RU2301739C2 - Устройство и способ для приготовления расширенных термопластичных микросфер - Google Patents

Устройство и способ для приготовления расширенных термопластичных микросфер Download PDF

Info

Publication number
RU2301739C2
RU2301739C2 RU2005122926/12A RU2005122926A RU2301739C2 RU 2301739 C2 RU2301739 C2 RU 2301739C2 RU 2005122926/12 A RU2005122926/12 A RU 2005122926/12A RU 2005122926 A RU2005122926 A RU 2005122926A RU 2301739 C2 RU2301739 C2 RU 2301739C2
Authority
RU
Russia
Prior art keywords
microspheres
expanding device
scrapers
hollow body
spheres
Prior art date
Application number
RU2005122926/12A
Other languages
English (en)
Other versions
RU2005122926A (ru
Inventor
Ларс-Олоф СВЕДБЕРГ (SE)
Ларс-Олоф СВЕДБЕРГ
Гуи ХОВЛАНД (SE)
Гуи ХОВЛАНД
Томас ХОЛЬМЛУНД (SE)
Томас ХОЛЬМЛУНД
Original Assignee
Акцо Нобель Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акцо Нобель Н.В. filed Critical Акцо Нобель Н.В.
Publication of RU2005122926A publication Critical patent/RU2005122926A/ru
Application granted granted Critical
Publication of RU2301739C2 publication Critical patent/RU2301739C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • B29C44/3449Feeding the blowing agent through the screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Настоящее изобретение относится к расширяющему устройству и способу приготовления расширенных термопластичных микросфер. Техническим результатом данного изобретения является создание способа и малогабаритного устройства для приготовления расширенных термопластичных микросфер, устраняющего проблемы агломерации микросфер и обеспечивающих легкое управление степенью расширения микросфер и непрерывное приготовление микросфер с очень узким диапазоном распределения их по плотности. Технический результат достигается тем, что расширяющее устройство для приготовления расширенных термопластичных микросфер содержит вращаемое подающее средство, окруженное полым корпусом, и один или несколько скребков, установленных на подающем средстве между внешним радиусом подающего средства и внутренней поверхностью полого корпуса. При этом способ приготовления расширенных термопластичных микросфер с использованием данного расширяющего устройства включает загрузку терморасширяемых микросфер в расширяющее устройство, перемещение микросфер через расширяющее устройство при одновременном повышении их температуры и выгрузку расширенных микросфер. 2 н. и 13 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к расширяющему устройству и способу для приготовления расширенных термопластичных микросфер.
Термически расширяемые микросферы известны в данной области техники и подробно описаны, например, в патенте США №3615972 и Европейских патентах №486080, 566367, 1067151, приведенных здесь в качестве ссылок. В таких микросферах герметизируется в термопластичной оболочке реактивное топливо. При нагревании реактивное топливо испаряется с повышением внутреннего давления, и одновременно размягчается оболочка, что приводит к значительному расширению микросфер с увеличением их диаметра обычно приблизительно в 2-5 раз.
Термопластичные микросферы, как предварительно расширенные, так и не расширенные, могут быть использованы в различных областях. Примерами применения расширенных микросфер являются смолы на основе растворителей, подобные полиэфиру, для сухих шариков и системы на водной основе, подобные краскам, для влажных шариков.
Полное расширение термопластичных микросфер может привести к проблемам их агломерации из-за более высоких температур, требующихся для полного расширения, а также к тонким термопластичным оболочкам, образующимся при полном расширении. Имеется необходимость в способе и расширяющем устройстве для приготовления расширенных термопластичных микросфер, обеспечивающих управление степенью расширения микросфер для получения расширенных микросфер различной плотности. Существует также необходимость в способе и расширяющем устройстве для расширения термопластичных микросфер, которое было бы простым и требовало мало площади, было сравнительно недорогим и простым для пользователей в том месте, где должны использоваться расширенные микросферы, для сокращения объемов транспортных перевозок и затрат.
В Европейском патенте 0348372 раскрыт способ для приготовления расширенных термопластичных микросфер, в котором их расширение происходит на конвейерной ленте. Способ является эффективным, но требует довольно много места и является сравнительно дорогим.
В патенте США 5342689 раскрыт способ приготовления расширенных термопластичных микросфер, при котором загружают терморасширяемые микросферы в расширяющее устройство, перемещают микросферы через расширяющее устройство при одновременном повышении их температуры для обеспечения расширения микросфер и выгружают расширенные микросферы. При осуществлении данного способа микросферы смешиваются с покрытием, образующим поверхностный барьер, для предотвращения агломерации во время операции сушки. Однако количество такого вспомогательного средства, например талька, очень велико, что влияет на возможность быстрого охлаждения. Это вызывает трудности при управлении степенью расширения микросфер.
