RU2658963C2 - Ship cabin single-piece sound absorber - Google Patents

Ship cabin single-piece sound absorber Download PDF

Info

Publication number
RU2658963C2
RU2658963C2 RU2015134999A RU2015134999A RU2658963C2 RU 2658963 C2 RU2658963 C2 RU 2658963C2 RU 2015134999 A RU2015134999 A RU 2015134999A RU 2015134999 A RU2015134999 A RU 2015134999A RU 2658963 C2 RU2658963 C2 RU 2658963C2
Authority
RU
Russia
Prior art keywords
sound
absorbing
cabin
frame
ship
Prior art date
Application number
RU2015134999A
Other languages
Russian (ru)
Other versions
RU2015134999A3 (en
RU2015134999A (en
Inventor
Анна Михайловна Стареева
Original Assignee
Анна Михайловна Стареева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анна Михайловна Стареева filed Critical Анна Михайловна Стареева
Priority to RU2015134999A priority Critical patent/RU2658963C2/en
Publication of RU2015134999A publication Critical patent/RU2015134999A/en
Publication of RU2015134999A3 publication Critical patent/RU2015134999A3/ru
Application granted granted Critical
Publication of RU2658963C2 publication Critical patent/RU2658963C2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/8404Sound-absorbing elements block-shaped

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

FIELD: acoustics.
SUBSTANCE: invention relates to the transport machine building and can be used as the single-piece sound absorber in cabins of river and sea ships, and other water transport facilities. This is achieved by the fact, that in the ship's cabin the single-piece sound absorber is made in the form of at least trihedral pyramidal structure consisting of inclined edges connected with the top formation by fastening elements, and as the triangular pyramid base a ship bulkhead is used, to which perforated inclined edges are attached by means of fastening elements and elastic ties through the vibration damping elements, at that, the elastic ties are located inside the frame in the plane perpendicular to the ship's bulkhead, wherein the ties one end is attached to the fixed to the bulkhead hooks, and the other is to the fastening elements, bracing the inclined edges, from the inside to which sound-absorbing non-combustible material is attached, wrapped with acoustically transparent material, at that, inside the frame between the of sound-absorbing material layers there is an air cavity, and between the perforated inclined edges and sound-absorbing non-combustible material there is an air gap, which serves to suppress noise in the low-frequency range.
EFFECT: increase in the cabin comfort and improvement of the operator working conditions.
1 cl, 3 dwg

Description

Изобретение относится к транспортному машиностроению и может быть использовано в качестве штучного звукопоглотителя в каютах на речных, морских судах и других объектах водного транспорта.The invention relates to transport engineering and can be used as a piece of sound absorber in cabins on river, sea vessels and other objects of water transport.

Известен штучный звукопоглотитель в каютах на речных, морских судах по патенту РФ №2451780 (прототип), выполненный в виде по крайней мере трехгранной пирамидальной конструкции, состоящей из наклонных граней, соединенных с образованием вершины крепежными элементами, а в качестве основания трехгранной пирамиды используется судовая переборка, к которой через вибродемпфирующие элементы посредством кренежных элементов и упругих стяжек присоединяются перфорированные наклонные грани, при этом упругие стяжки расположены внутри каркаса в плоскости, перпендикулярной судовой переборке, причем один конец стяжек крепится к крюкам, закрепленным на переборке, а другой - к крепежным элементам, стягивающим наклонные грани, с внутренней стороны к которым прикреплен звукопоглощающий негорючий материал, обернутый акустически прозрачным материалом, при этом внутри каркаса между слоями звукопоглощающего материала имеется воздушная полость.Known piece absorber in cabins on river and sea vessels according to RF patent No. 2451780 (prototype), made in the form of at least a trihedral pyramidal structure, consisting of inclined faces connected to form the top by fasteners, and a ship bulkhead is used as the base of the trihedral pyramid to which perforated inclined faces are attached through vibrodamping elements by means of heeling elements and elastic screeds, while the elastic screeds are located inside the frame in a plane a bridge perpendicular to the ship’s bulkhead, with one end of the couplers attached to the hooks fixed to the bulkhead and the other to fasteners tightening the inclined faces, on the inside of which there is a sound-absorbing non-combustible material wrapped with an acoustically transparent material, while inside the frame between the layers sound-absorbing material has an air cavity.

