RU2666940C2 - Способ и устройство для полученния вспененных микросфер - Google Patents
Способ и устройство для полученния вспененных микросфер Download PDFInfo
- Publication number
- RU2666940C2 RU2666940C2 RU2015156251A RU2015156251A RU2666940C2 RU 2666940 C2 RU2666940 C2 RU 2666940C2 RU 2015156251 A RU2015156251 A RU 2015156251A RU 2015156251 A RU2015156251 A RU 2015156251A RU 2666940 C2 RU2666940 C2 RU 2666940C2
- Authority
- RU
- Russia
- Prior art keywords
- heating zone
- microspheres
- suspension
- expandable microspheres
- pressure
- Prior art date
Links
- 239000004005 microsphere Substances 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims description 46
- 238000002360 preparation method Methods 0.000 title description 2
- 238000010438 heat treatment Methods 0.000 claims abstract description 98
- 239000000725 suspension Substances 0.000 claims abstract description 86
- 229920000103 Expandable microsphere Polymers 0.000 claims abstract description 56
- 238000005187 foaming Methods 0.000 claims abstract description 40
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 28
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 22
- 239000006260 foam Substances 0.000 claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 13
- 239000002002 slurry Substances 0.000 claims abstract description 5
- 238000005485 electric heating Methods 0.000 claims description 12
- 239000002826 coolant Substances 0.000 claims description 11
- 239000004088 foaming agent Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 16
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000004604 Blowing Agent Substances 0.000 abstract description 2
- 230000001419 dependent effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 15
- 239000007900 aqueous suspension Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000178 monomer Substances 0.000 description 8
- -1 steam Substances 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 7
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 6
- 239000002360 explosive Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000003570 air Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 230000010349 pulsation Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N 2,2-dimethylbutane Chemical compound CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Natural products CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 150000002118 epoxides Chemical class 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 239000001282 iso-butane Substances 0.000 description 2
- 239000004579 marble Substances 0.000 description 2
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical group ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- FYBFGAFWCBMEDG-UHFFFAOYSA-N 1-[3,5-di(prop-2-enoyl)-1,3,5-triazinan-1-yl]prop-2-en-1-one Chemical compound C=CC(=O)N1CN(C(=O)C=C)CN(C(=O)C=C)C1 FYBFGAFWCBMEDG-UHFFFAOYSA-N 0.000 description 1
- KHOUKKVJOPQVJM-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OCC(CO)(CO)CO KHOUKKVJOPQVJM-UHFFFAOYSA-N 0.000 description 1
- UFUXVJFOILLERS-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OCC(C)(C)CO UFUXVJFOILLERS-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- OYUNTGBISCIYPW-UHFFFAOYSA-N 2-chloroprop-2-enenitrile Chemical compound ClC(=C)C#N OYUNTGBISCIYPW-UHFFFAOYSA-N 0.000 description 1
- RVBFWXYFXKDVKG-UHFFFAOYSA-N 2-ethoxyprop-2-enenitrile Chemical compound CCOC(=C)C#N RVBFWXYFXKDVKG-UHFFFAOYSA-N 0.000 description 1
- GTJOHISYCKPIMT-UHFFFAOYSA-N 2-methylundecane Chemical compound CCCCCCCCCC(C)C GTJOHISYCKPIMT-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 241000239366 Euphausiacea Species 0.000 description 1
- SGVYKUFIHHTIFL-UHFFFAOYSA-N Isobutylhexyl Natural products CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- IAXXETNIOYFMLW-COPLHBTASA-N [(1s,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C(=C)C)C[C@H]1C2(C)C IAXXETNIOYFMLW-COPLHBTASA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- IEYIKBYTBUOHHW-UHFFFAOYSA-N decane-1,10-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OCCCCCCCCCCO IEYIKBYTBUOHHW-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229940119545 isobornyl methacrylate Drugs 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- VKPSKYDESGTTFR-UHFFFAOYSA-N isododecane Natural products CC(C)(C)CC(C)CC(C)(C)C VKPSKYDESGTTFR-UHFFFAOYSA-N 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 1
- AYEFIAVHMUFQPZ-UHFFFAOYSA-N propane-1,2-diol;prop-2-enoic acid Chemical compound CC(O)CO.OC(=O)C=C AYEFIAVHMUFQPZ-UHFFFAOYSA-N 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007651 thermal printing Methods 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/08—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
- B01J8/087—Heating or cooling the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/36—Feeding the material to be shaped
- B29C44/38—Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
- B29C44/44—Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/08—Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/02—Treatment
- C04B20/04—Heat treatment
- C04B20/06—Expanding clay, perlite, vermiculite or like granular materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/06—Details of tube reactors containing solid particles
- B01J2208/065—Heating or cooling the reactor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/22—Expandable microspheres, e.g. Expancel®
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Группа изобретений относится к способу получения вспененных термопластичных микросфер и устройству для их получения. Способ получения вспененных термопластичных микросфер из невспененных термически вспенивающихся термопластичных микросфер, включающих оболочку из термопластичного полимера, инкапсулирующую вспенивающий агент, включает подачу суспензии вспенивающихся термопластичных микросфер в жидкой среде в зону нагрева, нагрев суспензии в зоне нагрева, без непосредственного контакта со средой теплоносителя, до достижения вспенивающимися микросферами температуры от 50 до 250°С, и поддержание давления в зоне нагрева от 4 до 50 бар (0,4 до 5 МПа), чтобы микросферы в суспензии не вспенились бы полностью, отведение суспензии вспенивающихся микросфер из зоны нагрева в зону с давлением, достаточно низким для того, чтобы микросферы вспенились. Группа изобретений развита в зависимых пунктах формулы изобретения. Технический результат – вспенивание микросфер в суспензии без необходимости введения избыточной воды. 2 н. и 32 з.п. ф-лы, 1 ил., 2 пр.
Description
Настоящее изобретение относится к способу получения вспененных термопластичных микросфер и к устройству для их получения.
Термически вспенивающиеся микросферы известны из уровня техники и подробно описываются, например, в патенте США № 3615972. Различные сорта вспенивающихся микросфер, имеющих различные температуры вспенивания, продаются компанией AkzoNobel под торговой маркой Expancel™ как в виде сухих свободно текучих микросфер, так и в виде водной суспензии микросфер.
Такие вспенивающиеся микросферы включают порообразующее вещество, инкапсулированное внутри термопластичной оболочки. При нагревании порообразующее вещество испаряется, увеличивая внутреннее давление, в то время как оболочка размягчается, в результате приводя к существенному расширению микросфер, обычно в 2-5 раз относительно своего диаметра.