Целью настоящего изобретения является создание способа и малогабаритного устройства для приготовления расширенных термопластичных микросфер, устраняющих проблемы агломерации микросфер и обеспечивающих легкое управление степенью расширения микросфер и непрерывное приготовление расширенных микросфер с очень узким диапазоном распределения их по плотности.
Эта цель достигается расширяющим устройством для приготовления расширенных термопластичных микросфер, содержащим вращаемое подающее средство, окруженное полым корпусом, и один или несколько скребков, установленных на подающем средстве между внешним радиусом подающего средства и внутренней поверхностью полого корпуса и предназначенных для предотвращения образования слоев микросфер в расширяющем устройстве.
В устройстве один или несколько скребков, установленных на подающем средстве, могут отходить радиально за пределы внешнего радиуса подающего средства в сторону внутренней поверхности полого корпуса. При этом находящиеся по меньшей мере частично в контакте с внутренней поверхностью полого тела скребки имеют некоторую гибкость и поэтому, когда они прижимаются к внутренней поверхности полого корпуса, возникает плотный контакт между ними и внутренней поверхностью полого корпуса.
Один или несколько скребков по отдельности или совместно могут быть приспособлены осуществлять соскабливание от около 20 до около 95% продольной длины внутренней поверхности полого корпуса.
Один или два скребка могут быть способными осуществлять соскабливание от около 70 до около 100% продольной длины внутренней поверхности полого корпуса, и 2-4 скребка способны осуществлять соскабливание от около 10 до около 40% продольной длины внутренней поверхности полого корпуса.
Один или несколько скребков могут быть установлены на подающем средстве, начиная от впускной стороны расширяющего устройства, т.е. там, где добавляются нерасширенные микросферы, и отходят от него.
Один или несколько скребков или поверхностный слой одного или нескольких скребков могут быть изготовлены из полимерного материала, предпочтительно термостойкого полимерного материала. Полимерным материалом является предпочтительно фторопласт, такой как политетрафталат, поливинилиденфторид, сополимер политетрафторэтилена и фторированного винилового эфира или эластомерный сополимер тетрафторэтилена и гексафторпропилена. Если полимерным материалом является термопласт, то температура расплавления полимерного материала соответственно приблизительно выше 200°С, предпочтительно выше 250°С.
Полый корпус или подающее средство могут быть снабжены одним или несколькими нагревателями.
В предпочтительном варианте реализации настоящего изобретения подающее средство имеет форму червяка. Червяк соответственно имеет отношение шага червяка к диаметру червяка от около 0,05 до около 1,5, предпочтительно от около 0,15 до около 0,5. Шаг червяка соответственно меньше в начале червяка, т.е. около впускного отверстия, чем в конце червяка. Шаг червяка может постепенно увеличиваться вдоль червяка. Или же шаг червяка может увеличиваться ступенчато так, чтобы один участок червяка имел иной шаг червяка, чем у другого участка червяка.
В другом предпочтительном варианте изобретения подающее средство имеет вид одной или нескольких лопаток, соответственно выступающих из центрального сердечника. Лопатки расположены так, чтобы угол α между их плоскостью и направлением подачи составлял 0°<α<90°, предпочтительно от около 10 до около 60°.
Согласно изобретению создан также способ приготовления расширенных термопластичных микросфер с использованием вышеописанного расширяющего устройства, при котором загружают терморасширяемые микросферы в расширяющее устройство, перемещают микросферы через расширяющее устройство при одновременном повышении их температуры для обеспечения расширения микросфер и выгружают расширенные микросферы.
Терморасширяемые микросферы перед поступлением в расширяющее устройство могут предварительно смешиваться с наполнителем, препятствующим агломерации микросфер.
Наполнитель используется соответственно в виде мелких частиц диаметром в диапазоне от около 1×10-9 до около 1×10-3 м, предпочтительно от около 1×10-8 до около 3×10-5 м. Примерами наполнителей являются такие неорганические соединения как алюминиевый порошок, карбонат магния, фосфаты магния, гидрат оксида магния, доломит, карбонат кальция, фосфаты кальция, сульфат кальция, тальк, каолин, оксиды кремния, оксиды железа, оксид титана, оксиды алюминия и гидраты оксидов алюминия, оксид цинка, гидротальцит, слюда, бариты, стеклянные шарики, летучая зола, мелкий песок, минеральные волокна и вообще армированные волокна, волластонит, полевой шпат, диатомовая земля, перлиты, вермикулиты, полые кварцевые и керамические шарики. Также могут быть использованы органические соединения, особенно полимеры с достаточно высокой температурой размягчения и целлюлоза, древесная мука, газовая сажа, углеродные волокна и графитовые волокна. Предпочтительным наполнителем является оксид кремния, такой как диоксид кремния. Наполнитель может использоваться в своем чистом виде, или его поверхность может быть обработана различным образом для усиления свойств, препятствующих агломерации. Один способ обработки поверхности наполнителя заключается в том, чтобы сделать ее гидрофобной. Весовое соотношение между добавляемым наполнителем и микросферами зависит от используемого наполнителя, но оно составляет соответственно от около 1:1000 до около 5:1, предпочтительно от около 1:500 до около 1:1, даже более предпочтительно от около 1:100 до около 1:3 и наиболее предпочтительно от около 1:25 до около 1:5.