Недостатками этой кабины являются неудовлетворительное гашение структурного шума, неприспособленность к подавлению реверберации, неудовлетворительное качество интерьера кабины и неудовлетворительная теплоизоляция.The disadvantages of this cabin are unsatisfactory suppression of structural noise, inability to suppress reverberation, unsatisfactory quality of the interior of the cabin and poor heat insulation.

Технический результат - повышение комфортабельности каюты и улучшение условий труда оператора.The technical result is to increase the comfort of the cabin and improve the working conditions of the operator.

Это достигается тем, что в судовой каюте штучный звукопоглотитель выполнен в виде по крайней мере трехгранной пирамидальной конструкции, состоящей из наклонных граней, соединенных с образованием вершины крепежными элементами, а в качестве основания трехгранной пирамиды используется судовая переборка, к которой через вибродемпфирующие элементы посредством крепежных элементов и упругих стяжек присоединяются перфорированные наклонные грани, при этом упругие стяжки расположены внутри каркаса в плоскости, перпендикулярной судовой переборке, причем один конец стяжек крепится к крюкам, закрепленным на переборке, а другой - к крепежным элементам, стягивающим наклонные грани, с внутренней стороны к которым прикреплен звукопоглощающий негорючий материал, обернутый акустически прозрачным материалом, при этом внутри каркаса между слоями звукопоглощающего материала имеется воздушная полость, а между перфорированными наклонными гранями и звукопоглощающим негорючим материалом имеется воздушный промежуток, который служит для подавления шума в низкочастотном диапазоне.This is achieved by the fact that in the ship’s cabin a piece sound absorber is made in the form of at least a trihedral pyramidal structure, consisting of inclined faces connected to form the top by fasteners, and a ship bulkhead is used as the base of the trihedral pyramid, to which through vibration damping elements by means of fasteners and elastic couplers are attached perforated inclined faces, while the elastic couplers are located inside the frame in a plane perpendicular to the ship a bore, and one end of the couplers is attached to the hooks mounted on the bulkhead, and the other to fasteners that tighten the inclined edges, on the inside of which there is a sound-absorbing non-combustible material wrapped in an acoustically transparent material, while there is an airy layer between the layers of sound-absorbing material cavity, and between the perforated inclined faces and sound-absorbing non-combustible material there is an air gap that serves to suppress noise in the low frequency range.

На фиг. 1 изображен общий вид акустической отделки судовой каюты; на фиг. 2 - штучный звукопоглотитель каюты, на фиг. 3 - звукопоглощающая конструкция пакета звуковибротеплоизоляционных элементов каркаса каюты.In FIG. 1 shows a general view of the acoustic finish of a ship's cabin; in FIG. 2 - piece sound absorber of the cabin, in FIG. 3 - sound-absorbing design of a package of sound insulation elements of the cabin frame.

Штучный звукопоглотитель судовой каюты (фиг. 1) представляет собой металлический штампосварной каркас 6, состоящий из несущих профильных конструкций (на чертеже не показано), внутри которых установлены пакеты звуковибротеплоизоляционных элементов 10, каждый из которых включает слои вибродемпфирующего материала на битумной основе и по крайней мере один слой пористого звукопоглощающего материала и перфорированную декоративную панель, причем между панелью и слоем пористого звукопоглощающего материала образован воздушный зазор (на чертеже не показано). Внутри каюты к потолку и стенам крепятся штучные звукопоглотители (фиг. 2). Каркас 6 каюты соединен с несущими конструкциями 1 судна посредством виброизолирующей системы, состоящей из верхнего подвеса, включающего в себя по крайней мере два резиновых виброизолятора 2 и 3 верхнего подвеса каюты и по крайней мере два виброизолятора 4 и 5 нижнего подвеса каюты, выполненных в виде цилиндрических или конических винтовых пружин. Внутри каюты расположены стол 7, стул 8 и кровать 9 для обслуживающего судно персонала, причем крепление этих предметов к каркасу 6 каюты может осуществляться жестко, либо через вибродемпфирующие прокладки (на чертеже не показано).The unit sound absorber of the ship’s cabin (Fig. 1) is a metal die-welded frame 6, consisting of supporting profile structures (not shown in the drawing), inside of which are installed packages of soundproofing elements 10, each of which includes layers of vibration damping material on a bitumen basis and at least one layer of porous sound-absorbing material and a perforated decorative panel, and an air gap is formed between the panel and the layer of porous sound-absorbing material (in the drawing e not shown). Inside the cabin, piece sound absorbers are attached to the ceiling and walls (Fig. 2). Cabin frame 6 is connected to the supporting structures of the vessel 1 by means of a vibration isolation system consisting of an upper suspension, including at least two rubber vibration isolators 2 and 3 of the upper suspension of the cabin and at least two vibration isolators 4 and 5 of the lower suspension of the cabin, made in the form of cylindrical or conical coil springs. Inside the cabin there is a table 7, a chair 8 and a bed 9 for personnel serving the vessel, and the fastening of these items to the frame 6 of the cabin can be carried out rigidly, or through vibration damping pads (not shown).