Термопластичные микросферы можно использовать в различных областях использования в виде невспененных или предварительно вспененных. Примерами продуктов, в которых используются сухие (по существу не содержащие воду) предварительно вспененные микросферы, являются сенсибилизаторы в эмульсионных взрывчатых веществах и легкий наполнитель в красках на основе растворителей, различные термопластичные материалы, такие как облагороженный мрамор, полиэфирная шпатлевка и искусственная древесина. Во многих продуктах, таких как краски и покрытия на водной основе, бумага для термопечати, пористая керамика и эмульсионные взрывчатые вещества, используют увлажненные предварительно вспененные микросферы, обычно в виде водной суспензии.
Транспортировка предварительно вспененных микросфер требует значительного пространства, вследствие чего невспененные микросферы часто транспортируют к конечному пользователю вспененных микросфер и вспенивают на месте. Микросферы затем можно подвергнуть вспениванию поблизости или непосредственно в процессе получения конечного продукта, например, любого из указанных выше.
Для вспенивания термопластичных микросфер были разработаны различные способы и устройства.
Патенты США 5484815 и 7192989 описывают способы и устройства, подходящие для вспенивания сухих микросфер.
Патент США 4513106 описывает способ и устройство, подходящие для вспенивания микросфер в водной суспензии, где пар вводят в суспензию в зоне повышенного давления в количестве достаточном для нагревания микросфер и, по меньшей мере, для их частичного вспенивания, после чего давая возможность частично вспененным микросферам покинуть зону повышенного давления при падении давления, в результате чего микросферы дополнительно вспениваются и ускоряются в потоке со скоростью, по меньшей мере, 1 м/с.
Преимущество вспенивания микросфер в водной суспензии состоит в предотвращении пылеобразования. Однако является желательным дополнительно улучшить существующую технологию вспенивания микросфер в суспензии.
Цель настоящего изобретения состоит в предложении способа и устройства для вспенивания микросфер в суспензии без необходимости введения избыточной воды.
Другая цель изобретения состоит в предложении способа и устройства для вспенивания микросфер в суспензии, которые являются гибкими в отношении того, какую жидкость используют для суспензии.
Дальнейшая цель изобретения состоит в предложении способа и устройства для вспенивания микросфер в суспензии, которые являются гибкими в отношении средства для нагрева микросфер.
Еще одна дальнейшая цель изобретения состоит в предложении способа и устройства для вспенивания микросфер в суспензии с низким риском агломерации микросфер.
Еще одна дальнейшая цель изобретения состоит в предложении способа и устройства для вспенивания микросфер в суспензии, которые также можно использовать для широкого диапазона сортов микросфер, имеющих различные температуры вспенивания.
Согласно изобретению, было обнаружено, что данные и другие цели можно достичь способом и устройством согласно прилагаемой формуле изобретения.
Более конкретно, изобретение относится к способу получения вспененных термопластичных микросфер из невспененных термически вспенивающихся термопластичных микросфер, включающих оболочку из термопластичного полимера, инкапсулирующую порообразующее вещество, причем указанный способ включает:
(a) подачу суспензии таких вспенивающихся термопластичных микросфер в жидкой среде в зону нагрева;
(b) нагрев суспензии в зоне нагрева, без непосредственного контакта со средой теплоносителя, чтобы вспенивающиеся микросферы достигли, по меньшей мере, температуры, при которой они начали бы вспениваться при атмосферном давлении, и поддержание давления в зоне нагрева достаточно высоким, чтобы микросферы в суспензии не вспенились бы полностью; и,
(c) выведение суспензии вспенивающихся микросфер из зоны нагрева в зону с давлением достаточно низким для того, чтобы микросферы вспенились.
Далее изобретение относится к устройству для вспенивания невспененных термически вспенивающихся термопластичных микросфер, включающих оболочку из термопластичного полимера, инкапсулирующую порообразующее вещество, причем указанное устройство включает зону нагрева, имеющую патрубок ввода и выпускной патрубок и способную выдержать давление, по меньшей мере, 4 бар (0,4 МПа), средство для подачи суспензии невспененных вспенивающихся термопластичных микросфер в жидкой среде в зону нагрева и способное создавать давление, по меньшей мере, 4 бар (0,4 МПа), в зоне нагрева, и средство для нагрева суспензии вспенивающихся микросфер до температуры, по меньшей мере, 60°C без непосредственного контакта со средой теплоносителя.
Невспененные термически вспенивающиеся термопластичные микросферы в дальнейшем называются вспенивающимися микросферами. Размер частиц вспенивающихся микросфер может варьироваться в широких пределах, и его можно выбрать, учитывая желаемые свойства продукта, в котором они используются. В большинстве случаев, предпочтительный средний по объему диаметр, определенный рассеянием лазерного излучения на анализаторе Malvern Mastersizer Hydro 2000 SM на влажных образцах, составляет от 1 мкм до 1 мм, предпочтительно, от 2 мкм до 0,5 мм и, особенно предпочтительно, от 3 мкм до 100 мкм. Диаметр микросфер увеличивается при вспенивании, например, в 2-5 раз.
Жидкая среда суспензии вспенивающихся микросфер может представлять собой любую жидкость, которая инертна по отношению к микросферам и может выдержать температуру, до которой нагревают суспензию. Во многих случаях предпочтительной является вода или жидкость на водной основе, таким образом формирующая водную суспензию, но в зависимости от предполагаемого использования вспененных микросфер для суспензии также могут быть предпочтительными органические жидкости, такие как, по меньшей мере, одна жидкость, выбранная из растительного масла, минерального масла и глицерина, причем данные органические жидкости могут не содержать воду. Поскольку в способе по изобретению в суспензию не требуется добавлять пар или воду в любой другой форме, можно приготовить суспензию не содержащих воду вспененных микросфер, которые можно использовать непосредственно в областях, в которых вода нежелательна. Кроме того, поскольку к суспензии не надо добавлять никакую другую жидкую среду, можно приготовить суспензию вспененных микросфер, имеющую высокое и контролируемое содержание твердых веществ.
В большинстве коммерческих способов получения вспенивающихся микросфер, их обычно сначала получают в водной суспензии, и такую суспензию можно использовать непосредственно в способе по данному изобретению, необязательно после разбавления или обезвоживания до желательного содержания микросфер. С другой стороны, такую водную суспензию можно высушить, получая микросферы, по существу не содержащие воду, которые можно использовать для приготовления суспензии в органической жидкости.
Содержание вспенивающихся микросфер в суспензии зависит от того, что желательно для продукта, получаемого после вспенивания. Верхний предел ограничивается способностью суспензии к перекачке и возможностью транспортировки суспензии через зону нагрева. В большинстве случаев содержание вспенивающихся микросфер соответственно составляет от 5 до 50 масс.%, предпочтительно, от 10 до 40 масс.% и, наиболее предпочтительно, от 15 до 30 масс.%.
