RU2670721C2 - Ультразвуковой расходомер (варианты) - Google Patents

Ультразвуковой расходомер (варианты) Download PDF

Info

Publication number
RU2670721C2
RU2670721C2 RU2014143637A RU2014143637A RU2670721C2 RU 2670721 C2 RU2670721 C2 RU 2670721C2 RU 2014143637 A RU2014143637 A RU 2014143637A RU 2014143637 A RU2014143637 A RU 2014143637A RU 2670721 C2 RU2670721 C2 RU 2670721C2
Authority
RU
Russia
Prior art keywords
ultrasonic
transducer
screen
measuring tube
window
Prior art date
Application number
RU2014143637A
Other languages
English (en)
Other versions
RU2670721C9 (ru
RU2014143637A (ru
RU2014143637A3 (ru
Inventor
Ероен-Мартин ВАН-КЛОСТЕР
Original Assignee
Кроне Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кроне Аг filed Critical Кроне Аг
Publication of RU2014143637A publication Critical patent/RU2014143637A/ru
Publication of RU2014143637A3 publication Critical patent/RU2014143637A3/ru
Application granted granted Critical
Publication of RU2670721C2 publication Critical patent/RU2670721C2/ru
Publication of RU2670721C9 publication Critical patent/RU2670721C9/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/002Devices for damping, suppressing, obstructing or conducting sound in acoustic devices

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Изобретение относится к ультразвуковому расходомеру для измерения расхода текучей среды. Ультразвуковой расходомер для измерения расхода текучей среды (1) содержит измерительную трубку (2) и ультразвуковой преобразователь (3), причем измерительная трубка (2) имеет преобразовательную камеру (4), которая представляет собой выемку, находящуюся вне поперечного сечения потока в измерительной трубке (2), и генерирует завихрения в потоке текучей среды (1), причем для ультразвукового преобразователя (3) предусмотрен контакт с текучей средой (1) в преобразовательной камере (4) измерительной трубки (2), и ультразвуковой преобразователь (3) имеет корпус (5) преобразователя с ультразвуковым окном (8) и преобразовательный элемент (6), причем на направленной внутрь измерительной трубки (2) торцевой стороне (7) корпуса (5) преобразователя, у ультразвукового окна (8) корпуса (5) преобразователя предусмотрен цилиндрический экран (9), выполненный трубообразным и предназначенный для экранирования пути распространения ультразвуковых сигналов от завихрений, возникающих в потоке текучей среды. Экран (9) жестко соединен с корпусом (5) преобразователя или же с ультразвуковым окном (8) корпуса (5) преобразователя, а именно экран (9) и корпус (5) преобразователя или же ультразвуковое окно (8) корпуса (5) преобразователя выполнены в виде единого целого, или экран (9) эластично соединен с корпусом (5) преобразователя или же с ультразвуковым окном (8) корпуса (5) преобразователя посредством выемок (11) в основании экрана (9). Технический результат – снижение образования завихрений вдоль пути измерений или же влияния завихрений на измерения, отсутствие существенного влияния на ультразвуковой сигнал или же на путь распространения ультразвукового сигнала. 2 н. и 14 з.п. ф-лы, 5 ил.