Пакеты звуковибротеплоизоляционных элементов 10 могут быть выполнены либо цельными, либо состоящими из элементов (на чертеже не показано), вписанных в контур каркаса 6 кабины, и состоящими из передней со щелевой перфорацией, и задней стенок из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитнодекоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. При этом передняя и задняя стенки пакетов могут быть выполнены из конструкционных материалов, с нанесенным на ее поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», а соотношение между толщиной облицовки и вибродемпфирующего покрытия лежит в оптимальном интервале величин 1:(2,5…3,5).Packages of acoustic insulation elements 10 can be made either solid or consisting of elements (not shown in the drawing) inscribed in the outline of the cabin 6, and consisting of a front with slotted perforation and a rear wall made of stainless steel or galvanized sheet with a thickness of 0.7 mm with a protective polymeric protective coating of the Pural type with a thickness of 50 microns or Polyester with a thickness of 25 microns, or an aluminum sheet with a thickness of 1.0 mm and a coating thickness of 25 microns. In this case, the front and rear walls of the packages can be made of structural materials, with a layer of soft vibration-damping material, for example, VD-17 mastic or Gerlen-D type material, applied on its surface from one or two sides, and the ratio between the thickness of the lining and vibration-damping coating lies in the optimal range of 1: (2.5 ... 3.5).

Звукопоглощающий материал звуковибротеплоизоляционных элементов 10 выполнен в виде плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом.The sound-absorbing material of the acoustic insulation elements 10 is made in the form of a slab of rockwool based mineral wool or URSA type mineral wool or P-75 basalt wool or glass wool lined with glass wool or foamed polymer, such as polyethylene or polypropylene moreover, the sound-absorbing element is lined with acoustically transparent material over its entire surface.

Штучный звукопоглотитель (фиг. 2) судовой каюты состоит из жесткого каркаса, выполненного в виде по крайней мере трехгранной пирамидальной конструкции, состоящей из трех перфорированных наклонных граней 12, соединенных с образованием вершины крепежными элементами 17. В качестве основания трехгранной пирамиды используется судовая переборка 11, к которой через вибродемпфирующие элементы 15 посредством крепежных элементов 14 и упругих стяжек 16 присоединяются перфорированные наклонные грани 12.The unit sound absorber (Fig. 2) of the ship’s cabin consists of a rigid frame made in the form of at least a trihedral pyramidal structure, consisting of three perforated inclined faces 12 connected to form the top by fasteners 17. A ship bulkhead 11 is used as the base of the trihedral pyramid, to which through vibrodamping elements 15 by means of fasteners 14 and elastic ties 16 are attached perforated inclined faces 12.