Суспензия вспенивающихся микросфер течет через зону нагрева, которая может быть изготовлена из любого сосуда, трубы или трубки, снабженных патрубком вводом и выпускным патрубком и выдерживающих поддерживаемое в них давление. Средство для нагрева суспензии в данной зоне может, например, представлять собой текучую теплопередающую среду, не находящуюся в непосредственном контакте с суспензией, электронагревательные элементы или микроволновое излучение. Например, зона нагрева может представлять собой теплообменник, включающий, по меньшей мере, одну трубу или трубку, окруженную средой теплоносителя, не находящейся в непосредственном контакте с суспензией вспенивающихся микросфер. Теплообменник может, например, включать несколько предпочтительно параллельных труб или трубок, например, от 2 до 10 или от 3 до 7 труб или трубок, предпочтительно соединенных с общим патрубком ввода или общим выпускным патрубком. Также можно иметь только одну трубу или трубку. Использование одиночной трубы или трубки (т.е. только одной) имеет преимущество, состоящее в снижении риска неравномерного распределения потока, вызываемого частичным засорением в одной или нескольких параллельных трубах. Такая одиночная труба или трубка предпочтительно окружена средой теплоносителя, такой как горячая вода, и ее предпочтительно располагают в сосуде или резервуаре, содержащем теплопередающую среду.
Среда теплоносителя может представлять собой любую подходящую теплопередающую среду, такую как горячая вода, пар или масло. В качестве альтернативы, тепло может обеспечиваться электронагревательными элементами, например, внутри или снаружи зоны нагрева или в ее стенках, или их любой комбинацией. В качестве дальнейшей альтернативы, нагрев можно обеспечить с помощью электромагнитного излучения, такого как микроволновое излучение.
С помощью данного изобретения можно вспенивать сорта микросфер, требующих более высокие температуры, чем практически достижимые посредством пара, например, используя в качестве среды теплоносителя электронагревательные элементы или горячее масло. Например, можно вспенивать микросферы, требующие температуры, превышающие 200°C. Также можно подвергать вспениванию микросферы, которые могут деформироваться или повреждаться любым другим путем при слишком высоких температурах, используя среду теплоносителя, имеющую сравнительно низкую температуру, например, от 60 до 100°C, такую как горячая вода.
Сосуд или, по меньшей мере, одна труба или трубка, в которых протекает суспензия вспенивающихся микросфер, предпочтительно выполнен из теплопроводящего материала аналогичного стали или меди, в особенности если нагревание суспензии осуществляется посредством среды теплоносителя или электронагревательными элементами. Если нагревание осуществляется электромагнитным излучением, сосуд или, по меньшей мере, одну трубу или трубку предпочтительно изготавливают из материала, проницаемого для таких излучений, например, из различных видов полимерных материалов.
В теплообменнике, включающем, по меньшей мере, одну трубу или трубку, каждая такая, по меньшей мере, одна труба или трубка может, например, иметь внутренний диаметр от 2 до 25 мм или, более предпочтительно, внутренний диаметр составляет от 4 до 15 мм или, наиболее предпочтительно, от 6 до 12 мм. Толщина стенок, по меньшей мере, одной трубы или трубки соответственно составляет от 0,5 до 3 мм, предпочтительно, от 0,7 до 1,5 мм.
Если нагрев осуществляют электронагревательными элементами, то такие элементы могут, например, устанавливаться снаружи и/или внутри, по меньшей мере, одной трубы или трубки, например, одиночной трубы или трубки. Такая труба или трубка может, например, иметь внутренний диаметр от 20 до 80 мм или от 35 до 65 мм. Например, электронагревательный элемент может быть установлен в центре внутри трубы или трубки, чтобы суспензия вспенивающихся микросфер протекала в зазоре вокруг данного нагревательного элемента. Такой электронагревательный элемент сам может являться трубой или трубкой с установленным внутри нее первичным источником электрического нагрева, так что тепло передается через стенку к суспензии, текущей в зазоре. Предпочтительно, электронагревательные элементы устанавливают как внутри, так и снаружи, по меньшей мере, одной трубы или трубки.
Оптимальные размеры и производительность средства для нагрева суспензии определяются скоростью потока суспензии, концентрацией суспензии и температурой поступающей суспензии, и они должны быть достаточными, чтобы суспензия нагревалась до температуры достаточно высокой для вспенивания микросфер при падении давления после прохождения выпускного патрубка зоны нагрева. Данная температура всегда выше температуры парообразования порообразующего вещества конкретной микросферы.
Суспензию вспенивающихся микросфер подают в зону нагрева через ее патрубок ввода, предпочтительно, насосом, обеспечивающим в зоне нагрева достаточно высокое давление, чтобы микросферы в ней не подвергались полному вспениванию. Микросферы могут частично вспениваться в зоне нагрева, например, до объема от 10 до 80% или от 20 до 70% относительно объема, получаемого после окончательного вспенивания вне зоны нагрева, но также их вспенивание внутри зоны нагрева может быть полностью предотвращено. Примеры подходящих насосов включают гидравлические диафрагменные насосы, поршневые насосы, винтовые насосы (например, эксцентриковые винтовые насосы), шестеренные насосы, коловратные насосы, центробежные насосы и т.д. Особенно предпочтительными являются гидравлические диафрагменные насосы. Предпочтительно, насос также создает силу для транспортировки суспензии через зону нагрева к ее выпускному патрубку. Дополнительно может обеспечиваться устройство с трубопроводом для транспортировки суспензии вспенивающихся микросфер к насосу, например, от резервуара, в котором хранится суспензия.
Для поддержания достаточно высокого давления в зоне нагрева суспензию вспенивающихся микросфер выводят из зоны нагрева через ее выпускной патрубок, создавая падение давления, соответствующее разнице давлений между внутренней частью зоны нагрева и пространством вне зоны нагрева. Падение давления может быть создано любым подходящим средством, таким как ограничение площади сечения потока, например, вентилем, соплом или узким проходом любого другого типа. Выпускной патрубок зоны нагрева, предпочтительно, может представлять собой, например, изолированную трубу или трубку, необязательно имеющую ограничение площади сечения потока на своем конце, например, отверстие, имеющее диаметр от 0,9 до 0,05 или от 0,5 до 0,05, предпочтительно, от 0,3 до 0,1 внутреннего диаметра данной трубы или трубки. Однако ограничение площади сечения потока или какие-либо другие специальные меры не являются необходимыми, поскольку падение давления, создаваемое выпускным патрубком, имеющим такую же площадь сечения потока, как и зона нагрева, обычно является достаточным для предотвращения завершения вспенивания микросфер внутри зоны нагрева. Труба или трубка может быть жесткой или гибкой, причем в последнем случае ее можно легко направить к желательной точке выхода для микросфер без перемещения всего устройства.