Description

Изобретение относится к ультразвуковому расходомеру для измерения расхода текучей среды, содержащему измерительную трубку и ультразвуковой преобразователь, причем измерительная трубка имеет преобразовательную камеру, которая представляет собой выемку, находящуюся вне поперечного сечения потока в измерительной трубке, и генерирует завихрения в потоке текучей среды, причем для ультразвукового преобразователя предусмотрен контакт с текучей средой в преобразовательной камере измерительной трубки, и ультразвуковой преобразователь имеет корпус преобразователя с ультразвуковым окном и преобразовательный элемент.
Только что описанный ультразвуковой расходомер является нормальным ультразвуковым расходомером тогда, когда в его состав входят измерительная трубка и ультразвуковой преобразователь. Под ультразвуковым преобразователем следует, однако, понимать в дальнейшем также такой, который имеет измерительную трубку не в себе, а в котором измерительная трубка является, скорее, интегрированной частью линии, например трубопровода, через которую течет среда, расход которой должен быть измерен.
Применение ультразвуковых преобразователей уже давно в возрастающей мере приобрело значение при производственном измерении расхода жидкостей и газов, обобщенно - текучих сред. Измерение расхода с помощью ультразвуковых расходомеров осуществляется, как, например, в магнитно-индуктивных расходомерах, бесконтактно, т.е. без возмущающих встраиваний в поток, следствием которых всегда являются завихрения и повышенные потери давления.
Относительно способа измерений в ультразвуковых расходомерах различают, прежде всего, допплеровский способ и способ времени пробега, в способе времени пробега различают способ разности непосредственного времени пробега, способ частоты следования импульсов и способ фазового сдвига (см. Н. Bernard "Ultraschall-Durchflussmessung" в "Sensoren, Messaufnehmer", издано Bonfig/ Bartz/ Wolf в издательстве Expert verlag, далее директива VDI/VDE "Ultraschall-Durchflussmessung von Flussigkeiten in voll durchstromten Rohrleitungen").
В состав ультразвуковых расходомеров рассматриваемого типа входят необходимые для функционирования, с одной стороны, измерительная трубка, которая, как правило, вместе с входным участком и выходным участком представляет собой измерительный участок, и с другой стороны, по меньшей мере один ультразвуковой преобразователь, который отчасти называется также измерительной головкой. При этом ультразвуковой преобразователь может подразумеваться в очень общем виде. Прежде всего, в состав ультразвуковых преобразователей входят, с одной стороны, ультразвуковые передатчики, то есть измерительные головки для генерирования и излучения ультразвуковых сигналов, с другой стороны, ультразвуковые приемники, то есть измерительные головки для приема ультразвуковых сигналов и для преобразования принятых ультразвуковых сигналов в электрические сигналы. В состав ультразвуковых преобразователей входят, однако, также измерительные головки, которые объединяют в себе ультразвуковые передатчики и ультразвуковые приемники, то есть которые служат как для генерирования и излучения ультразвуковых сигналов, так и для приема ультразвуковых сигналов и преобразования принятых ультразвуковых сигналов в электрические сигналы.
Ультразвуковой преобразователь описанного последним типа применяется в ультразвуковых расходомерах, которые работают только с одним ультразвуковым преобразователем. Такого рода ультразвуковые расходомеры определяют скорость текучей среды с помощью допплеровского смещения отразившегося от неоднородности текучей среды ультразвукового сигнала. Точно так же является мыслимым, что допплеровское смещение ультразвуковых сигналов является определяемым через два расположенных без смещения на противоположных сторонах измерительной трубки ультразвуковых преобразователя.
Являются возможными также ультразвуковые расходомеры, которые базируются на способе времени пробега и в которых два ультразвуковых преобразователя расположены со смещением с одной и той же стороны измерительной трубки в направлении течения, причем ультразвуковые сигналы отражаются с противоположной ультразвуковым преобразователям стороны измерительной трубки. Как правило, предусматриваются, однако, два ультразвуковых преобразователя, которые расположены со смещением относительно друг друга в направлении течения текучей среды.
Вначале уже было сказано, что в состав рассматриваемого ультразвукового расходомера входят измерительная трубка и ультразвуковой преобразователь, что измерительная трубка имеет преобразовательную камеру и что предусмотрен контакт ультразвукового преобразователя с текучей средой в преобразовательной камере измерительной трубки. Однако изобретение относится, разумеется, также к ультразвуковым расходомерам с несколькими ультразвуковыми преобразователями, в которых, следовательно, измерительная трубка имеет тоже несколько преобразовательных камер.
Под преобразовательной камерой в рамках изобретения понимается находящаяся вне поперечного сечения потока в измерительной трубке выемка или углубление, как бы это ни было реализовано, где ультразвуковой преобразователь устанавливается так, что не вдается в поперечное сечение потока в измерительной трубке или, во всяком случае, не вдается существенно в поперечное сечение потока в измерительной трубке, то есть не влияет, во всяком случае, существенно на поток. В том случае, если предусмотрено несколько ультразвуковых преобразователей со смещением относительно друг друга в направлении течения, то они ориентированы друг на друга. Продольная ось преобразовательных камер проходит, как правило, под острым углом или же под тупым углом к направлению течения текучей среды или же к продольной оси измерительной трубки (см. рис. 6.1.1, стр. 532 литературного источника "Sensoren, Messaufnehmer", в указанном месте, рис. 8, стр. 18 директивы VDI/VDE 2642, в указанном месте, и фиг. 2-2 на стр. 21 литературного источника "Ultrasonic Measurements for Process Control", автор Lawrence С. Lynnworth, ACADEMIC PRESS, INC., издательство Harcourt Brace Jovanovich).