Способ и расширяющее устройство в соответствии с изобретением могут быть применены ко всем известным видам расширяемых термопластичных микросфер, например к таким, которые продаются под торговой маркой Expancel. Подходящие микросферы могут иметь термопластичную оболочку, изготовленную из полимеров или сополимеров, получаемых полимеризацией различных мономеров с этиленовой ненасыщенной связью, таких как акрилонитрил, метакрилонитрил, α-хлоракрилонитрил, α-этоксиакрилонитрил, фумаронитрил, кротонитрил, акриловые эфиры, такие как метакрилат или этилакрилат, метакриловые эфиры, такие как метилметакрилат, изоборнилметакрилат или этилметакрилат, галогениды винила, такие как винилхлорид, галогениды винилидена, такие как винилиденхлорид, винилпиридин, виниловые эфиры, такие как винилацетат, стиролы, такие как стирол, галоидозамещенные стиролы или α-метилстирол, или диены, такие как бутадиен, изопрен и хлоропрен. Также могут быть использованы любые смеси вышеупомянутых мономеров. Иногда может быть желательно, чтобы мономеры для полимерной оболочки также содержали поперечно-связанные многофункциональные мономеры, такие как один или больше дивинилбензолов, этиленгликольди(мет)акрилат, диэтиленгликольди(мет)акрилат, триэтиленгликольди(мет)акрилат, пропиленгликольди(мет)акрилат, 1,4-бутандиолди(мет)акрилат, 1,6-гександи(мет)акрилат, глицеролди(мет)акрилат, 1,3-бутаниолди(мет)акрилат, неопентилгликольди(мет)акрилат, 1,10-декандиолди(мет)акрилат, пентаэритритатри(мет)акрилат, пентаэритритатетра(мет)акрилат, пентаэритритагекса(мет)акрилат, диметилолтрициклодекан ди(мет)акрилат, триаллилформаль три(мет)акрилат, аллилметакрилат, триметилолпропан три(мет)акрилат, триметилопропан триакрилат, трибутандиол ди(мет)акрилат, полиэтиленгликоль №200 ди(мет)акрилат, полиэтиленгликоль №400 ди(мет)акрилат, полиэтиленгликоль №600 ди(мет)акрилат, 3-акрилоилоксигликоль моноакрилат, триакрилформаль- или триаллилизоцианат, триаллилизоцианурат и т.д. Если такие поперечно-связанные мономеры присутствуют, то они предпочтительно составляют от около 0,1 до около 1% мас., наиболее предпочтительно от около 0,2 до около 0,5 мас.% от общего количества мономеров для полимерной оболочки. Предпочтительно полимерная оболочка составляет от около 60 до около 95 мас.%, наиболее предпочтительно от около 75 до 85 мас.% от всей массы микросферы.
Реактивное топливо в микросфере обычно является жидкостью с температурой кипения не выше температуры размягчения термопластичной полимерной оболочки. Реактивное топливо, также называемое газообразующим агентом или пенообразующим агентом, может быть углеводородом, таким как н-пентан, изопентан, неопентан, бутан, изобутан, гексан, изогексан, неогексан, гептан, изогептан, октан и изооктан или их смесь. Также могут быть использованы и другие типы углеводородов, такие как петролейный эфир, и хлорированные или фторированные углеводороды, такие как хлористый метил, хлористый метилен, дихлорэтан, дихлорэтилен, трихлорэтан, трихлорэтилен, трихлорфторметан и т.д. Реактивное топливо соответственно составляет от около 5 до около 40 мас.% от массы микросферы.
Температура, при которой начинается расширение микросфер, называется Тнач., а температура, при которой достигается максимальное расширение, называется Тмакс., при этом обе температуры определяются при скорости роста температуры 20°С в минуту. Терморасширяемые микросферы, используемые в настоящем изобретении, соответственно имеют Тнач. от около 20 до около 200°С, предпочтительно от около 40 до около 180°С, наиболее предпочтительно от около 60 до около 150°С. Терморасширяемые микросферы, используемые в настоящем изобретении, соответственно имеют Тмакс. от около 50 до около 300°С, предпочтительно от около 100 до около 250°С, наиболее предпочтительно от около 140 до около 200°С. Объемно-взвешенный средний размер терморасширяемых микросфер в соответствии с изобретением составляет соответственно от около 1 до 500 мкм, предпочтительно от около 3 до около 100 мкм, наиболее предпочтительно от около 5 до около 50 мкм. Нагреванием до температуры выше Тнач. обычно можно расширить микросферы в отношении их диаметра от около 2 до около 7 раз, предпочтительно от около 4 до около 7 раз.
Плотность выгружаемых микросфер контролируется посредством выбора подходящей температуры нагревания и/или промежутка времени, в течение которого микросферы присутствуют в расширяющем устройстве. Температура в расширяющем устройстве соответственно выше Тнач. предпочтительно на 5-150°С, наиболее предпочтительно на 20-50°С выше Тнач. Среднее время пребывания микросфер в расширяющем устройстве составляет от около 5 до около 200 сек, предпочтительно от около 10 до около 100 сек, наиболее предпочтительно от около 30 до около 90 сек.
В способе согласно изобретению могут использоваться как влажные, так и сухие терморасширяемые микросферы. Однако способ в соответствии с изобретением особенно подходит для терморасширяемых микросфер, имеющих низкое содержание влаги. Соответственно терморасширяемые микросферы имеют содержание твердых сухих веществ приблизительно больше 50 мас.%, предпочтительно приблизительно больше 80 мас.%, наиболее предпочтительно приблизительно больше 97 мас.%.
Скорость вращения подающего средства соответственно от около 1 до около 100 оборотов в минуту, предпочтительно от около 5 до около 90 оборотов в минуту, наиболее предпочтительно от около 40 до около 80 оборотов в минуту.
100%, наиболее предпочтительно от около 20 до около 95%. Скреперы по отдельности могут иметь различную длину. Например, может быть сочетание одного или нескольких длинных скребков и одного или нескольких коротких скребков. Предпочтительно один или два скрепера, выполняющих соскабливание от около 70 до около 100% продольной длины внутренней поверхности полого тела, используются совместно с 1-5, предпочтительно с 2-4 скреперами, осуществляющими соскабливание от около 10 до около 40% продольной длины внутренней поверхности полого тела. Если используется слишком много длинных скребков, возникает риск, что микросферы забьют подающий червяк, особенно если его шаг мал. Поэтому длину скребков регулируют, чтобы она максимально зависела от других параметров процесса, таких как габариты расширяющего устройства, скорость вращения, тип микросфер, содержание наполнителя и т.д.
Способом и расширяющим устройством в соответствии с изобретением обеспечивается более легкое расширение терморасширяемых микросфер, при этом требуется малогабаритное оборудование и уменьшаются затраты на транспортировку расширенных микросфер. Степень расширения микросфер также может более легко контролироваться, чем раньше.
Далее изобретение описано со ссылками на прилагаемые чертежи, на которых изображено следующее:
фиг.1 изображает вариант реализации расширяющего устройства согласно настоящему изобретению, в котором подающим средством является червяк;
фиг.2 изображает подающее устройство в виде червяка;
Фиг.3 изображает подающее средство лопаточного типа.
На фиг.1 показан вариант реализации способа, в котором нерасширенные термопластичные микросферы перекачиваются из накопительного резервуара 1 в бункер 2 и фильтруются через фильтр 3. После этого микросферы подаются в первый червячный питатель 4 и переносятся к впускному отверстию 5 расширяющего устройства 6, содержащего нагревательное средство 7 и червяк 8 с установленными на нем скребками 9. Впускное отверстие 5 снабжено вибратором 10, и червяк 8 соответствующим образом соединен с двигателем 11. Расширенные микросферы соответственно выводятся через выпускное отверстие 12, снабженное вибратором 13, и затем откачиваются.
На фиг.2 показан червяк 8 диаметром d со смонтированным скребком 9. Одна часть А червяка имеет шаг p1, и другая часть В червяка имеет шаг р2.
На фиг.3 показан вариант реализации подающего средства в виде лопаток 14, установленных на центральном сердечнике 15 и отходящих от него. Лопатки снабжены скребками 16. Каждая лопатка образует угол α с направлением подачи. Различные лопатки могут иметь углы α различной величины. Подающее средство, показанное на фиг.3, может заменить червячное подающее средство, показанное на фиг.1.
Преимущества настоящего изобретения будут далее описаны с использованием следующего примера, который однако не должен истолковываться как ограничивающий объем изобретения.
Расширяющее устройство, содержащее полый корпус и червячное подающее средство, используется для расширения термопластичных расширяемых микросфер. Червяк имеет длину 2200 мм и диаметр 205 мм. Червяк разделен на три секции равной длины, при этом каждая из них имеет свой шаг в 40, 50, 60 мм, начиная от впускного отверстия. Червяк имеет четыре смонтированных на нем скребка, один из которых имеет длину, составляющую 90% длины внутренней поверхности полого тела, а каждый из трех других скребков имеет длину, составляющую 25% длины внутренней поверхности полого корпуса. Скорость вращения червяка составляет 54 оборотов в минуту. Микросферы типа Expancel® 461 DU, имеющие объемно-взвешенный средний размер 12 мкм, Тнач.=99°С и Тмакс.=140°С, предварительно смешиваются с гидрофобным диоксидом кремния в отношении 85 мас. частей микросфер и 15 мас. частей диоксида кремния. Затем такая смесь микросфер и диоксида кремния загружается в расширяющее устройство. Время пребывания микросфер в расширяющем устройстве составляет 60 сек.
Может быть получено 14 кг/час расширенных микросфер равной плотности. Не наблюдается никакой существенной агломерации микросфер в червяке.