Точное давление, требующееся в зоне нагрева, зависит от температуры и типа микросфер. Предпочтительно, давление, поддерживаемое в зоне нагрева, составляет, по меньшей мере 4 бар (0,4 МПа), наиболее предпочтительно, по меньшей мере, 10 бар (1 МПа). Верхний предел определяется практическими соображениями и может, например, составлять вплоть до 40 бар (4 МПа) или вплоть до 50 бар (5 МПа). Таким образом, зона нагрева, предпочтительно, должна быть способна выдерживать такое давление.
Температура вспенивающихся микросфер в зоне нагрева обычно является по существу равной температуре, находящейся там суспензии. Точная температура, до которой нагревают суспензию, зависит от сорта микросфер. Для большинства сортов микросфер температура, предпочтительно, находится в диапазоне от 60 до 160°C, предпочтительно, от 80 до 160°C или от 100 до 150°C, хотя для некоторых сортов микросфер могут потребоваться более высокие температуры, такие как 200°C или даже 250°C или выше. Таким образом, средства для нагревания суспензии, предпочтительно, должны быть способны нагревать суспензию до такой температуры.
В зоне нагрева поток суспензии вспенивающихся микросфер транспортируют от патрубка ввода к выпускному патрубку и нагревают под давлением до температуры достаточно высокой, чтобы микросферы в ней необязательно частично вспенились и, по меньшей мере, вспенились, когда давление падает на выходе из зоны нагрева, и они поступают в зону с достаточно низким давлением. Давление в данной зоне обычно по существу равно атмосферному, но может поддерживаться выше или ниже в зависимости от температуры микросфер. На данной стадии микросферы обычно также охлаждаются окружающим воздухом в данной зоне. Среднее время пребывания микросфер в зоне нагрева, предпочтительно, достаточно длинное, чтобы гарантировать, что температура суспензии достигает достаточно высокого значения и поддерживается при данном значении для последующего вспенивания. Чтобы гарантировать получение высокого и однородного качества, устройство может необязательно дополнительно обеспечиваться демпфером пульсаций, стабилизирующим поток суспензии.
Когда вспенивание протекает или начинается при падении давления на выходе из зоны нагрева, поток микросфер также значительно ускоряется. В то же время микросферы автоматически охлаждаются до такой низкой температуры, что вспенивание прекращается, формируя момент, при котором вспенивание завершено. Для того, чтобы оптимизировать дезинтеграцию микросфер и избежать агломерации, является предпочтительным, если падение давления происходит на настолько коротком расстоянии в направлении потока, насколько это возможно.
Поскольку дезинтеграция и охлаждение микросфер после прохождения падения давления на выходе из зоны нагрева происходит быстро, вспененные микросферы обычно по существу не содержат агломераты. Вспененные микросферы можно немедленно использовать по целевому назначению или упаковать в пластиковые мешки, картриджи или другие подходящие упаковки.
Способ и устройство по изобретению особенно полезны для вспенивания по месту при получении, например, эмульсионных взрывчатых веществ, краски, полиэфирной шпатлевки, рецептур искусственной древесины на основе полиэфира, полиуретана или эпоксида, облагороженного мрамора на основе эпоксида, пористых керамических материалов, гипсокартонного листа, покрытий днища кузова, эластомеров, заполнителей для трещин, герметиков, клеев, фенольных смол, штукатурки, заполнителей для кабелей, формовочной глины, мелкопористого пенополиуретана, покрытий бумаги для термопечати и других видов покрытий. Поток вспененных микросфер, выходящих из устройства, можно затем добавить непосредственно в производственные линии получения таких продуктов. Например, поток вспененных микросфер можно добавить, во встроенном режиме, непосредственно в поток эмульсии в ходе производства эмульсионных взрывчатых веществ или непосредственно в поток эмульсии в ходе заполнения шурфа эмульсионными взрывчатыми веществами из грузового автомобиля. В последнем случае взрывчатые вещества можно активировать на участке горных работ и транспортировать в неактивированном виде к горной выработке.
Способ и устройство для вспенивания по изобретению можно использовать для всех известных видов вспенивающихся термопластичных микросфер, например, микросфер, имеющихся на рынке под торговой маркой Expancel™. Применимые вспенивающиеся микросферы и их получение также описывается, например, в патентах США 3615972, 3945956, 4287308, 5536756, 6235800, 6235394 и 6509384, 6617363 и 6984347, в публикациях заявок на патенты США 2004/0176486 и 2005/0079352, в Европейских патентах 486080, 566367, 1067151, 1230975, 1288272, 1598405, 1811007 и 1964903, в публикациях международных заявках WO 2002/096635, WO 2004/072160, WO 2007/091960, WO 2007/091961 и WO 2007/142593, и выложенных заявках на патенты Японии No. 1987-286534 и 2005-272633.
Подходящие термопластичные микросферы предпочтительно имеют термопластичную оболочку, изготовленную из полимеров или сополимеров, получаемых полимеризацией различных мономеров с этиленовой ненасыщенностью, которые могут представлять собой мономеры, содержащие нитрильную группу, такие как акрилонитрил, метакрилонитрил, альфа-хлоракрилонитрил, альфа-этоксиакрилонитрил, фумаронитрил, кротонитрил, акриловые эфиры, такие как метилакрилат или этилакрилат, метакриловые эфиры, такие как метилметакрилат, изоборнилметакрилат или этилметакрилат, галогениды винила, такие как винилхлорид, галогениды винилидена, такие как винилиденхлорид, винилпиридин, виниловые эфиры, такие как винилацетат, стиролы, такие как стирол, галогенированные стиролы или альфа-метилстирол, или диены, такие как бутадиен, изопрен и хлоропрен. Также можно использовать любые смеси вышеуказанных мономеров.
