania warstwy fotoaktywnej urządzenia optoelektronicznego
CN105369232B (zh) 2015-02-16 2018-09-28 许昌学院 基于铅单质薄膜原位大面积控制合成钙钛矿型CH3NH3PbBr3薄膜材料的化学方法
CN106676631A (zh) * 2016-11-28 2017-05-17 昆明理工大学 一种制备abx3钙钛矿单晶薄膜的方法
CN106611819A (zh) * 2017-01-10 2017-05-03 太原理工大学 太阳能电池用钙钛矿薄膜的微纳结构界面诱导生长方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2347299C1 (ru) * 2007-07-28 2009-02-20 Государственное научно-производственное объединение "Научно-практический центр Национальной академии наук Беларуси по материаловедению" (ГО "НПЦ НАН Беларуси по материаловедению") СПОСОБ ПОЛУЧЕНИЯ ПОГЛОЩАЮЩЕГО СЛОЯ Cu2ZnSnS4 ДЛЯ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
EA021602B1 (ru) * 2009-11-06 2015-07-30 Бенек Ой Способ получения электропроводной оксидной пленки, электропроводная оксидная пленка и ее применение
WO2017009688A1 (en) * 2015-07-13 2017-01-19 Tubitak Perovskite thin film production method and optoelectronic device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Petrov A.A. et al, A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts, Materials Horizons, United Kingdom, Royal society of chemistry, 27.04.2017, том 4, c.625, . *
Petrov A.A. et al, A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts, Materials Horizons, United Kingdom, Royal society of chemistry, 27.04.2017, том 4, c.625, реферат. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708365C1 (ru) * 2018-12-27 2019-12-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения тонкопленочных структур галогенидных полупроводников (варианты)
RU2714273C1 (ru) * 2018-12-29 2020-02-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ формирования двухслойной светопоглощающей электропроводящей структуры
WO2020256594A2 (en) 2019-06-19 2020-12-24 Joint Stock Company Krasnoyarsk Hydropower Plant (Jsc Krasnoyarsk Hpp) A method for producing a semiconducting film of organic-inorganic metal-halide compound with perovskite-like structure
RU2779016C2 (ru) * 2020-10-20 2022-08-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения плёнки кристаллического материала на основе комплексных галогенидов с перовскитоподобной структурой
RU2793724C1 (ru) * 2022-07-11 2023-04-05 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова Российской академии наук" (ИПФ РАН) Способ защиты перовскитоподобных материалов от фотодеструкции
RU2795845C1 (ru) * 2022-07-12 2023-05-12 Федеральное Государственное Бюджетное Учреждение Науки Федеральный Исследовательский Центр Проблем Химической Физики И Медицинской Химии Российской Академии Наук (Фиц Пхф И Мх Ран) Способ получения фоточувствительных пленок Cu-Cr-Sn-S

Also Published As

Publication number Publication date
CA3072159C (en) 2022-05-31
KR20200028989A (ko) 2020-03-17
US11081292B2 (en) 2021-08-03
US20210020383A1 (en) 2021-01-21
ES2906881T3 (es) 2022-04-20
JP2020532882A (ja) 2020-11-12
CN111051560A (zh) 2020-04-21
JP7161535B2 (ja) 2022-10-26
KR102306250B1 (ko) 2021-09-28
CN111051560B (zh) 2022-04-22
EP3666921A1 (en) 2020-06-17
AU2018312837B2 (en) 2021-10-14
CA3072159A1 (en) 2019-02-14
EP3666921B1 (en) 2021-11-17
WO2019031991A1 (ru) 2019-02-14
AU2018312837A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
RU2675610C1 (ru) Способ получения пленки светопоглощающего материала с перовскитоподобной структурой
JP7417792B2 (ja) ペロブスカイト様構造を有する光吸収フィルムを製造するための方法
RU2712151C1 (ru) Способ получения полупроводниковой пленки на основе органо-неорганических комплексных галогенидов с перовскитоподобной структурой
JP6853382B2 (ja) ペロブスカイト構造を有する光吸収材料を生成するための方法、及びそれを実施するための可変組成の液体ポリハロゲン化物
Fateev et al. Successive Solution–Liquid–Vapor Conversion of Metallic Lead Films for Highly Efficient Perovskite Solar Cells
JP7429687B2 (ja) ペロブスカイト様材料の膜を形成するための方法
RU2708365C1 (ru) Способ получения тонкопленочных структур галогенидных полупроводников (варианты)
RU2779016C2 (ru) Способ получения плёнки кристаллического материала на основе комплексных галогенидов с перовскитоподобной структурой
Mortan et al. Preparation of methylammonium lead iodide (CH₃NH₃PbI₃) thin film perovskite solar cells by chemical vapor deposition using methylamine gas (CH₃NH₂) and hydrogen iodide gas
WO2023144799A1 (en) Process for the production of nanocrystals of metal chalcohalides
Claudiu Preparation of methylammonium lead iodide (CH₃NH₃PbI₃) thin film perovskite solar cells by chemical vapor deposition using methylamine gas (CH₃NH₂) and hydrogen iodide gas

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20200724