Claims (15)

1. Расширяющее устройство для приготовления расширенных термопластичных микросфер, содержащее вращаемое подающее средство, окруженное полым корпусом, и один или несколько скребков, установленных на подающем средстве между внешним радиусом подающего средства и внутренней поверхностью полого корпуса и предназначенных для предотвращения образования слоев микросфер в расширяющем устройстве.
2. Расширяющее устройство по п.1, в котором один или несколько скребков, установленных на подающем средстве, отходят радиально за пределы внешнего радиуса подающего средства в сторону внутренней поверхности полого корпуса.
3. Расширяющее устройство по п.1 или 2, в котором один или несколько скребков по отдельности или совместно приспособлены осуществлять соскабливание от около 20 до около 95% продольной длины внутренней поверхности полого корпуса.
4. Расширяющее устройство по п.1 или 2, в котором один или два скребка способны осуществлять соскабливание от около 70 до около 100% продольной длины внутренней поверхности полого корпуса и 2-4 скребка способны осуществлять соскабливание от около 10 до около 40% продольной длины внутренней поверхности полого корпуса.
5. Расширяющее устройство по п.1 или 2, в котором один или несколько скребков установлены на подающем средстве, начиная от впускной стороны расширяющего устройства, и отходят от него.
6. Расширяющее устройство по п.1 или 2, в котором один или несколько скребков или поверхностный слой одного или нескольких скребков изготовлены из фторопласта.
7. Расширяющее устройство по п.1 или 2, в котором полый корпус снабжен одним или несколькими нагревателями.
8. Расширяющее устройство по п.1 или 2, в котором подающее средство снабжено одним или несколькими нагревателями.
9. Расширяющее устройство по п.1 или 2, в котором подающее средство имеет форму червяка.
10. Расширяющее устройство по п.1 или 2, в котором подающее средство содержит одну или несколько лопаток, установленных на центральном сердечнике и выступающих от него.
11. Способ приготовления расширенных термопластичных микросфер с использованием расширяющего устройства по одному из пп.1-10, при котором загружают терморасширяемые микросферы в расширяющее устройство, перемещают микросферы через расширяющее устройство при одновременном повышении их температуры для обеспечения расширения микросфер и выгружают расширенные микросферы.
12. Способ по п.11, в котором терморасширяемые микросферы перед поступлением в расширяющее устройство предварительно смешивают с наполнителем, препятствующим агломерации микросфер.
13. Способ по п.12, в котором в качестве наполнителя используют диоксид кремния.
14. Способ по п.12 или 13, в котором отношение веса добавляемого наполнителя к весу микросфер составляет от около 1:100 до около 1:3.
15. Способ по п.12 или 13, в котором терморасширяемые микросферы имеют содержание твердых веществ, превышающее 97 мас.%.
RU2005122926/12A 2002-12-20 2003-12-18 Устройство и способ для приготовления расширенных термопластичных микросфер RU2301739C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02445192.4 2002-12-20
EP02445192 2002-12-20

Publications (2)

Publication Number Publication Date
RU2005122926A RU2005122926A (ru) 2006-02-27
RU2301739C2 true RU2301739C2 (ru) 2007-06-27

Family

ID=32668935

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005122926/12A RU2301739C2 (ru) 2002-12-20 2003-12-18 Устройство и способ для приготовления расширенных термопластичных микросфер

Country Status (21)

Country Link
EP (1) EP1572432B1 (ru)
JP (1) JP4474285B2 (ru)
KR (1) KR100764379B1 (ru)
CN (1) CN100429061C (ru)
AT (1) ATE470549T1 (ru)
AU (1) AU2003288874B2 (ru)
BR (1) BRPI0317486B1 (ru)
CA (1) CA2510024C (ru)
DE (1) DE60332955D1 (ru)
DK (1) DK1572432T3 (ru)
EC (1) ECSP055882A (ru)
ES (1) ES2347143T3 (ru)
MX (1) MXPA05005875A (ru)
NO (1) NO20053527L (ru)
PL (1) PL207926B1 (ru)
PT (1) PT1572432E (ru)
RU (1) RU2301739C2 (ru)
SI (1) SI1572432T1 (ru)
UA (1) UA78636C2 (ru)
WO (1) WO2004056549A1 (ru)
ZA (1) ZA200504161B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666940C2 (ru) * 2013-06-12 2018-09-13 Акцо Нобель Кемикалз Интернэшнл Б.В. Способ и устройство для полученния вспененных микросфер
RU2696709C2 (ru) * 2014-12-11 2019-08-05 Акцо Нобель Кемикалз Интернэшнл Б.В. Устройство и способ для расширения термически расширяемых термопластических микросфер до расширенных термопластических микросфер

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866906B2 (en) 2000-01-26 2005-03-15 International Paper Company Cut resistant paper and paper articles and method for making same
US7786181B2 (en) 2005-12-21 2010-08-31 Akzo Nobel N.V. Chemical composition and process
US8388809B2 (en) 2006-02-10 2013-03-05 Akzo Nobel N.V. Microspheres
US7956096B2 (en) 2006-02-10 2011-06-07 Akzo Nobel N.V. Microspheres
CN102137878B (zh) 2008-08-28 2014-06-18 国际纸业公司 可膨胀微球及其制造和使用方法
US9365453B2 (en) 2012-04-19 2016-06-14 Construction Research & Technology Gmbh Admixture and method for freeze-thaw damage resistance and scaling damage resistance of cementitious compositions
US9333685B2 (en) 2012-04-19 2016-05-10 AkzoNobel Chemicals International B.V. Apparatus and system for expanding expandable polymeric microspheres
ES2600077T3 (es) 2012-04-27 2017-02-07 Compagnie Gervais Danone Artículo que comprende ácido poliláctico espumado y proceso para fabricarlo
JP6043427B2 (ja) 2012-05-30 2016-12-14 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップAkzo Nobel Chemicals International B.V. 微小球体
EP2892702B1 (en) 2012-09-07 2016-08-31 Akzo Nobel Chemicals International B.V. A method and a device for preparation of expanded thermoplastic microspheres
CN103029257B (zh) * 2012-12-21 2014-11-26 杭州富阳东山塑料机械有限公司 一种用于发料机的刮刀稳料装置
WO2015082579A1 (en) 2013-12-06 2015-06-11 Construction Research & Technology Gmbh Method of manufacturing cementitious compositions
JP6774547B2 (ja) 2016-07-14 2020-10-28 ヌーリオン ケミカルズ インターナショナル ベスローテン フェノーツハップNouryon Chemicals International B.V. 熱膨張性熱可塑性マイクロスフェアおよびそれらの調製方法
MX2019005516A (es) * 2016-11-11 2019-08-12 Living Proof Inc Star Proceso para expandir microesferas polimericas expandibles.
US11332595B2 (en) 2017-09-04 2022-05-17 Nouryon Chemicals International B.V. Thermally expandable microspheres prepared from bio-based monomers
BR112020007450A2 (pt) 2017-11-21 2020-10-27 Nouryon Chemicals International B.V. microesferas termicamente expansíveis, processo de fabricação das microesferas, microesferas expandidas e processo de fabricação de microesferas expandidas
JP7227370B2 (ja) 2018-11-13 2023-02-21 ヌーリオン ケミカルズ インターナショナル ベスローテン フェノーツハップ 熱膨張性セルロース系ミクロスフェア
JP2022518775A (ja) 2019-01-25 2022-03-16 ヌーリオン ケミカルズ インターナショナル ベスローテン フェノーツハップ ジアルコールセルロース系球状カプセル
CN110715538A (zh) * 2019-11-15 2020-01-21 快思瑞科技(上海)有限公司 可膨胀微球干燥系统和方法
CN110860260A (zh) * 2019-12-23 2020-03-06 快思瑞科技(上海)有限公司 超轻质材料连续制备系统和方法
KR20220132671A (ko) 2020-04-03 2022-09-30 누리온 케미칼즈 인터내셔널 비.브이. 생물-기반 단량체로부터 제조된 열 팽창성 미소구체
KR20220136467A (ko) 2020-04-03 2022-10-07 누리온 케미칼즈 인터내셔널 비.브이. 생물-기반 단량체로부터 제조된 열 팽창성 미소구체
BR112022021299A2 (pt) 2020-05-20 2022-12-06 Nouryon Chemicals Int Bv Microesferas termicamente expansíveis e processo de preparo de microesferas termicamente expansíveis
CN111688097B (zh) * 2020-06-29 2021-09-10 鹤山市盛世光华隔热材料有限公司 一种提高发泡塑料材料质量的方法
CN116867566A (zh) 2021-02-22 2023-10-10 诺力昂化学品国际有限公司 基于纤维素的可热膨胀微球