Иногда может быть желательными, чтобы мономеры для полимерной оболочки также включали сшивающиеся многофункциональные мономеры, такие как один или более мономер, выбранный из дивинилбензола, ди(мет)акрилата этиленгликоля, ди(мет)акрилата диэтиленгликоля, ди(мет)акрилата триэтиленгликоля, ди(мет)акрилата пропиленгликоля, ди(мет)акрилата 1,4-бутандиола, ди(мет)акрилата 1,6-гександиола, ди(мет)акрилата глицерина, ди(мет)акрилата 1,3-бутандиола, ди(мет)акрилата неопентилгликоля, ди(мет)акрилата 1,10-декандиола, три(мет)акрилата пентаэритрита, тетра(мет)акрилата пентаэритрита, гекса(мет)акрилата пентаэритрита, ди(мет)акрилата диметилолтрициклодекана, три(мет)акрилата триаллилформаля, аллилметакрилата, три(мет)акрилата триметилолпропана, триакрилата триметилолпропана, ди(мет)акрилата трибутандиола, ди(мет)акрилата ПЭГ #200, ди(мет)акрилата ПЭГ #400, ди(мет)акрилата ПЭГ #600, моноакрилата 3-акрилоилоксигликоля, триакрилформаля или триаллилизоцианата, триаллилизоцианурата и т.д. Если такие сшивающие мономеры присутствуют, то они предпочтительно составляют от 0,1 до 1% масс., наиболее предпочтительно, от 0,2 до 0,5 масс. % от общего количества мономеров для полимерной оболочки. Предпочтительно полимерная оболочка составляет от 60 до 95 масс.%, наиболее предпочтительно от 75 до 85 масс.% от общей массы микросферы.
Температура размягчения полимерной оболочки, обычно соответствующая его температуре стеклования (Тстекл.), предпочтительно находится в диапазоне от 50 до 250°C или от 100 до 230°C.
Порообразующее вещество в микросфере обычно является жидкостью с температурой кипения, не превышающей температуру размягчения термопластичной полимерной оболочки. Порообразующее вещество, иногда также называемое вспенивающим агентом или пропеллентом, может представлять собой, по меньшей мере один углеводород, такой как н-пентан, изопентан, неопентан, бутан, изобутан, гексан, изогексан, неогексан, гептан, изогептан, октан и изооктан или их смесь. Также могут быть использованы и другие типы углеводородов, такие как петролейный эфир, и хлорированные или фторированные углеводороды, такие как метилхлорид, метиленхлорид, дихлорэтан, дихлорэтилен, трихлорэтан, трихлорэтилен, трихлорфторметан и т.д. Особенно предпочтительные порообразующие вещества включают, по меньшей мере, одно вещество, выбранное из изобутана, изопентана, изогексана, циклогексана, изооктана, изододекана и их смесей, предпочтительно изооктан. Порообразующее вещество подходяще составляет от 5 до 40 мас.% от массы микросферы.
Температура кипения порообразующего вещества при атмосферном давлении может находиться внутри широкого диапазона, предпочтительно, от -20 до 200°C, более предпочтительно, от -20 до 150°C и, наиболее предпочтительно, от -20 до 100°C.
Температура, при которой вспенивающиеся микросферы начинают вспениваться, зависит от комбинации порообразующего вещества и полимерной оболочки, и в продаже имеются микросферы, имеющие различные температуры вспенивания. Температура, при которой начинается вспенивание вспенивающихся микросфер при атмосферном давлении, называется Тнач.. Вспенивающиеся микросферы, используемые в настоящем изобретении, предпочтительно имеют Тнач. от 40 до 230°С, наиболее предпочтительно от 60 до 180°С.
Прилагаемая фигура иллюстрирует один вариант осуществления изобретения.
Фигура показывает устройство, включающее в себя гидравлический диафрагменный насос 1, соединенный с теплообменником 4 (формирующим зону нагрева) и демпфером пульсаций 2. Теплообменник 4 снабжен патрубком ввода 10 и выпускным патрубком 8 в форме трубы с ограничением площади сечения потока в конце в форме сопла. Теплообменник дополнительно включает одну или множество трубок (не показано), окруженных средой теплоносителя (не показана), такой как горячая воды, пар или масло. Устройство дополнительно включает манометр 3, предохранительный клапан 5, регулирующий клапан 6, термометр 7 и трехходовой вентиль 9.
Устройство работает, прокачивая суспензию вспенивающихся микросфер, например, из резервуара для хранения суспензии (не показан) с помощью гидравлического диафрагменного насоса 1 через теплообменник 4, в котором она нагревается средой теплоносителя до температуры, при которой микросферы начинают вспениваться или, по меньшей мере, начали бы вспениваться при атмосферном давлении. Гидравлический диафрагменный насос создает давление достаточное для транспортировки суспензии через теплообменник 4 и препятствующее полному вспениванию в нем микросфер. Горячая суспензия вытекает на открытый воздух через выпускной патрубок 8, необязательно снабженный ограничением площади сечения потока, создавая падение давления до атмосферного, что в результате приводит к быстрому вспениванию и охлаждению микросфер на наружном воздухе. Демпфер пульсаций 2 подавляет флуктуации потока суспензии из гидравлического диафрагменного насоса 1. Давление и температуру в теплообменнике можно контролировать манометром 3 и термометром 7, соответственно. Оборудование можно чистить, заменяя суспензию вспенивающихся микросфер, например, промывочной водой с помощью 3-ходового вентиля 9 перед насосом 1. Скорость потока и давление среды теплоносителя, используемой в теплообменнике 4, регулируют регулирующим клапаном 6.
Пример 1:
Вспениваемые микросферы Expancel™ 051-40 от AkzoNobel вспенивали, используя устройство согласно прилагаемой фигуре. Водную суспензию, содержащую 15 масс. % микросфер, при температуре 20°C прокачивали со скоростью 3 литра/мин. через теплообменник, включающий в себя семь трубок, каждая из которых имела внутренний диаметр 10 мм, внешний диаметр 12 мм и длину 1,95 метра, окруженных горячим паром в качестве среды теплоносителя. Насос создавал давление 30 бар (3 МПа), которое поддерживали внутри теплообменника, и пар передавал тепловую энергию достаточную для нагрева суспензии до 130°C. Микросферы выходили из теплообменника через выпускной патрубок, снабженный соплом, имеющим отверстие 1,5 мм, на открытый воздух с температурой 20°C и вспенивались, причем плотность достигала 22 г/дм3. Вспененный продукт из микросфер имел содержание твердого вещества 15 масс. %, и микроскопическое исследование показало, что в продукте полностью отсутствовали агломераты.
Пример 2:
Вспениваемые микросферы Expancel™ 031 от AkzoNobel вспенивали, используя устройство, включающее в себя одиночную медную трубку длинной 5,8 м, расположенную в емкости, заполненной горячей водой, температуру которой поддерживали при 100°C. Медная трубка имела внутренний диаметр 6,3 мм и внешний диаметр 7,8 мм, но не имела какого-либо сужения по площади сечения потока. Водную суспензию, содержащую 20 масс. % микросфер, при температуре 20°C прокачивали с помощью диафрагменного насоса со скоростью 80 литров/час через медную трубку, окруженную горячей водой в качестве среды теплоносителя. Диафрагменный насос создавал давление 6 бар (0,6 МПа). Микросферы выходили из теплообменника на основе медной трубки, и после окончательного вспенивания их плотность составляла 24 г/дм3. Вспененный продукт из микросфер имел содержание твердого вещества 20 масс. %, и микроскопическое исследование показало, что продукт по существу не содержал агломераты.