При этом упругие стяжки 16 расположены внутри каркаса в плоскости, перпендикулярной судовой переборке 11. Один конец стяжек крепится к крюкам, закрепленным на переборке 11, а другой - к крепежным элементам 7. С внутренней стороны каркаса к перфорированным наклонным граням 12 прикреплен звукопоглощающий негорючий материал 13 (например, винипор, стекловолокно), обернутый акустически прозрачным материалом, например стеклотканью. Внутри каркаса между слоями звукопоглощающего материала 13 имеется воздушная полость 18, а между перфорированными наклонными гранями 12 и звукопоглощающим негорючим материалом 13 имеется воздушный промежуток 19, который служит для подавления шума в низкочастотном диапазоне.In this case, the elastic ties 16 are located inside the frame in a plane perpendicular to the ship’s bulkhead 11. One end of the ties is attached to the hooks mounted on the bulkhead 11, and the other to the fasteners 7. On the inside of the frame, sound-absorbing non-combustible material 13 is attached to the perforated inclined faces 12 (e.g., vinipore, fiberglass) wrapped in an acoustically transparent material, e.g. fiberglass. Inside the frame between the layers of sound-absorbing material 13 there is an air cavity 18, and between the perforated inclined faces 12 and sound-absorbing non-combustible material 13 there is an air gap 19, which serves to suppress noise in the low-frequency range.

Штучный звукопоглотитель судовой каюты работает следующим образом. Звуковые волны, распространяясь в каюте, взаимодействуют с звукопоглощающим материалом 13. Звукопоглощение на низких и средних частотах происходит за счет акустического эффекта, построенного по принципу резонаторов Гельмгольца, образованных воздушными полостями 18. Различные объемы резонансных полостей служат для подавления звуковых колебаний в требуемом звуковом диапазоне частот, как правило, большие объемы для подавления шума в низкочастотном диапазоне, а малые - в области средних и высоких частот. Взаимодействие звуковых волн с звукопоглотителем приводит к шумоглушению в высокочастотном диапазоне, а выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.Piece sound absorber ship cabin works as follows. Sound waves propagating in the cabin interact with sound-absorbing material 13. Sound absorption at low and medium frequencies occurs due to the acoustic effect constructed on the principle of Helmholtz resonators formed by air cavities 18. Different volumes of resonant cavities serve to suppress sound vibrations in the required sound frequency range As a rule, large volumes for noise suppression in the low-frequency range, and small - in the medium and high frequencies. The interaction of sound waves with a sound absorber leads to noise attenuation in the high frequency range, and the implementation of a sound absorber from non-combustible materials makes the design fireproof.

Звукопоглощающая конструкция (фиг. 3) пакета звуковибротеплоизоляционных элементов каркаса каюты выполнена в виде гладкой, жесткой стенки 20 и перфорированной стенки 26, между которыми расположен многослойный звукопоглощающий элемент, выполненный в виде пяти слоев, два из которых, прилегающих к стенкам 20 и 26 являются звукопоглощающими слоями 21 и 25 из материалов разной плотности, а три центральных слоя 22, 23, 24 являются комбинированными, причем осевой слой 23 выполнен звукопоглощающим, а два симметрично расположенных, и прилегающих к нему слоя 22 и 24 выполнены из звукоотражающего материала, сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны. Перфорированная стенка 26 имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.The sound-absorbing structure (Fig. 3) of the package of sound-absorbing elements of the cabin frame is made in the form of a smooth, rigid wall 20 and a perforated wall 26, between which there is a multilayer sound-absorbing element made in the form of five layers, two of which adjacent to the walls 20 and 26 are sound-absorbing layers 21 and 25 of materials of different densities, and the three central layers 22, 23, 24 are combined, and the axial layer 23 is made sound-absorbing, and two symmetrically arranged, and adjacent layers 22 and 24 are made of sound-reflecting material, a complex profile consisting of uniformly distributed hollow tetrahedrons, allowing reflecting sound waves incident in all directions. Perforated wall 26 has the following perforation parameters: diameter of the holes is 3 ÷ 7 mm, the percentage of perforation is 10% ÷ 15%, and the shape of the holes can be made in the form of holes of a round, triangular, square, rectangular or diamond-shaped profile, while in the case of non-circular holes as the conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon.

Каждая из стенок 20 и 26 может быть выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).Each of the walls 20 and 26 can be made of structural materials, with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material, applied on one or two sides of the material, and the ratio between the thicknesses of the material and vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).

Каждая из стенок 20 и 26 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.Each of the walls 20 and 26 can be made of stainless steel or galvanized sheet with a thickness of 0.7 mm with a polymer protective and decorative coating of the type "Pural" with a thickness of 50 μm or Polyester with a thickness of 25 μm, or an aluminum sheet with a thickness of 1.0 mm and coating thickness 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

Каждая из стенок 20 и 26 может быть выполнена из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкция, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден», или неткаными материалами, например «Лутрасилом».Each of the walls 20 and 26 can be made of solid, decorative vibration-damping materials, such as plastic compounds such as Agate, Anti-Vibrate, Shvim, and the inner surface of the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent material, such as fiberglass type EZ-100 or a polymer of the type "Poviden", or non-woven materials, such as Lutrasil.