Имеются также ультразвуковые расходомеры, в которых ультразвуковые преобразователи не вступают в контакт с текучей средой, то есть расположены на измерительной трубке снаружи, так называемое расположение "clamp-on" (в виде бесконтактных измерительных клещей - прим. пер.). Изобретение относится, однако, только к ультразвуковым расходомерам, в которых ультразвуковые преобразователи контактируют с текучей средой.
Из-за наличия преобразовательных камер поток текущей в измерительной трубке среды не остается невозмущенным, скорее посредством преобразовательных камер в потоке генерируются завихрения. Исследование возникновения и описание процесса возникновения завихрений является актуальной областью исследований в науке. По существу образование завихрений может быть описано теорией резонанса в полых пространствах -"cavity resonance theory". Далее необходимо коротко разъяснить данную теорию.
Без ограничения универсальности разъяснения излагаются с помощью находящейся в измерительной трубке полости в форме открытого прямоугольного параллелепипеда, причем открытая сторона направлена к проточному каналу. Данные разъяснения являются, тем не менее, без затруднений переносимыми на любую форму преобразовательных камер. Полость имеет пять закрытых сторон, а именно: днище полости и четыре боковых поверхности, причем существенными для разъяснений являются только две боковые поверхности, а именно: первая боковая поверхность, перпендикулярная к направлению течения, и вторая боковая поверхность, перпендикулярная к направлению течения, причем первая боковая поверхность находится перед второй боковой поверхностью, если смотреть в направлении течения.
Доминирующими при образовании завихрений явлениями или же механизмами являются, во-первых, так называемые моды слоя сдвига ("shear layer modes") и, во-вторых, так называемые моды турбулентного слоя. Свободным слоем сдвига называют в общем случае переходную область между двумя параллельными потоками с разными скоростями. Моды слоя сдвига являются зависимыми от длины и глубины полости, числа Маха, причем число Маха указывает отношение скорости среды к скорости звука в среде, М=U/c, и толщины 5 пограничного слоя. Пограничным слоем называется область потока вблизи стенки измерительной трубки, в которой силы вязкости являются величинами такого же порядка, как и силы инерции. При этом участок, на котором имеют влияние силы вязкости, называется толщиной пограничного слоя. Возникновение завихрений, обусловленных модами слоя сдвига, объясняется теперь описанным ниже образом.
Между полостью и находящейся в измерительной трубке "внешней областью" образуется свободный слой сдвига. Данный свободный слой сдвига является, как правило, нестабильным и имеет возмущения. Возмущения охватывающего полость свободного слоя сдвига наталкиваются на вторую боковую поверхность полости, то есть на заднюю, если смотреть в направлении течения, боковую поверхность. Посредством статического давления генерируется акустический импульс или же акустическая волна, который/которая распространяется против течения. Данной акустической волной обуславливается разность давлений между акустической волной, которая распространяется под слоем сдвига, и распространяющейся непрерывно акустической волной над слоем сдвига. Данная разность давлений влияет теперь на слой сдвига таким образом, что возникают дальнейшие возмущения слоя сдвига, слой сдвига "свертывается" и формирует завихрение, которое распространяется вниз по течению. Данное движущееся вниз по течению завихрение снова наталкивается на вторую боковую поверхность полости. Вследствие этого цепь обратной связи замыкается для возбуждения и поддержания системы, и генерируются последующие завихрения. То есть образуется доминирующее при периодических нестационарных флуктуациях давления состояние потока.
Резонансная частота обратного хода в полости может быть определена с помощью найденной Росситером (Rossiter) эмпирической формулы для прямоугольных полостей. Она выглядит так:
Figure 00000001
При этом Stn - число Струхаля, fn - частота вихревых срывов, L - длина полости, U - скорость потока, α - коэффициент, который указывает временную задержку между возникновением возмущения в слое сдвига и эмиссией или же возбуждением акустической волны/ акустического импульса на второй боковой поверхности полости, К - отношение между скоростью конвекции завихрений и свободной скоростью течения среды, и М - число Маха.
На основании приведенной формулы становится очевидным, что число Струхаля Stn является зависимым от числа Маха М. Экспериментально может быть, тем не менее, показано, что имеются также случаи, при которых число Струхаля Stn является квазипостоянным, то есть согласно этому также почти не зависящим от числа Маха М. Это приводит к предположению, что базирующийся на модах слоя сдвига механизм образования завихрений не может быть единственным, а напротив, должен существовать другой механизм, который основывается на явлениях чисто гидродинамической нестабильности. Этот другой механизм описывается посредством так называемых мод турбулентного слоя. Моды турбулентного слоя возникают, прежде всего, при высоких числах Рейнольдса. Генерируемые посредством данного механизма завихрения имеют более низкую частоту срыва, чем завихрения, обусловленные модами слоя сдвига. Моды турбулентного слоя характеризуются очень не стационарным течением с хаотическим характером, обусловленным тем, что взаимодействие между свободным слоем сдвига и потоком в полости выражено значительно сильнее.
Для решения представленной ранее проблемы, которая возникает вследствие генерируемых преобразовательными камерами завихрений, уже было предложено заполнять преобразовательные камеры пластмассой (см. фиг. 4-9 на стр. 257 литературного источника "Ultrasonic Measurments for Process Control", в указанном месте). При этом возникают, тем не менее, такие же, основывающиеся на законе Снеллиуса недостатки, как и в ультразвуковых расходомерах, в которых ультразвуковые преобразователи закреплены на измерительной трубке снаружи, то есть при так называемом расположении "clamp-on". Дополнительно имеются проблемы с акустическим импедансом и проблемы с заполняющей преобразовательные камеры пластмассой, прежде всего при высоких температурах. Связанные с заполнением преобразовательных камер пластмассой недостатки и проблемы являются причиной того, почему такое выполнение не нашло внедрения на практике.