Claims (38)
1. Способ получения вспененных термопластичных микросфер из невспененных термически вспенивающихся термопластичных микросфер, включающих оболочку из термопластичного полимера, инкапсулирующую вспенивающий агент, причем указанный способ включает:
(a) подачу суспензии таких вспенивающихся термопластичных микросфер в жидкой среде в зону нагрева;
(b) нагрев суспензии в зоне нагрева, без непосредственного контакта со средой теплоносителя, до достижения вспенивающимися микросферами, по меньшей мере, температуры от 50 до 250°С, и поддержание давления в зоне нагрева от 4 до 50 бар (0,4 до 5 МПа), чтобы микросферы в суспензии не вспенились бы полностью; и,
(c) отведение суспензии вспенивающихся микросфер из зоны нагрева в зону с давлением, достаточно низким для того, чтобы микросферы вспенились.
2. Способ по п.1, в котором давление в зоне нагрева поддерживают от 5 до 50 бар (от 0,5 до 5 МПа).
3. Способ по любому из пп.1-2, в котором суспензию вспенивающихся микросфер нагревают в зоне нагрева до температуры от 60 до 160°C.
4. Способ по любому из пп.1-2, в котором суспензия вспенивающихся микросфер протекает через зону нагрева, представляющую собой теплообменник, включающий по меньшей мере одну трубу или трубку, окруженную средой теплоносителя, не находящейся в непосредственном контакте с суспензией вспенивающихся микросфер.
5. Способ по п.3, в котором суспензия вспенивающихся микросфер протекает через зону нагрева, представляющую собой теплообменник, включающий по меньшей мере одну трубу или трубку, окруженную средой теплоносителя, не находящейся в непосредственном контакте с суспензией вспенивающихся микросфер.
6. Способ по п.4, в котором по меньшей мере одна труба или трубка, каждая, имеет внутренний диаметр от 2 до 25 мм.
7. Способ по п.5, в котором по меньшей мере одна труба или трубка, каждая, имеет внутренний диаметр от 2 до 25 мм.
8. Способ по любому из пп.1-2, в котором тепло обеспечивают электронагревательными элементами.
9. Способ по п.3, в котором тепло обеспечивают электронагревательными элементами.
10. Способ по любому из пп.1-2, 5-7 и 9, в котором суспензию вспенивающихся микросфер выводят из зоны нагрева через ее выпускной патрубок, создавая падение давления, соответствующее разнице давлений между пространством внутри зоны нагрева и пространством вне зоны нагрева.
11. Способ по п.3, в котором суспензию вспенивающихся микросфер выводят из зоны нагрева через ее выпускной патрубок, создавая падение давления, соответствующее разнице давлений между пространством внутри зоны нагрева и пространством вне зоны нагрева.
12. Способ по п.4, в котором суспензию вспенивающихся микросфер выводят из зоны нагрева через ее выпускной патрубок, создавая падение давления, соответствующее разнице давлений между пространством внутри зоны нагрева и пространством вне зоны нагрева.
13. Способ по п.8, в котором суспензию вспенивающихся микросфер выводят из зоны нагрева через ее выпускной патрубок, создавая падение давления, соответствующее разнице давлений между пространством внутри зоны нагрева и пространством вне зоны нагрева.
14. Способ по п.10, в котором выпускной патрубок имеет сужение по площади сечения потока для обеспечения падения давления.
15. Способ по п.11, в котором выпускной патрубок имеет сужение по площади сечения потока для обеспечения падения давления.
16. Способ по п.12, в котором выпускной патрубок имеет сужение по площади сечения потока для обеспечения падения давления.
17. Способ по п.13, в котором выпускной патрубок имеет сужение по площади сечения потока для обеспечения падения давления.
18. Способ по любому из пп.1-2, 5-7, 9 и 11-17, в котором суспензию вспенивающихся микросфер отводят из зоны нагрева в зону атмосферного давления.
19. Способ по п.3, в котором суспензию вспенивающихся микросфер отводят из зоны нагрева в зону атмосферного давления.
20. Способ по п.4, в котором суспензию вспенивающихся микросфер отводят из зоны нагрева в зону атмосферного давления.
21. Способ по п.8, в котором суспензию вспенивающихся микросфер отводят из зоны нагрева в зону атмосферного давления.
22. Способ по п.10, в котором суспензию вспенивающихся микросфер отводят из зоны нагрева в зону атмосферного давления.
23. Способ по любому из пп.1-2, 5-7, 9, 11-17 и 19-22, в котором суспензию вспенивающихся микросфер подают в зону нагрева посредством насоса, обеспечивающего достаточно высокое давление в зоне нагрева, чтобы микросферы в ней не вспенились полностью.
24. Способ по п.3, в котором суспензию вспенивающихся микросфер подают в зону нагрева посредством насоса, обеспечивающего достаточно высокое давление в зоне нагрева, чтобы микросферы в ней не вспенились полностью.
25. Способ по п.4, в котором суспензию вспенивающихся микросфер подают в зону нагрева посредством насоса, обеспечивающего достаточно высокое давление в зоне нагрева, чтобы микросферы в ней не вспенились полностью.
26. Способ по п.8, в котором суспензию вспенивающихся микросфер подают в зону нагрева посредством насоса, обеспечивающего достаточно высокое давление в зоне нагрева, чтобы микросферы в ней не вспенились полностью.
27. Способ по п.10, в котором суспензию вспенивающихся микросфер подают в зону нагрева посредством насоса, обеспечивающего достаточно высокое давление в зоне нагрева, чтобы микросферы в ней не вспенились полностью.
28. Способ по п.18, в котором суспензию вспенивающихся микросфер подают в зону нагрева посредством насоса,
обеспечивающего достаточно высокое давление в зоне нагрева, чтобы микросферы в ней не вспенились полностью.
29. Устройство для вспенивания невспененных термически вспенивающихся термопластичных микросфер, включающих оболочку из термопластичного полимера, инкапсулирующую порообразующее вещество, причем указанное устройство включает зону нагрева, имеющую патрубок ввода и выпускной патрубок и способную выдержать давление, по меньшей мере, 4 бар (0,4 МПа), средство для подачи суспензии невспененных вспенивающихся термопластичных микросфер в жидкой среде в зону нагрева и способное создавать давление по меньшей мере 4 бар (0,4 МПа), в зоне нагрева, и средство для нагрева суспензии вспенивающихся микросфер до температуры по меньшей мере 60°C без непосредственного контакта со средой теплоносителя.