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH535413A (de) * 1971-07-01 1973-03-31 Luwa Ag Vorrichtung zum Trocknen eines fliessfähigen Stoffes
US3804378A (en) * 1971-12-16 1974-04-16 Mac Millan Bloedel Containers Method and apparatus for producing an expanded polymer material
JPS55137928A (en) * 1979-04-16 1980-10-28 Kanegafuchi Chem Ind Co Ltd Method and apparatus for preliminarily foaming particle of foamable thermoplastic resin
US4379106A (en) * 1981-01-09 1983-04-05 Bussey Harry Jun Method of expanding heat expandable thermoplastic elements with steam and a horizontal expander with a feed near the bottom for expanding the heat expandable element
US5228775A (en) * 1989-05-04 1993-07-20 Blentech Corporation Reversing blender agitators
AU658430B2 (en) * 1991-05-24 1995-04-13 Pierce & Stevens Corporation Process for drying microspheres
FR2699089B1 (fr) * 1992-12-14 1995-06-16 Flurial Sa Dispositif de filtrage auto-nettoyant pour fluides renfermant des particules solides.
MXPA03008407A (es) * 2001-03-29 2004-01-29 Dong Hee Kim Aparato y metodo para fabricar granulos de resina termoplastica espumada.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666940C2 (ru) * 2013-06-12 2018-09-13 Акцо Нобель Кемикалз Интернэшнл Б.В. Способ и устройство для полученния вспененных микросфер
RU2696709C2 (ru) * 2014-12-11 2019-08-05 Акцо Нобель Кемикалз Интернэшнл Б.В. Устройство и способ для расширения термически расширяемых термопластических микросфер до расширенных термопластических микросфер

Also Published As

Publication number Publication date
AU2003288874B2 (en) 2006-09-14
CN1729087A (zh) 2006-02-01
UA78636C2 (en) 2007-04-10
EP1572432B1 (en) 2010-06-09
DE60332955D1 (de) 2010-07-22
KR20050086905A (ko) 2005-08-30
RU2005122926A (ru) 2006-02-27
CA2510024C (en) 2008-12-02
ES2347143T3 (es) 2010-10-26
SI1572432T1 (sl) 2010-10-29
MXPA05005875A (es) 2005-08-29
PL375898A1 (en) 2005-12-12
BR0317486A (pt) 2005-11-16
EP1572432A1 (en) 2005-09-14
PT1572432E (pt) 2010-09-03
NO20053527D0 (no) 2005-07-18
CA2510024A1 (en) 2004-07-08
ATE470549T1 (de) 2010-06-15
NO20053527L (no) 2005-09-20
AU2003288874A1 (en) 2004-07-14
ECSP055882A (es) 2005-09-20
BRPI0317486B1 (pt) 2016-08-23
PL207926B1 (pl) 2011-02-28
CN100429061C (zh) 2008-10-29
ZA200504161B (en) 2006-08-30
JP4474285B2 (ja) 2010-06-02
WO2004056549A1 (en) 2004-07-08
DK1572432T3 (da) 2010-10-11
JP2006511360A (ja) 2006-04-06
KR100764379B1 (ko) 2007-10-08

Similar Documents

Publication Publication Date Title
RU2301739C2 (ru) Устройство и способ для приготовления расширенных термопластичных микросфер
US20070043130A1 (en) Method and expansion device for preparing expanded microspheres
PT1711397E (pt) Dispositivo de células de combustível de submarino, especialmente para um segmento de um submarino passível de ser instalado posteriormente
KR101278410B1 (ko) 중공 마이크로스피어의 제조 방법 및 다공질 세라믹 성형체의 제조 방법
KR101117521B1 (ko) 열팽창한 미소구, 그 제조방법, 열팽창성 미소구 및 용도
RU2696709C2 (ru) Устройство и способ для расширения термически расширяемых термопластических микросфер до расширенных термопластических микросфер
JPH0649260A (ja) 熱可塑性微小球、その製造方法、ならびにその使用
KR20160018545A (ko) 팽창된 마이크로스피어의 제조 방법 및 장치
EP2892702B1 (en) A method and a device for preparation of expanded thermoplastic microspheres
WO2016091847A1 (en) Apparatus and method for expanding thermally expandable thermoplastic microspheres to expanded thermoplastic microspheres
JP7377213B2 (ja) 膨張したマイクロスフェアの調製のための装置
JP2003112040A (ja) 表面に有機樹脂微粒子が付着した熱膨張性マイクロ粒子の製造方法、この製造方法で得られる熱膨張性マイクロ粒子および膨張済みマイクロ粒子
JP2005270741A (ja) 粉末状の含水熱膨張済みマイクロカプセルの製造方法、及び粉末状の含水熱膨張済みマイクロカプセルの製造装置

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20180314