В качестве материала звукоотражающих слоев 22 и 24 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия, или применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As the material of the sound-reflecting layers 22 and 24, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength within 10 ... 20 MPa, for example foam aluminum, or soundproofing boards based on glass staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 were used .

В качестве звукопоглощающего материала слоев 21, 23 и 25 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Причем звукопоглощающий материал по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден», или поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Τ), или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом. Кроме того, в качестве звукопоглощающего материала слоев 2 и 4 может быть использован пористый шумопоглощающий материал, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например, типа Acutex Τ или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.As sound-absorbing material of layers 21, 23 and 25, rockwool type mineral wool or URSA type mineral wool or P-75 type basalt wool or glass wool lined with glass wool or foamed polymer, for example, can be used. polyethylene or polypropylene. Moreover, the sound-absorbing material is lined with an acoustically transparent material over its entire surface, for example, EZ-100 fiberglass or Poviden polymer, or the surface of fibrous sound absorbers is treated with special porous paints that allow air to pass through (for example, Acutex Τ), or coated with breathable fabrics or non-woven materials e.g. Lutrasil. In addition, as the sound-absorbing material of layers 2 and 4, a porous sound-absorbing material, for example, foam aluminum, or cermet, or a shell rock with a degree of porosity in the range of optimal values: 30–45%, or metal foam, or material in the form of pressed crumbs from solid vibration-damping materials, for example, elastomer, polyurethane or plastic compound such as Agate, Anti-Vibrate, Shvim, and the size of the fractions of the crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and can also be porous mineral piece materials, such as pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, or the surface of the fibrous sound absorbers are treated with special porous paints that allow air to pass through, for example, Acutex Τ or coated with breathable fabrics or non-woven materials, e.g. Lutrasil.

Для снижения или коррекции времени реверберации помещений в его отделке применяют звукопоглощающие материалы и конструкции (звукопоглотители).To reduce or correct the reverberation time of premises, sound-absorbing materials and structures (sound absorbers) are used in its decoration.

Пористые звукопоглотители изготавливают в виде плит, которые крепятся к ограждающим поверхностям непосредственно или на относе, из легких и пористых минеральных штучных материалов - пемзы, вермикулита, каолина, шлаков и т.п. с цементом или другим вяжущим. Такие материалы достаточно прочны и могут быть использованы для снижения шума в коридорах, фойе, лестничных маршах общественных и промышленных зданий.Porous sound absorbers are made in the form of plates that are attached to the enclosing surfaces directly or on the basis of light and porous mineral piece materials - pumice, vermiculite, kaolin, slag, etc. with cement or other binder. Such materials are strong enough and can be used to reduce noise in corridors, foyers, staircases of public and industrial buildings.

Сырьем для их производства служат древесные волокна, минеральная вата, стеклянная вата, синтетические волокна. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Τ) или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.The raw materials for their production are wood fibers, mineral wool, glass wool, synthetic fibers. The surface of the fibrous absorbers is treated with special porous paints that allow air to pass through (for example, Acutex Τ) or coated with breathable fabrics or non-woven materials, such as Lutrasil.

В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике. Они не только оказались наиболее эффективными с акустической точки зрения в широком частотном диапазоне, но и отвечают возросшим требованиям, предъявляемые к дизайну помещений.Currently, fibrous sound absorbers are the most common in construction practice. They not only proved to be the most effective from an acoustic point of view in a wide frequency range, but also meet the increased requirements for room design.

В качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.As a sound-reflecting material, a material based on a magnesian binder with a reinforcing fiberglass or fiberglass was used.

В качестве звукопоглощающего материала использован полиэстер.Polyester is used as a sound-absorbing material.

В качестве звукопоглощающего материала использован пористый волокнистый или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочки из тонкой стеклоткани или алюминизированной лавсановой пленки.As a sound-absorbing material, a porous fibrous or foamy sound-absorbing material is used, which is made on the basis of basalt or glass fibers, or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass or aluminized lavsan film.

В качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов. В процессе спекания частицы перлита в точках соприкосновения образуют смежные поры. Этот материал обладает хорошей звукопоглощающей способностью в широком диапазоне частот, но имеет высокую плотность, связанную с содержанием большого количества спекающих материалов.As a sound-absorbing material, a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 mass parts of one or more sintering materials and 10 ÷ 20 mass parts of binder materials. During sintering, perlite particles at adjacent points form adjacent pores. This material has good sound absorption in a wide frequency range, but has a high density associated with the content of a large number of sintering materials.

Звукопоглощающая конструкция (фиг. 3) пакета звуковибротеплоизоляционных элементов каркаса каюты работает следующим образом.The sound-absorbing structure (Fig. 3) of the package of acoustic insulation elements of the cabin frame works as follows.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированную стенку 26 попадает на слой 25 из мягкого звукопоглощающего материала, а затем встречает на своем пути соответственно слои 24, 23 и 22 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, но часть звуковой энергии проходит через слои 22 и 24 из звукоотражающего материала, и взаимодействует с осевым слоем 23 из звукопоглощающего материала, где происходит окончательное рассеивание звуковой энергии.Sound energy from equipment located in the room, or another object that emits intense noise, passing through the perforated wall 26 enters the layer 25 of soft sound-absorbing material, and then encounters layers 24, 23 and 22 of a reflective material of complex profile, respectively , consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, but part of the sound energy passes through layers 22 and 24 of sound-reflecting material, and interactions It interacts with the axial layer 23 of sound-absorbing material, where the final dissipation of sound energy occurs.

Слои 21 и 25 из мягкого звукопоглощающего материала разной плотности могут быть выполнены, например, из базальтового или стеклянного волокна. В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.Layers 21 and 25 of soft sound-absorbing material of different densities can be made, for example, of basalt or glass fiber. In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of a sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the frequency of excitation on the neck wall, which has the form of a branched sound absorber pore network. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0.

Claims (1)