С проблемой, которая вытекает из-за генерируемых преобразовательными камерами завихрений, мир специалистов уже имел дело также иным образом. В этом отношении делается ссылка также на DE 19648784 С2, US 6189389 B1, US 6748811 B1 и WO 2012084392 А1. Из DE 19648784 С2, US 6189389 B1 и US 6748811 B1 известны ультразвуковые расходомеры, в которых преобразовательные камеры снабжены со стороны входа имеющей ячейки решеткой. WO 2012084392 А1 показывает другую форму выполнения, а именно такую, в которой в преобразовательную камеру измерительной трубки перед ультразвуковым окном ультразвукового преобразователя перпендикулярно к ультразвуковому окну ультразвукового преобразователя вставлен направляющий щиток.
Исходя из уровня техники и описанных проблем, которые вытекают из генерируемых преобразовательными камерами завихрений, в основу изобретения положена задача создания ультразвукового расходомера, в котором обусловленная генерируемыми преобразовательными камерами завихрениями проблема решена лучше, чем в уровне техники.
Предлагаемый в изобретении ультразвуковой расходомер в обоих вариантах своего исполнения, охарактеризованных в независимых пунктах формулы, содержит измерительную трубку и ультразвуковой преобразователь, причем измерительная трубка имеет преобразовательную камеру, которая представляет собой выемку, находящуюся вне поперечного сечения потока в измерительной трубке, и генерирует завихрения в потоке текучей среды, причем для ультразвукового преобразователя предусмотрен контакт с текучей средой в преобразовательной камере измерительной трубки, и ультразвуковой преобразователь имеет корпус преобразователя с ультразвуковым окном и преобразовательный элемент, причем на направленной внутрь измерительной трубки торцевой стороне корпуса преобразователя, у ультразвукового окна корпуса преобразователя предусмотрен цилиндрический экран, выполненный трубообразным и предназначенный для экранирования пути распространения ультразвуковых сигналов от завихрений, возникающих в потоке текучей среды.
В первом варианте поставленная выше задача решена за счет того, что экран жестко соединен с корпусом преобразователя или же с ультразвуковым окном корпуса преобразователя, а именно экран и корпус преобразователя или же ультразвуковое окно корпуса преобразователя выполнены в виде единого целого, или за счет того, что экран эластично соединен с корпусом преобразователя или же с ультразвуковым окном корпуса преобразователя посредством выемок в основании экрана. Во втором варианте поставленная выше задача решена за счет того, что экран соединен с корпусом преобразователя или же с ультразвуковым окном корпуса преобразователя посредством по меньшей мере одного крепежного элемента, или за счет того, что экран закреплен на внутренней стенке преобразовательной камеры измерительной трубки.
Предусмотренный в соответствии с изобретением цилиндрический экран, который выполнен трубообразным, с одной стороны, снижает образование завихрений вдоль пути измерений или же влияние завихрений на измерения, с другой стороны, исключает во всяком случае существенное влияние на ультразвуковой сигнал или же на путь распространения ультразвукового сигнала, т.е. ультразвуковой сигнал не искажается, и путь его распространения не нарушается. Положенной в основу изобретения идеей является, таким образом, не предотвращение образования завихрений в преобразовательной камере, а, скорее, экранирование пути распространения ультразвукового сигнала от возникающих завихрений, причем влияние экрана на акустическое поведение ультразвукового преобразователя должно быть пренебрежимо малым.
Особые формы выполнения входящих в состав ультразвуковых расходомеров согласно изобретению ультразвуковых преобразователей разъясняются далее ниже во взаимосвязи с изображенными на чертеже формами выполнения. Здесь следует дополнительно указать лишь на то, что является возможным, что в особых случаях, в зависимости от имеющейся в наличии геометрии и рабочей частоты ультразвукового преобразователя, предусмотренный согласно изобретению экран начинает вибрировать самостоятельно. Если эти вибрации становятся слишком сильными, то является мыслимым, что экран взаимодействует с генерируемыми ультразвуковым преобразователем сигналами и, таким образом, оказывает влияние на ультразвуковой сигнал. Для того чтобы обойти данную проблему, согласно изобретению предусмотрены особые меры, которые вызывают разрыв связи между ультразвуковым преобразователем и цилиндрическим экраном. В этом отношении указывается также на то, что это еще разъясняется далее ниже во взаимосвязи с изображенными на чертеже формами выполнения.
Теперь имеются в деталях различные возможности оформления и усовершенствования соответствующего изобретению ультразвукового расходомера. Для этого указывается на подчиненные пункту 1 формулы изобретения пункты формулы изобретения и на описание в сочетании с чертежами. На чертежах показано:
фиг. 1 - пример выполнения соответствующего изобретению ультразвукового расходомера с первой формой выполнения входящего в состав соответствующего изобретению ультразвукового расходомера ультразвукового преобразователя,
фиг. 2 - вид сбоку на входящий в состав ультразвукового расходомера согласно фиг. 1 ультразвуковой преобразователь,
фиг. 3 - вторая форма выполнения входящего в состав соответствующего изобретению ультразвукового расходомера ультразвукового преобразователя,
фиг. 4 - третья форма выполнения входящего в состав соответствующего изобретению ультразвукового расходомера ультразвукового преобразователя,
фиг. 5 - четвертая форма выполнения входящего в состав соответствующего изобретению ультразвукового расходомера ультразвукового преобразователя.
В состав представленного на фиг. 1 ультразвукового расходомера для измерения расхода текучей среды 1 входит измерительная трубка 2 и ультразвуковой преобразователь 3. Измерительная трубка 2 имеет преобразовательную камеру 4. Для ультразвукового преобразователя 3 предусмотрен контакт с текучей средой 1 в преобразовательной камере 4 измерительной трубки 2, и он имеет корпус 5 преобразователя и преобразовательный элемент 6. Корпус 5 преобразователя имеет со своей направленной внутрь измерительной трубки 2 торцевой поверхности 7 ультразвуковое окно 8.
Согласно изобретению предусмотрен экран 9, назначение которого, действие и форма выполнения разъясняются подробнее ниже.
Как показано на фиг. 1, 2 и 3, в представленных на данных чертежах формах выполнения входящих в состав ультразвуковых расходомеров согласно изобретению ультразвуковых преобразователей 3 на направленной внутрь измерительной трубки 2 торцевой стороне 7 корпуса 5 преобразователя, конкретно на ультразвуковом окне 8 корпуса 5 преобразователя, предусмотрен экран 9. В остальном на данные формы выполнения распространяется то, что экран 9 жестко соединен с корпусом 5 преобразователя или же с ультразвуковым окном 8 корпуса 5 преобразователя. При этом "жесткое соединение" экрана 9 с корпусом 5 преобразователя или же с ультразвуковым окном 8 корпуса 5 преобразователя может быть реализовано также так, что экран 9 и корпус 5 преобразователя или же ультразвуковое окно 8 корпуса 5 преобразователя выполнены в виде единого целого.
В представленной на фиг. 4 форме выполнения входящего в состав соответствующего изобретению ультразвукового расходомера ультразвукового преобразователя 3 экран 9 связан с корпусом 5 преобразователя определенным образом эластично; можно было бы реализовать также эластичное соединение экрана 9 с ультразвуковым окном 8 корпуса 5 преобразователя.
Только на фиг. 1 и 5 показано, что при вставленном в преобразовательную камеру 4 ультразвуковом преобразователе 3 между экраном 9 и преобразовательной камерой 4 остается полость 10.
Фиг. 3, с одной стороны, а также фиг. 4, с другой стороны, показывают особые формы выполнения входящих в состав ультразвуковых расходомеров согласно изобретению ультразвуковых преобразователей 3. В форме выполнения согласно фиг. 3 в основании экрана 9, то есть там, где экран 9 соединен с ультразвуковым окном 8 корпуса 5 преобразователя, предусмотрены выемки 11. В отличие от этого в представленной на фиг. 4 форме выполнения имеет силу, что экран 9 соединен с корпусом 5 преобразователя посредством по меньшей мере одного крепежного элемента 12; тем не менее, является мыслимым также соединение экрана 9 посредством крепежного элемента с ультразвуковым окном 8 корпуса 5 преобразователя.
Во всех представленных на чертежах формах выполнения входящих в состав ультразвуковых расходомеров согласно изобретению ультразвуковых преобразователей 3 экран 9 связан с ультразвуковым окном 8 корпуса 5 преобразователя (фиг. 1, 2 и 3) или же связан с корпусом 5 преобразователя (фиг. 4). Тем не менее, является мыслимой также форма выполнения согласно фиг. 5, в которой экран 9 посредством по меньшей мере одного крепежного элемента 12 закреплен на внутренней стенке преобразовательной камеры 4 измерительной трубки 2.
Выше уже указывалось на то, что экран 9 может быть жестко соединен с корпусом 5 преобразователя или же с ультразвуковым окном 8 корпуса 5 преобразователя, но что является возможным также эластичное соединение экрана 9 с корпусом 5 преобразователя или же с ультразвуковым окном 8 корпуса 5 преобразователя. Переход между "жестким соединением" и "эластичным соединением" является "плавным". В то время как в формах выполнения согласно фиг. 1 и 2 экран 9 соединен с ультразвуковым окном 8 корпуса 5 преобразователя "особенно жестко", для формы выполнения согласно фиг. 4 имеет силу, что экран 9 соединен с корпусом 5 преобразователя "особенно эластично"; для этого также реализована полость 13 между экраном 9 и ультразвуковым окном 8 корпуса 5 преобразователя. Между "особенно жестким" соединением между экраном 9 и ультразвуковым окном 8 корпуса 5 преобразователя согласно фиг. 1 и 2 и "особенно эластичным" соединением экрана 9 с корпусом 5 преобразователя согласно фиг. 4 находится форма выполнения согласно фиг. 3, в которой определенная эластичность реализована за счет того, что в основании экрана 9, то есть там, где экран 9 соединен с ультразвуковым окном 8 корпуса 5 преобразователя, предусмотрены выемки 11.
Правильная интерпретация изображенных на всех чертежах форм выполнения входящих в состав ультразвуковых расходомеров согласно изобретению ультразвуковых преобразователей 3 уже без проблем приводит к результату, заключающемуся в том, что экран 9 в каждом случае имеет малую толщину стенки, относительно малую по сравнению с диаметром экрана 9.
В остальном, фиг. 1, 2, 3 и 4 показывают, что в изображенных формах выполнения входящих в состав ультразвуковых расходомеров согласно изобретению ультразвуковых преобразователей 3 экран 9 в каждом случае выполнен осесимметрично по отношению к ультразвуковому окну 8 корпуса 5 преобразователя, а фиг. 1, 2 и 4 показывают, что в данных формах выполнения экран 9 на его удаленном от корпуса 5 преобразователя или же от ультразвукового окна 8 корпуса 5 преобразователя конце имеет плоскую торцевую поверхность 14. Является, тем не менее, также мыслимым, что на его удаленном от корпуса преобразователя или же от ультразвукового окна корпуса преобразователя конце экран снабжен не лежащей в одной плоскости торцевой поверхностью, прежде всего торцевой поверхностью, которая соответствует искривлению измерительной трубки в области преобразовательной камеры.
Следовало бы указать еще на то, что для всех представленных на чертежах форм выполнения входящих в состав ультразвуковых расходомеров согласно изобретению ультразвуковых преобразователей 3 имеет силу, что внешний диаметр экрана 9 меньше, чем внутренний диаметр преобразовательной камеры 4, что экран 9 не вдается (или вдается лишь несущественно) в текучую среду 1 и что экран 9 может состоять из металла, прежде всего из высококачественной стали, из металлического сплава, из пластмассы или из керамики.
В ультразвуковых расходомерах согласно изобретению описанный ранее в подробностях цилиндрический трубообразный экран 9 реализован в деталях так, что, с одной стороны, снижается образование завихрений вдоль пути измерений или же влияние завихрений на измерения, но с другой стороны, не оказывается, во всяком случае, существенное влияние на ультразвуковой сигнал или же на путь распространения ультразвукового сигнала или же он, во всяком случае, существенно не нарушается.