30. Устройство по п.29, в котором выпускной патрубок имеет сужение по площади сечения потока для обеспечения падения давления, соответствующего разнице давлений между пространством внутри зоны нагрева и пространством вне зоны нагрева.
31. Устройство по любому из пп.29-30, в котором зона нагрева представляет собой теплообменник, включающий по меньшей мере одну трубу или трубку, окруженную средой теплоносителя, не находящейся в непосредственном контакте с суспензией вспенивающихся микросфер.
32. Устройство по любому из пп.29-30, в котором зона нагрева включает одиночную трубу или трубку, окруженную средой теплоносителя, не находящейся в непосредственном контакте с суспензией вспенивающихся микросфер.
33. Устройство по п.31, в котором зона нагрева включает одиночную трубу или трубку, окруженную средой теплоносителя, не находящейся в непосредственном контакте с суспензией вспенивающихся микросфер.
34. Устройство по любому из пп.29-30, в котором зона нагрева включает по меньшей мере одну трубу или трубку и электронагревательные элементы, установленные внутри указанной, по меньшей мере, одной трубы или трубки и/или снаружи от нее.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13171708 | 2013-06-12 | ||
EP13171708.4 | 2013-06-12 | ||
PCT/EP2014/060972 WO2014198532A1 (en) | 2013-06-12 | 2014-05-27 | Method and a device for preparation of expanded microspheres |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2015156251A RU2015156251A (ru) | 2017-07-17 |
RU2015156251A3 RU2015156251A3 (ru) | 2018-03-14 |
RU2666940C2 true RU2666940C2 (ru) | 2018-09-13 |
Family
ID=48628318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015156251A RU2666940C2 (ru) | 2013-06-12 | 2014-05-27 | Способ и устройство для полученния вспененных микросфер |
Country Status (20)
Country | Link |
---|---|
US (1) | US20160115290A1 (ru) |
EP (1) | EP3008029B1 (ru) |
JP (1) | JP6208338B2 (ru) |
KR (1) | KR102247942B1 (ru) |
CN (1) | CN105263881B (ru) |
AU (1) | AU2014280424B2 (ru) |
BR (1) | BR112015029127B1 (ru) |
CA (1) | CA2911954C (ru) |
DK (1) | DK3008029T3 (ru) |
ES (1) | ES2629026T3 (ru) |
HR (1) | HRP20171013T1 (ru) |
HU (1) | HUE035192T2 (ru) |
MX (1) | MX357769B (ru) |
PH (1) | PH12015502562A1 (ru) |
PL (1) | PL3008029T3 (ru) |
PT (1) | PT3008029T (ru) |
RS (1) | RS56259B1 (ru) |
RU (1) | RU2666940C2 (ru) |
WO (1) | WO2014198532A1 (ru) |
ZA (1) | ZA201508582B (ru) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9365453B2 (en) | 2012-04-19 | 2016-06-14 | Construction Research & Technology Gmbh | Admixture and method for freeze-thaw damage resistance and scaling damage resistance of cementitious compositions |
US9333685B2 (en) | 2012-04-19 | 2016-05-10 | AkzoNobel Chemicals International B.V. | Apparatus and system for expanding expandable polymeric microspheres |
WO2015082579A1 (en) | 2013-12-06 | 2015-06-11 | Construction Research & Technology Gmbh | Method of manufacturing cementitious compositions |
WO2016091847A1 (en) | 2014-12-11 | 2016-06-16 | Akzo Nobel Chemicals International B.V. | Apparatus and method for expanding thermally expandable thermoplastic microspheres to expanded thermoplastic microspheres |
CN107257822B (zh) * | 2014-12-11 | 2020-11-10 | 建筑研究和技术有限公司 | 用于使可膨胀性聚合物微球膨胀的装置和系统 |
PT3774259T (pt) | 2018-04-05 | 2022-11-28 | Construction Research & Technology Gmbh | Dispositivo e método para preparação de microesferas expandidas |
ES2938007T3 (es) | 2018-11-13 | 2023-04-03 | Nouryon Chemicals Int Bv | Microesferas a base de celulosa térmicamente expandibles |
KR102659108B1 (ko) | 2019-01-25 | 2024-04-18 | 누리온 케미칼즈 인터내셔널 비.브이. | 디알코올 셀룰로스계 구형 캡슐 |
WO2021056229A1 (en) * | 2019-09-25 | 2021-04-01 | Dow Global Technologies Llc | Non-solvent 2k polyurethane artificial leather composition, artificial leather prepared with same and preparation method thereof |
CN110815697A (zh) * | 2019-12-13 | 2020-02-21 | 快思瑞科技(上海)有限公司 | 一种膨胀微球的发泡筛分装置及其应用 |
CN113248339A (zh) * | 2020-02-11 | 2021-08-13 | 安徽理工大学 | 一种乳化炸药用含能微球的发泡装置及使用方法 |
CN115666775A (zh) | 2020-05-20 | 2023-01-31 | 诺力昂化学品国际有限公司 | 具有低膨胀温度的可热膨胀纤维素基微球 |
CN112648014B (zh) * | 2020-12-17 | 2022-02-01 | 华能浙江平湖海上风电有限责任公司 | 地下储气库衬砌横缝填缝方法及地下储气库 |
CN116867566A (zh) | 2021-02-22 | 2023-10-10 | 诺力昂化学品国际有限公司 | 基于纤维素的可热膨胀微球 |
CN118852714A (zh) | 2023-04-28 | 2024-10-29 | 诺力昂化学品国际有限公司 | 具有优异阻隔性能的膨胀微球 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4513106A (en) * | 1982-11-26 | 1985-04-23 | Kemanord Ab | Process for expanding microspheres |
US4778829A (en) * | 1985-07-12 | 1988-10-18 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Process for preparing pre-expanded particles of thermoplastic resin |
US5753157A (en) * | 1992-09-29 | 1998-05-19 | Basf Corporation | Continuous process for expanding thermoplastic minipellets |
JP2005254213A (ja) * | 2004-03-15 | 2005-09-22 | Sekisui Chem Co Ltd | 熱膨張済みマイクロカプセルの製造方法、および熱膨張済みマイクロカプセルの製造装置 |
RU2301739C2 (ru) * | 2002-12-20 | 2007-06-27 | Акцо Нобель Н.В. | Устройство и способ для приготовления расширенных термопластичных микросфер |
US20090093558A1 (en) * | 2007-10-04 | 2009-04-09 | Nova Chemicals Inc. | Mobile expanded polymer processing systems and methods |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL108906C (ru) * | 1957-10-09 | |||
ES2050844T3 (es) * | 1988-06-23 | 1994-06-01 | Casco Nobel Ab | Un procedimiento y un dispositivo para la preparacion de microesferas termoplasticas expandidas. |
DE19519336A1 (de) * | 1995-05-26 | 1996-11-28 | Basf Ag | Verfahren zur Herstellung von expandierten Polyolefin-Partikeln |
CA2470825A1 (en) * | 2001-12-17 | 2003-06-26 | Charles Michael Lownds | Method of preparing a sensitised explosive |
JP2007191614A (ja) * | 2006-01-20 | 2007-08-02 | Sanyo Chem Ind Ltd | 中空樹脂粒子の製造方法 |
DE102010062669A1 (de) * | 2010-12-08 | 2012-06-14 | Tesa Se | Verfahren zur Herstellung geschäumter Polymermassen, geschäumte Polymermassen und Klebeband damit |
-
2014
- 2014-05-27 PL PL14730456T patent/PL3008029T3/pl unknown
- 2014-05-27 JP JP2016518903A patent/JP6208338B2/ja active Active
- 2014-05-27 RU RU2015156251A patent/RU2666940C2/ru active
- 2014-05-27 WO PCT/EP2014/060972 patent/WO2014198532A1/en active Application Filing
- 2014-05-27 PT PT147304562T patent/PT3008029T/pt unknown
- 2014-05-27 EP EP14730456.2A patent/EP3008029B1/en active Active
- 2014-05-27 AU AU2014280424A patent/AU2014280424B2/en active Active
- 2014-05-27 US US14/896,000 patent/US20160115290A1/en not_active Abandoned
- 2014-05-27 MX MX2015016695A patent/MX357769B/es active IP Right Grant
- 2014-05-27 CA CA2911954A patent/CA2911954C/en active Active
- 2014-05-27 KR KR1020157034975A patent/KR102247942B1/ko active IP Right Grant
- 2014-05-27 CN CN201480032027.7A patent/CN105263881B/zh active Active
- 2014-05-27 ES ES14730456.2T patent/ES2629026T3/es active Active
- 2014-05-27 BR BR112015029127-9A patent/BR112015029127B1/pt active IP Right Grant
- 2014-05-27 HU HUE14730456A patent/HUE035192T2/en unknown
- 2014-05-27 RS RS20170709A patent/RS56259B1/sr unknown
- 2014-05-27 DK DK14730456.2T patent/DK3008029T3/en active
-
2015
- 2015-11-11 PH PH12015502562A patent/PH12015502562A1/en unknown
- 2015-11-20 ZA ZA2015/08582A patent/ZA201508582B/en unknown
-
2017
- 2017-07-04 HR HRP20171013TT patent/HRP20171013T1/hr unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4513106A (en) * | 1982-11-26 | 1985-04-23 | Kemanord Ab | Process for expanding microspheres |
US4778829A (en) * | 1985-07-12 | 1988-10-18 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Process for preparing pre-expanded particles of thermoplastic resin |
US5753157A (en) * | 1992-09-29 | 1998-05-19 | Basf Corporation | Continuous process for expanding thermoplastic minipellets |
RU2301739C2 (ru) * | 2002-12-20 | 2007-06-27 | Акцо Нобель Н.В. | Устройство и способ для приготовления расширенных термопластичных микросфер |
JP2005254213A (ja) * | 2004-03-15 | 2005-09-22 | Sekisui Chem Co Ltd | 熱膨張済みマイクロカプセルの製造方法、および熱膨張済みマイクロカプセルの製造装置 |
US20090093558A1 (en) * | 2007-10-04 | 2009-04-09 | Nova Chemicals Inc. | Mobile expanded polymer processing systems and methods |
Also Published As
Publication number | Publication date |
---|---|
PT3008029T (pt) | 2017-07-18 |
KR20160018545A (ko) | 2016-02-17 |
ES2629026T3 (es) | 2017-08-07 |
EP3008029A1 (en) | 2016-04-20 |
HRP20171013T1 (hr) | 2017-09-22 |
DK3008029T3 (en) | 2017-07-24 |
AU2014280424A1 (en) | 2015-11-26 |
PH12015502562B1 (en) | 2016-02-22 |
MX2015016695A (es) | 2016-04-15 |
PH12015502562A1 (en) | 2016-02-22 |
CA2911954A1 (en) | 2014-12-18 |
KR102247942B1 (ko) | 2021-05-04 |
CN105263881B (zh) | 2017-04-19 |
CA2911954C (en) | 2021-05-11 |
BR112015029127B1 (pt) | 2021-10-13 |
RS56259B1 (sr) | 2017-11-30 |
ZA201508582B (en) | 2017-04-26 |
PL3008029T3 (pl) | 2017-09-29 |
BR112015029127A2 (pt) | 2017-07-25 |
RU2015156251A3 (ru) | 2018-03-14 |
AU2014280424B2 (en) | 2018-03-29 |
MX357769B (es) | 2018-07-24 |
WO2014198532A1 (en) | 2014-12-18 |
JP2016528024A (ja) | 2016-09-15 |
RU2015156251A (ru) | 2017-07-17 |
JP6208338B2 (ja) | 2017-10-04 |
HUE035192T2 (en) | 2018-05-02 |
CN105263881A (zh) | 2016-01-20 |
EP3008029B1 (en) | 2017-04-19 |
US20160115290A1 (en) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2666940C2 (ru) | Способ и устройство для полученния вспененных микросфер | |
RU2696709C2 (ru) | Устройство и способ для расширения термически расширяемых термопластических микросфер до расширенных термопластических микросфер | |
US10214624B2 (en) | Apparatus and method for expanding thermally expandable thermoplastic microspheres to expanded thermoplastic microspheres | |
JP7377213B2 (ja) | 膨張したマイクロスフェアの調製のための装置 | |
JP2005254213A (ja) | 熱膨張済みマイクロカプセルの製造方法、および熱膨張済みマイクロカプセルの製造装置 | |
TW201632257A (zh) | 用於將熱可膨脹的熱塑性微球體膨脹成經膨脹的熱塑性微球體之裝置及方法 | |
BR112020020175B1 (pt) | Dispositivo e processo de expansão de microesferas termoplásticas termicamente expansíveis não expandidas | |
JP2005270741A (ja) | 粉末状の含水熱膨張済みマイクロカプセルの製造方法、及び粉末状の含水熱膨張済みマイクロカプセルの製造装置 |