Штучный звукопоглотитель судовой каюты, содержащей металлический штампосварной каркас, состоящий из несущих профильных конструкций, внутри которых установлены пакеты звуковибротеплоизоляционных элементов, каждый из звуковибротеплоизоляционных элементов включает слои вибродемпфирующего материала на битумной основе и по крайней мере один слой пористого звукопоглощающего материала и перфорированную декоративную панель, причем между панелью и слоем пористого звукопоглощающего материала образован воздушный зазор, при этом каркас каюты соединен с несущими конструкциями судна посредством виброизолирующей системы, состоящей из верхнего подвеса, включающего в себя по крайней мере два резиновых виброизолятора верхнего подвеса каюты и по крайней мере два виброизолятора нижнего подвеса каюты, выполненных в виде цилиндрических или конических винтовых пружин, причем пакеты звуковибротеплоизоляционных элементов могут быть выполнены либо цельными, либо состоящими из элементов, вписанных в контур каркаса кабины, а звукопоглощающий материал звуковибротеплоизоляционных элементов выполнен в виде плиты из минеральной ваты на базальтовой основе и по всей своей поверхности облицован акустически прозрачным материалом, а штучный звукопоглотитель выполнен в виде по крайней мере трехгранной пирамидальной конструкции, состоящей из наклонных граней, соединенных с образованием вершины крепежными элементами, а в качестве основания трехгранной пирамиды используется судовая переборка, к которой через вибродемпфирующие элементы посредством крепежных элементов и упругих стяжек присоединяются перфорированные наклонные грани, при этом упругие стяжки расположены внутри каркаса в плоскости, перпендикулярной судовой переборке, причем один конец стяжек крепится к крюкам, закрепленным на переборке, а другой - к крепежным элементам, стягивающим наклонные грани, с внутренней стороны к которым прикреплен звукопоглощающий негорючий материал, обернутый акустически прозрачным материалом, при этом внутри каркаса между слоями звукопоглощающего материала имеется воздушная полость, а между перфорированными наклонными гранями и звукопоглощающим негорючим материалом имеется воздушный промежуток, который служит для подавления шума в низкочастотном диапазоне, при этом звукопоглощающая конструкция пакета звуковибротеплоизоляционных элементов каркаса каюты выполнена в виде жесткой и перфорированной стенок, между которыми расположен многослойный звукопоглощающий элемент, выполненный в виде пяти слоев, два из которых, прилегающих к стенкам, являются звукопоглощающими слоями из материалов разной плотности, а три центральных слоя являются комбинированными, причем осевой слой выполнен звукопоглощающим, а два симметрично расположенных, прилегающих к нему слоя выполнены из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден», отличающийся тем, что в качестве звукопоглощающего материала звукопоглощающей конструкции пакета звуковибротеплоизоляционных элементов каркаса каюты использован пористый шумопоглощающий материал, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например, типа Acutex Т или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.Piece sound absorber of a ship’s cabin containing a metal die-welded frame, consisting of supporting profile structures, inside of which are packages of sound and heat insulation elements, each of the sound and heat insulation elements includes layers of vibration damping material on a bitumen base and at least one layer of porous sound absorbing material and a perforated decorative panel, between a panel and a layer of porous sound-absorbing material formed an air gap, while the frame to the yutes are connected to the supporting structures of the vessel by means of a vibration isolating system consisting of an upper suspension, including at least two rubber vibration isolators of the upper cabin suspension and at least two vibration isolators of the lower cabin suspension, made in the form of cylindrical or conical helical springs, and packages of sound insulation and heat insulation elements can be made either solid or consisting of elements inscribed in the outline of the cabin frame, and sound-absorbing material the elements are made in the form of a slab of mineral wool on a basalt basis and lined with acoustically transparent material over its entire surface, and the piece sound absorber is made in the form of at least a trihedral pyramidal structure consisting of inclined faces connected to form the top by fasteners, and as the base a triangular pyramid uses a ship’s bulkhead to which perforated nipples are attached via vibration damping elements by means of fasteners and elastic ties inclined faces, while elastic screeds are located inside the frame in a plane perpendicular to the ship’s bulkhead, one end of the screeds being attached to hooks fixed to the bulkhead, and the other to fasteners tightening the inclined faces, on the inside of which are sound-absorbing non-combustible material, wrapped in acoustically transparent material, while inside the frame between the layers of sound-absorbing material there is an air cavity, and between perforated inclined faces and sound-absorbing non-combustible the material has an air gap that serves to suppress noise in the low-frequency range, while the sound-absorbing design of the package of sound-absorbing elements of the cabin frame is made in the form of rigid and perforated walls, between which there is a multilayer sound-absorbing element made in the form of five layers, two of which are adjacent to the walls are sound-absorbing layers of materials of different densities, and the three central layers are combined, and the axial layer is made sound absorbing, and two symmetrically located adjacent layers are made of sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedra, which allow reflecting sound waves incident in all directions, each of the perforated walls has the following perforation parameters: hole diameter - 3 ÷ 7 mm , the percentage of perforation 10% ÷ 15%, and the shape of the holes can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in For non-circular holes, the maximum diameter of the circle inscribed in the polygon should be considered as a conditional diameter, and as sound-absorbing material, slabs made of rockwool based mineral wool or URSA type mineral wool or P-75 type basalt wool should be used as sound absorbing material. or glass wool with glass fiber lining, and the sound-absorbing element over its entire surface is lined with an acoustically transparent material, such as fiberglass type EZ-100 or polymer type "Poviden", characterized in that as the sound-absorbing material of the sound-absorbing design of the package of sound-absorbing elements of the cabin frame, a porous sound-absorbing material, for example, foam aluminum, or cermet, or a shell rock with a degree of porosity in the range of optimal values: 30 ÷ 45%, or metal foam, or crushed material is used from solid vibration-damping materials, such as elastomer, polyurethane or plastic compound such as "Agate", "Anti-Vibrate", "Shvim", and the size of the crumbs fractions in the optimal range of values: 0.3 ... 2.5 mm, and also porous mineral piece materials, such as pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers can be used, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, such as Acutex T, or are coated with breathable fabrics or non-woven materials, such as Lutrasil.
RU2015134999A 2015-08-19 2015-08-19 Ship cabin single-piece sound absorber RU2658963C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015134999A RU2658963C2 (en) 2015-08-19 2015-08-19 Ship cabin single-piece sound absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015134999A RU2658963C2 (en) 2015-08-19 2015-08-19 Ship cabin single-piece sound absorber