Claims (16)

1. Ультразвуковой расходомер для измерения расхода текучей среды (1), содержащий измерительную трубку (2) и ультразвуковой преобразователь (3), причем измерительная трубка (2) имеет преобразовательную камеру (4), которая представляет собой выемку, находящуюся вне поперечного сечения потока в измерительной трубке (2), и генерирует завихрения в потоке текучей среды (1), причем для ультразвукового преобразователя (3) предусмотрен контакт с текучей средой (1) в преобразовательной камере (4) измерительной трубки (2), и ультразвуковой преобразователь (3) имеет корпус (5) преобразователя с ультразвуковым окном (8) и преобразовательный элемент (6), причем на направленной внутрь измерительной трубки (2) торцевой стороне (7) корпуса (5) преобразователя, у ультразвукового окна (8) корпуса (5) преобразователя предусмотрен цилиндрический экран (9), выполненный трубообразным и предназначенный для экранирования пути распространения ультразвуковых сигналов от завихрений, возникающих в потоке текучей среды, отличающийся тем, что экран (9) жестко соединен с корпусом (5) преобразователя или же с ультразвуковым окном (8) корпуса (5) преобразователя, а именно экран (9) и корпус (5) преобразователя или же ультразвуковое окно (8) корпуса (5) преобразователя выполнены в виде единого целого, или экран (9) эластично соединен с корпусом (5) преобразователя или же с ультразвуковым окном (8) корпуса (5) преобразователя посредством выемок (11) в основании экрана (9).
2. Ультразвуковой расходомер по п. 1, отличающийся тем, что экран (9) имеет толщину стенки, относительно малую по сравнению с его диаметром.
3. Ультразвуковой расходомер по п. 1, отличающийся тем, что экран (9) выполнен и/или расположен осесимметрично по отношению к ультразвуковому окну (8) корпуса (5) преобразователя.
4. Ультразвуковой расходомер по п. 1, отличающийся тем, что экран (9) на его удаленном от корпуса (5) преобразователя или же от ультразвукового окна (8) корпуса (5) преобразователя конце имеет плоскую торцевую поверхность (14).
5. Ультразвуковой расходомер по п. 1, отличающийся тем, что экран (9) имеет на его удаленном от корпуса преобразователя или же от ультразвукового окна корпуса преобразователя конце не лежащую в одной плоскости торцевую поверхность.
6. Ультразвуковой расходомер по п. 1, отличающийся тем, что внешний диаметр экрана (9) меньше, чем внутренний диаметр преобразовательной камеры (4).
7. Ультразвуковой расходомер по одному из пп. 1-6, отличающийся тем, что экран (9) не вдается в текучую среду (1) или вдается лишь несущественно.
8. Ультразвуковой расходомер по одному из пп. 1-6, отличающийся тем, что экран (9) состоит из металла, прежде всего из высококачественной стали, из металлического сплава, из пластмассы или из керамики.
9. Ультразвуковой расходомер для измерения расхода текучей среды (1), содержащий измерительную трубку (2) и ультразвуковой преобразователь (3), причем измерительная трубка (2) имеет преобразовательную камеру (4), которая представляет собой выемку, находящуюся вне поперечного сечения потока в измерительной трубке (2), и генерирует завихрения в потоке текучей среды (1), причем для ультразвукового преобразователя (3) предусмотрен контакт с текучей средой (1) в преобразовательной камере (4) измерительной трубки (2), и ультразвуковой преобразователь (3) имеет корпус (5) преобразователя с ультразвуковым окном (8) и преобразовательный элемент (6), причем на направленной внутрь измерительной трубки (2) торцевой стороне (7) корпуса (5) преобразователя, у ультразвукового окна (8) корпуса (5) преобразователя предусмотрен цилиндрический экран (9), выполненный трубообразным и предназначенный для экранирования пути распространения ультразвуковых сигналов от завихрений, возникающих в потоке текучей среды, отличающийся тем, что экран (9) соединен с корпусом (5) преобразователя или же с ультразвуковым окном (8) корпуса (5) преобразователя посредством по меньшей мере одного крепежного элемента (12) или экран (9) закреплен на внутренней стенке преобразовательной камеры (4) измерительной трубки (2).
10. Ультразвуковой расходомер по п. 9, отличающийся тем, что экран (9) имеет толщину стенки, относительно малую по сравнению с его диаметром.
11. Ультразвуковой расходомер по п. 9, отличающийся тем, что экран (9) выполнен и/или расположен осесимметрично по отношению к ультразвуковому окну (8) корпуса (5) преобразователя.
12. Ультразвуковой расходомер по п. 9, отличающийся тем, что экран (9) на его удаленном от корпуса (5) преобразователя или же от ультразвукового окна (8) корпуса (5) преобразователя конце имеет плоскую торцевую поверхность (14).
13. Ультразвуковой расходомер по п. 9, отличающийся тем, что экран (9) имеет на его удаленном от корпуса преобразователя или же от ультразвукового окна корпуса преобразователя конце не лежащую в одной плоскости торцевую поверхность.
14. Ультразвуковой расходомер по п. 9, отличающийся тем, что внешний диаметр экрана (9) меньше, чем внутренний диаметр преобразовательной камеры (4).
15. Ультразвуковой расходомер по одному из пп. 9-14, отличающийся тем, что экран (9) не вдается в текучую среду (1) или вдается лишь несущественно.
16. Ультразвуковой расходомер по одному из пп. 9-14, отличающийся тем, что экран (9) состоит из металла, прежде всего из высококачественной стали, из металлического сплава, из пластмассы или из керамики.
RU2014143637A 2013-10-30 2014-10-29 Ультразвуковой расходомер (варианты) RU2670721C9 (ru)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102013018187 2013-10-30
DE102013018187.9 2013-10-30
DE102014002223 2014-02-21
DE102014002223.4 2014-02-21
DE102014004747.4 2014-04-02
DE102014004747.4A DE102014004747B4 (de) 2013-10-30 2014-04-02 Ultraschall-Durchflussmesser

Publications (4)

Publication Number Publication Date
RU2014143637A RU2014143637A (ru) 2016-05-20
RU2014143637A3 RU2014143637A3 (ru) 2018-03-05
RU2670721C2 true RU2670721C2 (ru) 2018-10-24
RU2670721C9 RU2670721C9 (ru) 2018-11-29

Family

ID=51690188

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014143637A RU2670721C9 (ru) 2013-10-30 2014-10-29 Ультразвуковой расходомер (варианты)

Country Status (6)

Country Link
US (1) US9506788B2 (ru)
EP (1) EP2871449A1 (ru)
JP (1) JP6552180B2 (ru)
CN (1) CN104596600B (ru)
DE (1) DE102014004747B4 (ru)
RU (1) RU2670721C9 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2762842B1 (de) * 2013-01-28 2024-02-14 Krohne AG Ultraschallwandler für ein ultraschalldurchflussmessgerät
DE102014009581A1 (de) 2014-07-01 2016-01-07 Krohne Messtechnik Gmbh Ultraschall-Durchflussmessgerät und Verfahren zum Betreiben eines Ultraschall-Durchflussmessgerätes
EP3376177B1 (en) * 2017-03-14 2019-11-20 Endress + Hauser Flowtec AG Ultrasonic flowmeter
EP3376178A1 (en) * 2017-03-14 2018-09-19 Endress + Hauser Flowtec AG Ultrasonic flowmeter
DE102017110308A1 (de) * 2017-05-12 2018-11-15 Krohne Ag Ultraschalldurchflussmessgerät
JP7032189B2 (ja) * 2018-03-14 2022-03-08 株式会社キーエンス クランプオン式超音波流量センサ
CN211452465U (zh) * 2019-09-30 2020-09-08 霍尼韦尔(天津)有限公司 超声波流量计和流体管路
DE102021104161A1 (de) * 2021-02-22 2022-08-25 Krohne Ag Messgerät, Sensoreinheit und Verfahren zur Bestimmung wenigstens eines Parameters eines Mediums

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173889A (en) * 1977-03-25 1979-11-13 Crouzet Ultrasonic flowmeter
EP0125845A1 (en) * 1983-05-11 1984-11-21 British Gas Corporation Ultrasonic flowmeter
EP0249689A1 (de) * 1986-06-17 1987-12-23 Landis & Gyr Betriebs AG Messwertgeber zur Bestimmung der Durchflussmenge einer strömenden Flüssigkeit
JPS6326537A (ja) * 1986-07-18 1988-02-04 Kawasaki Steel Corp 超音波流量計
DE10153297C2 (de) * 2001-09-14 2003-09-25 Krohne Ag Basel Meßgerät
EP1610587B1 (en) * 2003-04-28 2011-06-15 Panasonic Corporation Ultrasonic sensor

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151818U (ja) * 1982-04-07 1983-10-12 本田技研工業株式会社 内燃エンジン吸入空気用超音波流量計
US4467659A (en) * 1982-08-12 1984-08-28 Joseph Baumoel Transducer having metal housing and employing mode conversion
US4523478A (en) * 1983-08-18 1985-06-18 Nusonics, Inc. Sonic flow meter having improved flow straighteners
JPS60219513A (ja) * 1984-04-12 1985-11-02 マイクロ・ピユア−・システムス・インコ−ポレ−テツド 超音波検出
JPS6193914A (ja) * 1984-10-13 1986-05-12 Sumitomo Metal Ind Ltd 超音波式流体流量測定方法および装置
JPH0537218Y2 (ru) * 1986-02-13 1993-09-21
US4783997A (en) * 1987-02-26 1988-11-15 Panametrics, Inc. Ultrasonic transducers for high temperature applications
US5179862A (en) * 1990-06-29 1993-01-19 Panametrics, Inc. Snap-on flow measurement system
US5515733A (en) * 1991-03-18 1996-05-14 Panametrics, Inc. Ultrasonic transducer system with crosstalk isolation
US5289436A (en) * 1992-10-22 1994-02-22 General Electric Company Ultrasonic waveguide
JPH09511570A (ja) * 1994-04-19 1997-11-18 シーメンス アクチエンゲゼルシヤフト 超音波変換器の保持装置
US5467321A (en) * 1994-09-26 1995-11-14 Baumoel; Joseph Insertion ultrasonic transducer with mode conversion and method for reducing multiple signal reception
DE4443415A1 (de) 1994-12-06 1996-06-13 Siemens Ag Vorrichtung zur Aufnahme eines Schallwandlers und Ultraschall-Durchflußmesser mit derselben
US6189389B1 (en) 1996-05-28 2001-02-20 Krohne A.G. Ultrasonic flowmeter
DE19648784C2 (de) 1996-05-28 1998-04-09 Krohne Ag Ultraschall-Durchflußmesser
CN101424554B (zh) * 1999-03-17 2010-12-01 松下电器产业株式会社 超声波流量计
US6748811B1 (en) 1999-03-17 2004-06-15 Matsushita Electric Industrial Co., Ltd. Ultrasonic flowmeter
JP2003065817A (ja) * 2001-08-22 2003-03-05 Matsushita Electric Ind Co Ltd 超音波流量計測装置
EP1293960A3 (de) 2001-09-14 2004-09-08 Krohne AG Ultraschallwellensende- bzw. -empfangsvorrichtung mit einem Ultraschallwandler und einem Ultraschallwellenleiter
JP3518538B2 (ja) * 2001-10-31 2004-04-12 松下電器産業株式会社 超音波流量計測装置
US6950768B2 (en) * 2003-09-08 2005-09-27 Daniel Industries, Inc. Self-tuning ultrasonic meter
CN2658719Y (zh) * 2003-11-03 2004-11-24 邓立群 可在线安装维护的超声波换能器装置
US7086286B1 (en) * 2005-06-09 2006-08-08 General Electric Company Transducer holder and nozzle
US7299140B2 (en) * 2005-12-14 2007-11-20 Thermo Fisher Scientific Inc. Method and system for multi-path ultrasonic flow measurement of partially developed flow profiles
JP4949951B2 (ja) * 2007-07-06 2012-06-13 リコーエレメックス株式会社 超音波流量計
JP2009288151A (ja) * 2008-05-30 2009-12-10 Ricoh Elemex Corp 超音波流量計
JP2009300281A (ja) * 2008-06-13 2009-12-24 Ricoh Elemex Corp 超音波流量計
DE102009045620A1 (de) * 2009-10-13 2011-05-19 Robert Bosch Gmbh Ultraschallströmungssensor zur Erfassung einer Strömung eines fluiden Mediums
CN201859030U (zh) * 2010-11-02 2011-06-08 石家庄长通电器有限公司 超声波热量表换能器测量管段
DE102010063789A1 (de) * 2010-12-21 2012-06-21 Endress + Hauser Flowtec Ag Ultraschall-Durchflussmessgerät

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173889A (en) * 1977-03-25 1979-11-13 Crouzet Ultrasonic flowmeter
EP0125845A1 (en) * 1983-05-11 1984-11-21 British Gas Corporation Ultrasonic flowmeter
EP0249689A1 (de) * 1986-06-17 1987-12-23 Landis & Gyr Betriebs AG Messwertgeber zur Bestimmung der Durchflussmenge einer strömenden Flüssigkeit
JPS6326537A (ja) * 1986-07-18 1988-02-04 Kawasaki Steel Corp 超音波流量計
DE10153297C2 (de) * 2001-09-14 2003-09-25 Krohne Ag Basel Meßgerät
EP1610587B1 (en) * 2003-04-28 2011-06-15 Panasonic Corporation Ultrasonic sensor

Also Published As

Publication number Publication date
DE102014004747A1 (de) 2015-05-21
RU2670721C9 (ru) 2018-11-29
CN104596600A (zh) 2015-05-06
JP6552180B2 (ja) 2019-07-31
EP2871449A1 (de) 2015-05-13
RU2014143637A (ru) 2016-05-20
CN104596600B (zh) 2020-07-17
JP2015087397A (ja) 2015-05-07
DE102014004747B4 (de) 2023-02-16
US9506788B2 (en) 2016-11-29
RU2014143637A3 (ru) 2018-03-05
US20150114134A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
RU2670721C2 (ru) Ультразвуковой расходомер (варианты)
US11293791B2 (en) Leaky lamb wave flowmeter
CN106855424B (zh) 使用接收信号的窗口化的超声流量计
CN1725019B (zh) 钳式多普勒超声波流速分布仪
EP0681685B1 (en) Fluid flow meter
KR20050004213A (ko) 초음파 유량계와 초음파 유량계측방법
CA2619063C (en) Driver configuration for an ultrasonic flow meter
JP2015232519A (ja) クランプオン式超音波流量計及び流量の計測方法
WO2019113141A1 (en) Ultrasonic transducers using adaptive multi-frequency hopping and coding
US7412902B2 (en) Device for determination and/or monitoring of the volumetric and/or mass flow of a medium and having coupling element including two element portions
CN109813381B (zh) 用于确定测量体积中的压力的测量装置
JP2895704B2 (ja) 超音波流量計
Han et al. Studies on the transducers of clamp-on transit-time ultrasonic flow meter
JP2005156401A (ja) クランプオン型ドップラー式超音波流速分布計
RU2649421C1 (ru) Ультразвуковой расходомер с металлическим датчиком
JP7151311B2 (ja) 超音波流量計
RU172103U1 (ru) Ультразвуковой расходомер с металлическим датчиком
US11852608B2 (en) Fluid measuring device
JP2010181321A (ja) 超音波流量計
CN110836980B (zh) 用于确定空心体中的流体的流动速度的设备和方法
GB2400439A (en) Ultrasonic flowmeter with flush mounting ring shaped transducers for propagating axisymmetric waves along a flowtube
RU2161779C1 (ru) Расходомер
KR20100007215A (ko) 초음파 유량계의 초음파 트랜스듀서 제어방법과, 이러한방법이 적용된 초음파 유량계
Temperley Optimisation of an ultrasonic flow meter based on experimental and numerical investigation of flow and ultrasound propagation
RU95345U1 (ru) Водомерный узел

Legal Events

Date Code Title Description
TH4A Reissue of patent specification