Publications (3)

Publication Number Publication Date
RU2015134999A RU2015134999A (en) 2017-02-28
RU2015134999A3 RU2015134999A3 (en) 2018-03-21
RU2658963C2 true RU2658963C2 (en) 2018-06-26

Family

ID=58454038

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015134999A RU2658963C2 (en) 2015-08-19 2015-08-19 Ship cabin single-piece sound absorber

Country Status (1)

Country Link
RU (1) RU2658963C2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0026936A1 (en) * 1979-10-06 1981-04-15 Stocznia Szczecinska im. A. Warskiego Process for creating living-spaces, especially on board ships, and living-spaces produced by this process
JPS60121186A (en) * 1983-12-02 1985-06-28 Mitsubishi Heavy Ind Ltd Vibro-isolating structure for living quarter
RU2399548C1 (en) * 2009-09-11 2010-09-20 Олег Савельевич Кочетов Ship cabin acoustic lining
RU2451620C1 (en) * 2011-03-18 2012-05-27 Олег Савельевич Кочетов Low-noise ship cabin
RU2451780C1 (en) * 2011-03-17 2012-05-27 Олег Савельевич Кочетов Pierce sound absorber for ship cabin
RU2541701C1 (en) * 2014-02-12 2015-02-20 Олег Савельевич Кочетов Kochetov's sound-absorbing structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0026936A1 (en) * 1979-10-06 1981-04-15 Stocznia Szczecinska im. A. Warskiego Process for creating living-spaces, especially on board ships, and living-spaces produced by this process
JPS60121186A (en) * 1983-12-02 1985-06-28 Mitsubishi Heavy Ind Ltd Vibro-isolating structure for living quarter
RU2399548C1 (en) * 2009-09-11 2010-09-20 Олег Савельевич Кочетов Ship cabin acoustic lining
RU2451780C1 (en) * 2011-03-17 2012-05-27 Олег Савельевич Кочетов Pierce sound absorber for ship cabin
RU2451620C1 (en) * 2011-03-18 2012-05-27 Олег Савельевич Кочетов Low-noise ship cabin
RU2541701C1 (en) * 2014-02-12 2015-02-20 Олег Савельевич Кочетов Kochetov's sound-absorbing structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
с приоритетом от 12.02.2014. *

Also Published As

Publication number Publication date
RU2015134999A3 (en) 2018-03-21
RU2015134999A (en) 2017-02-28

Similar Documents

Publication Publication Date Title
RU2583463C1 (en) Sound-absorbing coating
RU2592871C1 (en) Kochetov sound absorber for lining manufacturing facilities
RU2561389C1 (en) Sound-absorbing structure
RU2561393C1 (en) Kochetov(s sound absorber for lining manufacturing facilities
RU2399548C1 (en) Ship cabin acoustic lining
RU2561394C1 (en) Kochetov(s sound-absorbing element
RU2541701C1 (en) Kochetov's sound-absorbing structure
RU2583434C1 (en) Kochetov sound absorber of circular type
RU2649681C2 (en) Kochetov sound-absorbing lining
RU2582137C2 (en) Sound absorbing element
RU2547529C1 (en) Kochetov's sound-absorbing structure
RU2669813C2 (en) Low-noise ship cabin
RU2451780C1 (en) Pierce sound absorber for ship cabin
RU2583442C2 (en) Sound absorbing structure
RU2579021C1 (en) Acoustic panel
RU2610013C1 (en) Kochetov low-noise manufacturing building
RU2646252C1 (en) Sound-absorbing lining
RU2658963C2 (en) Ship cabin single-piece sound absorber
RU2646238C1 (en) Acoustic device
RU2656438C1 (en) Sound-absorbing structure for manufacturing buildings
RU2627517C1 (en) Sound-absorbing structure
RU2655639C2 (en) Soundproofing enclosure
RU2558817C1 (en) Kochetov's piece noise absorber
RU2530434C1 (en) Kochetov's acoustic panel
RU2651985C1 (en) Sound absorbing element

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant