RU2655639C2 - Soundproofing enclosure - Google Patents

Soundproofing enclosure Download PDF

Info

Publication number
RU2655639C2
RU2655639C2 RU2015134989A RU2015134989A RU2655639C2 RU 2655639 C2 RU2655639 C2 RU 2655639C2 RU 2015134989 A RU2015134989 A RU 2015134989A RU 2015134989 A RU2015134989 A RU 2015134989A RU 2655639 C2 RU2655639 C2 RU 2655639C2
Authority
RU
Russia
Prior art keywords
sound
absorbing
walls
layers
noise
Prior art date
Application number
RU2015134989A
Other languages
Russian (ru)
Other versions
RU2015134989A (en
Inventor
Анна Михайловна Стареева
Original Assignee
Анна Михайловна Стареева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анна Михайловна Стареева filed Critical Анна Михайловна Стареева
Priority to RU2015134989A priority Critical patent/RU2655639C2/en
Publication of RU2015134989A publication Critical patent/RU2015134989A/en
Application granted granted Critical
Publication of RU2655639C2 publication Critical patent/RU2655639C2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only

Abstract

FIELD: acoustics.
SUBSTANCE: invention relates to protective devices connected with safety precautions, in particular to means for noise reducing of machinery and equipment. Sound-insulating enclosure contains casing mounted on a vibration isolation support, which is made in the form of box, between which walls the noise-absorbing element is placed. Casing freely rests against the shelves, placed between the walls along the support perimeter, and on the shelves shock absorbers are fixed made of elastic material, for example, soft rubber. Between the shelves, ventilation ducts are made, vibration isolating support is mounted on the solid elastic gasket and fixed to the foundation, on which the protected object is installed, using bolts and rubber-metal washers. Casing frame is made of noise-absorbing elements inscribed in its outline. At that, the noise-absorbing element is made in the form of five layers, two of which, adjacent to the walls, are sound-absorbing layers from the different density materials, and three central layers are combined. Axial layer is made sound absorbing, and two symmetrical adjoining layers are made from the complex profiled sound reflecting material composed of evenly distributed hollow tetrahedrons, allowing to reflect the falling in all directions sound waves. Each of perforated walls has following perforation parameters: holes diameter – 3÷7 mm, perforation percentage 10÷15%, wherein by the form holes can be made in the form of round, triangular, square, rectangular or diamond-shaped profile holes. In case of non-circular holes, it is necessary to consider as nominal diameter maximum diameter of circle inscribed in polygon. Sound-absorbing material used is in the form of Rockwool mineral wool boards on a basalt base or URSA mineral wool or P-75 basalt wool or glass wool lined with glass felt. Over its entire surface the sound-absorbing element is lined with the acoustically transparent material or as the sound-absorbing material a porous sound-absorbing material is used. Fibrous sound absorbers surface is treated with special air permeable porous paints, or non-woven materials. As the sound-reflecting material, the aluminum-containing alloys based material is used, with their subsequent filling with titanium hydride or air with density within 0.5…0.9 kg/m3 with the following strength properties: compression strength within 5…10 MPa, bending strength within 10…20 MPa or the “Noise-stopper” type glass staple fiber based soundproofing plates with the material density of 60÷80 kg/m3.
EFFECT: technical result consists in increasing the efficiency of noise attenuation.
1 cl, 6 dwg

Description

Изобретение относится к предохранительным устройствам техники безопасности, в частности к средствам снижения шума машин и оборудования.The invention relates to safety devices for safety, in particular to means for reducing the noise of machinery and equipment.

Известно звукоизолирующее ограждение стационарных динамически неуравновешенных установок, например машин с ударным взаимодействием элементов, содержащее кожух, установленный на виброизолирующих опорах патенту РФ №2295089, кл. F16P 1/2, (прототип).Known soundproofing fencing stationary dynamically unbalanced installations, such as machines with shock interaction of elements, containing a casing mounted on vibration dampers RF patent No. 2295089, class. F16P 1/2, (prototype).

Недостатком известного технического решения является то, что оно не позволяет существенно снизить уровень производимого кожухом собственного шума.A disadvantage of the known technical solution is that it does not significantly reduce the level of noise produced by the casing.

Технический результат - повышение эффективности шумоглушения.The technical result is an increase in the efficiency of sound attenuation.

Это достигается тем, что в звукоизолирующем ограждении, содержащем кожух, установленный на виброизолирующую опору, которая выполнена в виде короба, между стенками которого размещен шумопоглощающий элемент, при этом кожух свободно опирается на полки, размещенные между стенками по периметру опоры, а на полках закреплены амортизаторы, выполненные из упругого материала, например мягкой резины, между стеками выполнены вентиляционные каналы, виброизолирующая опора установлена на сплошную упругую прокладку, например из губчатой резины, и крепится к фундаменту, на котором установлен защищаемый объект, при помощи болтов и резинометаллических шайб, каркас кожуха выполнен состоящим из шумопоглощающих элементов, вписанных в его контур, шумопоглощающий элемент выполнен в виде жесткой и перфорированной стенок, между которыми расположены два слоя: звукоотражающий слой, прилегающий к жесткой стенке, и звукопоглощающий слой, прилегающий к перфорированной стенке, при этом слой звукоотражающего материала выполнен сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а перфорированная стенка имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала применена минеральная вата на базальтовой основе типа «Rockwool» или минеральная вата типа «URSA».This is achieved by the fact that in a sound insulating enclosure containing a casing mounted on a vibration-absorbing support, which is made in the form of a box, between the walls of which a sound-absorbing element is placed, the casing freely rests on shelves placed between the walls around the perimeter of the support, and shock absorbers are fixed on the shelves made of an elastic material, such as soft rubber, ventilation ducts are made between the stacks, a vibration isolating support is mounted on a continuous elastic gasket, for example, of spongy rubber, and It is drunk to the foundation on which the protected object is installed, with bolts and rubber washers, the casing frame is made up of sound-absorbing elements inscribed in its contour, the sound-absorbing element is made in the form of rigid and perforated walls, between which two layers are located: a sound-reflecting layer adjacent to a rigid wall, and a sound-absorbing layer adjacent to the perforated wall, while the layer of sound-reflecting material is made of a complex profile consisting of uniformly distributed hollow tetrahedra, which allow reflecting sound waves incident in all directions, and the perforated wall has the following perforation parameters: hole diameter - 3 ÷ 7 mm, perforation percentage 10 ÷ 15%, and the shape of the hole can be made in the form of round, triangular, square holes, a rectangular or diamond-shaped profile, while in the case of non-circular holes, the maximum diameter of the circle inscribed in the polygon should be considered as the conditional diameter, and mineral is used as a sound-absorbing material Rockwool type basalt wool or URSA mineral wool.

На фиг. 1 изображено звукоизолирующее ограждение, общий вид; на фиг. 2 - сечение по А-А фиг. 1; на фиг. 3 - сечение по Б-Б на фиг. 1; на фиг. 4 - узел I на фиг. 1, на фиг. 5-6 - варианты схем шумопоглощающего элемента.In FIG. 1 shows a soundproof fence, general view; in FIG. 2 is a section along AA of FIG. one; in FIG. 3 is a section along BB in FIG. one; in FIG. 4 - node I in FIG. 1, in FIG. 5-6 are variants of the schemes of the sound-absorbing element.

Звукоизолирующее ограждение (фиг. 1) содержит виброизолирующую опору 1 и установленный на ней кожух 2. Виброизолирующая опора 1 выполнена в виде короба, между стенками 3 и 4 которого размещен звукопоглощающий материал 5. Кожух 2 свободно опирается на полки 6, размещенные между стенками 3 и 4 по периметру опоры 1. На полках 6 закреплены тачечные амортизаторы 7, выполненные из упругого материала, например мягкой резины. В теле звукопоглощающего материала 5 при помощи сетчатых стенок 8 выполнены вентиляционные каналы 9, стенки которых образованы акустически прозрачным материалом, например сеткой или перфорированным листовым материалом. Виброизолирующая опора 1 установлена на сплошную упругую прокладку 10, например из губчатой резины, и крепится к фундаменту 11 (фиг. 3), на котором установлена машина (источник шума) 12, при помощи болтов 13 и резинометаллических шайб 14. Каркас кожуха 2 выполнен либо цельным, либо состоящим из шумопоглощающих элементов (фиг. 5), вписанных в его контур,Sound insulating fence (Fig. 1) contains a vibration insulating support 1 and a casing 2 installed on it. The vibration insulating support 1 is made in the form of a box, between the walls 3 and 4 of which sound-absorbing material is placed 5. The casing 2 is freely supported on shelves 6 located between the walls 3 and 4 around the perimeter of the support 1. On the shelves 6 fixed shock absorbers 7, made of an elastic material, such as soft rubber. In the body of the sound-absorbing material 5, using the mesh walls 8, ventilation ducts 9 are made, the walls of which are formed by an acoustically transparent material, for example, a mesh or perforated sheet material. The vibration-isolating support 1 is mounted on a continuous elastic pad 10, for example of sponge rubber, and is attached to the foundation 11 (Fig. 3), on which the machine (noise source) 12 is mounted, using bolts 13 and rubber washers 14. The casing 2 is made either integral, or consisting of noise absorbing elements (Fig. 5), inscribed in its circuit,

Шумопоглощающий элемент (фиг. 5) выполнен в виде жесткой 15 и перфорированной 18 стенок, между которыми расположены два слоя: звукоотражающий слой 16, прилегающий к жесткой стенке 15, и звукопоглощающий слой 17, прилегающий к перфорированной стенке 18. При этом слой звукоотражающего материала выполнен сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а перфорированная стенка имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности. В качестве звукопоглощающего материала слоя 17 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, «Acutex T») или покрывается воздухопроницаемыми тканями или неткаными материалами, например «Лутрасилом».The sound-absorbing element (Fig. 5) is made in the form of a rigid 15 and perforated 18 walls, between which two layers are located: a sound-reflecting layer 16 adjacent to the rigid wall 15, and a sound-absorbing layer 17 adjacent to the perforated wall 18. The layer of sound-reflecting material is made a complex profile, consisting of evenly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, and a perforated wall has the following perforation parameters: hole diameter - 3 ÷ 7 mm, percentage perforations of 10–15%, moreover, the shape of the hole can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes, the maximum diameter of a circle inscribed in a polygon should be considered as a conditional diameter. As the sound-absorbing material of layer 17, rockwool-type mineral wool or URSA-type mineral wool, or P-75-type basalt wool, or glass wool lined with glass wool, or foamed polymer, such as polyethylene or polypropylene can be used. The surface of the fibrous absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T) or coated with breathable fabrics or non-woven materials, such as Lutrasil.

В качестве звукопоглощающего материала может быть использован пористый шумопоглощающий материала, например пеноалюминий,или металлокерамика,или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например типа Acutex T,или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.As a sound-absorbing material, a porous sound-absorbing material can be used, for example, foam aluminum, or cermets, or a shell rock with a degree of porosity in the range of optimal values: 30–45%, or metal foam, or a material in the form of pressed crumbs from solid vibration-damping materials, for example elastomer, polyurethane or plastic compound of the type "Agate", "Anti-Vibrate", "Shvim", moreover, the size of the fractions of the crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and also porous mineral piece materials, such as pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous air-permeable paints, such as Acutex T, or coated with breathable fabrics or non-woven materials, for example Lutrasil.

Перфорированная стенка 18 может быть выполнена из конструкционных материалов с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).The perforated wall 18 can be made of structural materials with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material applied to one or two sides of the surface, and the ratio between the thicknesses of the material and the vibration-damping coating lies in optimal range of values: 1 / (2.5 ... 3.5).

Перфорированная стенка 18 может быть выполнена из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкции облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100,или полимером типа «повиден», или неткаными материалами, например «лутрасилом».The perforated wall 18 can be made of solid, decorative vibration damping materials, for example, Agate, Anti-Vibrate, Shvim plastic compounds, the inner surface of the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent material, such as fiberglass type EZ-100 , or a “see-through” polymer, or non-woven materials, such as “lutrasil”.

Перфорированная стенка 18 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.The perforated wall 18 can be made of stainless steel or a galvanized sheet with a thickness of 0.7 mm with a protective and decorative polymer coating such as Pural 50 μm thick or Polyester 25 μm thick, or an aluminum sheet 1.0 mm thick and a coating thickness of 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

В качестве материала звукоотражающего слоя 16 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа например пеноалюминия.As the material of the sound-reflecting layer 16, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example foam aluminum.

В качестве материала звукоотражающего слоя 16 могут быть применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As the material of the sound-reflecting layer 16, sound-proofing plates based on glass staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 can be used.

Шумопоглощающий элемент работает следующим образом.Sound-absorbing element operates as follows.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированную стенку 18 попадает на слой 17 из мягкого звукопоглощающего материала, где происходит ее поглощение, а затем на слой 16 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, снова направляя их на звукопоглощающий материал для вторичного поглощения и рассеяния звуковой энергии. В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.Sound energy from equipment located in the room, or another object that emits intense noise, passing through the perforated wall 18 enters the layer 17 of soft sound-absorbing material, where it is absorbed, and then on the layer 16 of sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, again directing them to sound-absorbing material for secondary absorption and dispersion of sound energy. In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of a sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the frequency of excitation on the neck wall, which has the form of a branched sound absorber pore network. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0.

Возможен вариант, когда шумопоглощающий элемент (фиг. 6) выполнен в виде гладкой, жесткой стенки 19 и перфорированной стенки 25, между которыми расположен многослойный звукопоглощающий элемент, выполненный в виде пяти слоев, два из которых, прилегающих к стенкам 19 и 25,являются звукопоглощающими слоями 20 и 24 из материалов разной плотности, а три центральных слоя 21, 22, 23 являются комбинированными, причем осевой слой 22 выполнен звукопоглощающим, а два симметрично расположенных и прилегающих к нему слоя 21 и 23 выполнены из звукоотражающего материала, сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны. Перфорированная стенка 25 имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.A variant is possible when the sound-absorbing element (Fig. 6) is made in the form of a smooth, rigid wall 19 and a perforated wall 25, between which there is a multilayer sound-absorbing element made in the form of five layers, two of which adjacent to the walls 19 and 25 are sound-absorbing layers 20 and 24 of materials of different densities, and the three central layers 21, 22, 23 are combined, and the axial layer 22 is made sound-absorbing, and two symmetrically located and adjacent layers 21 and 23 are made of sound-reflecting material A complex profile consisting of uniformly distributed hollow tetrahedrons, permitting the reflection of falling in all directions the sound waves. The perforated wall 25 has the following perforation parameters: diameter of the holes is 3 ÷ 7 mm, the percentage of perforation is 10 ÷ 15%, and the shape of the holes can be made in the form of holes of a round, triangular, square, rectangular or diamond-shaped profile, while in the case of non-circular holes as the conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon.

Каждая из стенок 19 и 25 может быть выполнена из конструкционных материалов с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).Each of the walls 19 and 25 can be made of structural materials with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material applied on one or two sides of the material, and the ratio between the thicknesses of the material and vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).

Каждая из стенок 19 и 25 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.Each of the walls 19 and 25 can be made of stainless steel or galvanized sheet with a thickness of 0.7 mm with a protective and decorative polymer coating of the type “Pural” 50 μm thick or “Polyester” 25 μm thick or an aluminum sheet 1.0 mm thick and coating thickness 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

Каждая из стенок 19 и 25 может быть выполнена из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкции, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или неткаными материалами, например «лутрасилом».Each of the walls 19 and 25 can be made of solid, decorative vibration damping materials, such as plastic compounds such as Agate, Anti-Vibrate, Shvim, and the inner surface of the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent material, such as fiberglass type EZ-100 or a polymer of the “poviden” type, or nonwoven materials, for example, “lutrasil”.

В качестве материала звукоотражающих слоев 21 и 23 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МП, например пеноалюминия, или применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As the material of the sound-reflecting layers 21 and 23, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MP, for example foam aluminum, or soundproof boards based on glass staple fiber of the Shumostop type with a material density of 60 ÷ 80 kg / m 3 were used .

В качестве звукопоглощающего материала слоев 20, 22 и 24 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Причем звукопоглощающий материал по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т) или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом. Кроме того, в качестве звукопоглощающего материала слоев 20 и 22 может быть использован пористый шумопоглощающий материала, например пеноалюминий или металлокерамика или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например типа Acutex Т, или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.As sound-absorbing material of layers 20, 22 and 24, rockwool-type mineral wool or URSA-type mineral wool, or P-75-type basalt wool, or glass wool with glass fiber lining, or foamed polymer, for example, can be used. polyethylene or polypropylene. Moreover, the sound-absorbing material over its entire surface is lined with an acoustically transparent material, for example, EZ-100 fiberglass or a “visible” polymer, or the surface of the fibrous sound absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T) or coated with breathable fabrics or non-woven materials, e.g. Lutrasil. In addition, as the sound-absorbing material of the layers 20 and 22, a porous sound-absorbing material can be used, for example, foam aluminum or cermets or a stone shell with a degree of porosity in the range of optimal values: 30–45%, or metal foam, or a material in the form of pressed chips from solid vibration-damping materials, for example, elastomer, polyurethane or plastic compound such as "Agate", "Anti-Vibrate", "Shvim", moreover, the size of the fractions of the crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and can also be used porous mineral piece materials were used, for example, pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, such as Acutex T, or covered with breathable fabrics or non-woven materials e.g. Lutrasil.

Для снижения или коррекции времени реверберации помещений в его отделке применяют звукопоглощающие материалы и конструкции (звукопоглотители).To reduce or correct the reverberation time of premises, sound-absorbing materials and structures (sound absorbers) are used in its decoration.

Пористые звукопоглотители изготавливают в виде плит, которые крепятся к ограждающим поверхностям непосредственно или на относе, из легких и пористых минеральных штучных материалов - пемзы, вермикулита, каолина, шлаков и т.п. с цементом или другим вяжущим. Такие материалы достаточно прочны и могут быть использованы для снижения шума в коридорах, фойе, лестничных маршах общественных и промышленных зданий.Porous sound absorbers are made in the form of plates that are attached to the enclosing surfaces directly or on the basis of light and porous mineral piece materials - pumice, vermiculite, kaolin, slag, etc. with cement or other binder. Such materials are strong enough and can be used to reduce noise in corridors, foyers, staircases of public and industrial buildings.

Сырьем для их производства служат древесные волокна, минеральная вата, стеклянная вата, синтетические волокна. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т) или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.The raw materials for their production are wood fibers, mineral wool, glass wool, synthetic fibers. The surface of the fibrous absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T) or coated with breathable fabrics or non-woven materials, such as Lutrasil.

В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике. Они не только оказались наиболее эффективными с акустической точки зрения в широком частотном диапазоне, но и отвечают возросшим требованиям, предъявляемые к дизайну помещений.Currently, fibrous sound absorbers are the most common in construction practice. They not only proved to be the most effective from an acoustic point of view in a wide frequency range, but also meet the increased requirements for room design.

В качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.As a sound-reflecting material, a material based on a magnesian binder with a reinforcing fiberglass or fiberglass was used.

В качестве звукопоглощающего материала использован полиэстер.Polyester is used as a sound-absorbing material.

В качестве звукопоглощающего материала использован пористый волокнистый или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочки из тонкой стеклоткани или алюминизированной лавсановой пленки.As a sound-absorbing material, a porous fibrous or foamy sound-absorbing material is used, which is made on the basis of basalt or glass fibers, or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass or aluminized lavsan film.

В качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов. В процессе спекания частицы перлита в точках соприкосновения образуют смежные поры. Этот материал обладает хорошей звукопоглощающей способностью в широком диапазоне частот, но имеет высокую плотность, связанную с содержанием большого количества спекающих материалов.As a sound-absorbing material, a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 mass parts of one or more sintering materials and 10 ÷ 20 mass parts of binder materials. During sintering, perlite particles at adjacent points form adjacent pores. This material has good sound absorption in a wide frequency range, but has a high density associated with the content of a large number of sintering materials.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированную стенку 25, попадает на слой 24 из мягкого звукопоглощающего материала, а затем встречает на своем пути соответственно слои 23, 22 и 21 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, но часть звуковой энергии проходит через слои 21 и 23 из звукоотражающего материала, и взаимодействует с осевым слоем 22 из звукопоглощающего материала, где происходит окончательное рассеивание звуковой энергии.Sound energy from equipment located in the room, or another object that emits intense noise, passing through the perforated wall 25, enters the layer 24 of soft sound-absorbing material, and then encounters layers 23, 22 and 21 of complex reflective material in its path profile, consisting of evenly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, but part of the sound energy passes through layers 21 and 23 of sound-reflecting material, and the interaction exists with the axial layer 22 of sound-absorbing material, where the final dissipation of the sound energy.

Слои 20 и 24 из мягкого звукопоглощающего материала разной плотности могут быть выполнены, например, из базальтового или стеклянного волокна). В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.Layers 20 and 24 of soft sound-absorbing material of different densities can be made, for example, of basalt or glass fiber). In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of a sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the frequency of excitation on the neck wall, which has the form of a branched sound absorber pore network. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0.

Звукоизолирующее ограждение работает следующим образом.Sound insulation fence works as follows.

При работе машины 12 вибрация и шум воспринимаются виброизолирующей опорой 1. Расположенный между стенками опоры звукопоглощающий материал 5 снижает уровень шума, производимого машиной. При высоких уровнях вибраций фундамента 11 виброизоляция опоры 1 обеспечивается упругой прокладкой 10 и центрирующими резино-металлическими шайбами 14. Снижение вибрации, передаваемой от опоры 1 кожуху 2, происходит за счет поглощения энергии звукопоглощающим материалом 5 и точечными амортизаторами 7. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя.When the machine 12 is operating, vibration and noise are perceived by the vibration isolating support 1. The sound-absorbing material 5 located between the walls of the support reduces the noise level produced by the machine. At high vibration levels of the foundation 11, the vibration isolation of the support 1 is ensured by an elastic gasket 10 and centering rubber-metal washers 14. The vibration transmitted from the support 1 to the casing 2 is reduced due to the absorption of energy by sound-absorbing material 5 and point shock absorbers 7. Transition of sound energy into heat ( dissipation, energy dissipation) occurs in the pores of a sound absorber, which are a model of Helmholtz resonators, where energy losses occur due to friction oscillating with an excitation frequency I of the mass of air located in the neck of the resonator against the walls of the neck itself, which has the form of an extensive network of pores of a sound absorber.

Claims (1)

Звукоизолирующее ограждение, содержащее кожух, установленный на виброизолирующую опору, которая выполнена в виде короба, между стенками которого размещен шумопоглощающий элемент, при этом кожух свободно опирается на полки, размещенные между стенками по периметру опоры, а на полках закреплены амортизаторы, выполненные из упругого материала, например мягкой резины, между стеками выполнены вентиляционные каналы, виброизолирующая опора установлена на сплошную упругую прокладку, например, из губчатой резины, и крепится к фундаменту, на котором установлен защищаемый объект, при помощи болтов и резинометаллических шайб, каркас кожуха выполнен состоящим из шумопоглощающих элементов, вписанных в его контур, отличающееся тем, что шумопоглощающий элемент выполнен в виде пяти слоев, два из которых, прилегающих к стенкам, являются звукопоглощающими слоями из материалов разной плотности, а три центральных слоя являются комбинированными, причем осевой слой выполнен звукопоглощающим, а два симметрично расположенных, прилегающих к нему, слоя выполнены из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны., каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или в качестве звукопоглощающего материала использован пористый шумопоглощающий материала, например пеноалюминий или металлокерамика или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например типа Acutex Т, или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом, а в качестве звукоотражающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.A sound insulating fence containing a casing mounted on a vibration-absorbing support, which is made in the form of a box, between the walls of which a sound-absorbing element is placed, while the casing is freely supported on shelves placed between the walls around the perimeter of the support, and shock absorbers made of elastic material are fixed on the shelves, for example, soft rubber, ventilation ducts are made between the stacks, the vibration isolating support is mounted on a continuous elastic gasket, for example, made of sponge rubber, and is attached to the foundation on which A protected object is installed by a pivot, with bolts and rubber washers, the casing frame is made up of sound-absorbing elements inscribed in its circuit, characterized in that the sound-absorbing element is made in the form of five layers, two of which adjacent to the walls are sound-absorbing layers of materials different densities, and the three central layers are combined, the axial layer being made sound-absorbing, and the two layers symmetrically located adjacent to it made of sound-reflecting material a complex profile consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions., each of the perforated walls has the following perforation parameters: hole diameter - 3 ÷ 7 mm, perforation percentage 10 ÷ 15%, and the shape of the hole can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes, the maximum diameter that fits into many a square of a circle, and as sound-absorbing material, slabs made of rockwool basalt type mineral wool or URSA type mineral wool or P-75 basalt wool or glass wool lined with glass wool are used as sound-absorbing material, and the sound-absorbing element over its entire surface lined with an acoustically transparent material, such as fiberglass type EZ-100 or a polymer of the “poviden” type, or a porous noise-absorbing material, for example, foam aluminum or metalloker, was used as sound-absorbing material mica or shell rock with a degree of porosity in the range of optimal values: 30 ÷ 45%, or metal foam, or a material in the form of pressed crumbs from solid vibration-damping materials, such as elastomer, polyurethane, or plastic compound like “Agate”, “Anti-vibration”, "Shvim", and the size of the fractions of the crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and porous mineral piece materials, for example pumice, vermiculite, kaolin, slag with cement or another binder, or synthetic fibers can also be used , at The surface of the fibrous absorbers is treated with special porous air-permeable paints, such as Acutex T, or coated with breathable fabrics or non-woven materials, such as Lutrasil, and material based on aluminum-containing alloys is used as sound-reflecting material, followed by filling them with titanium hydride or air with a density of within 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, the flexural strength in the range of 10 ... 20 MPa, nap Emer foam aluminum, or based on the sound insulating plate glass staple fibers "Shumostop" type material with a density of 60 ÷ 80 kg / m 3.
RU2015134989A 2015-08-19 2015-08-19 Soundproofing enclosure RU2655639C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015134989A RU2655639C2 (en) 2015-08-19 2015-08-19 Soundproofing enclosure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015134989A RU2655639C2 (en) 2015-08-19 2015-08-19 Soundproofing enclosure

Publications (2)

Publication Number Publication Date
RU2015134989A RU2015134989A (en) 2017-02-28
RU2655639C2 true RU2655639C2 (en) 2018-05-29

Family

ID=58454035

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015134989A RU2655639C2 (en) 2015-08-19 2015-08-19 Soundproofing enclosure

Country Status (1)

Country Link
RU (1) RU2655639C2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112855842A (en) * 2020-12-31 2021-05-28 厦门兑泰环保科技有限公司 But plain bumper of vibration damping and noise reduction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833038A (en) * 1995-11-01 1998-11-10 Sheiba; Lev Solomon Method and apparatus for broadband earthquake resistant foundation with variable stiffness
RU2295089C1 (en) * 2005-12-15 2007-03-10 Олег Савельевич Кочетов Sound-proofing guard
RU2538858C1 (en) * 2013-08-21 2015-01-10 Олег Савельевич Кочетов Kochetov's sound-absorbing barrier
RU2550604C2 (en) * 2013-08-19 2015-05-10 Олег Савельевич Кочетов Acoustic dissipation element for acoustic baffles, piece sound absorbers, partitions
RU2554044C1 (en) * 2014-06-25 2015-06-20 Олег Савельевич Кочетов Kochetov's soundproofing enclosure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833038A (en) * 1995-11-01 1998-11-10 Sheiba; Lev Solomon Method and apparatus for broadband earthquake resistant foundation with variable stiffness
RU2295089C1 (en) * 2005-12-15 2007-03-10 Олег Савельевич Кочетов Sound-proofing guard
RU2550604C2 (en) * 2013-08-19 2015-05-10 Олег Савельевич Кочетов Acoustic dissipation element for acoustic baffles, piece sound absorbers, partitions
RU2538858C1 (en) * 2013-08-21 2015-01-10 Олег Савельевич Кочетов Kochetov's sound-absorbing barrier
RU2554044C1 (en) * 2014-06-25 2015-06-20 Олег Савельевич Кочетов Kochetov's soundproofing enclosure

Also Published As

Publication number Publication date
RU2015134989A (en) 2017-02-28

Similar Documents

Publication Publication Date Title
RU2538858C1 (en) Kochetov's sound-absorbing barrier
RU2583463C1 (en) Sound-absorbing coating
RU2592871C1 (en) Kochetov sound absorber for lining manufacturing facilities
RU2528802C1 (en) Sound absorbing element
RU2528356C1 (en) Kochetov's sound-absorbing structure
RU2561389C1 (en) Sound-absorbing structure
RU2561393C1 (en) Kochetov(s sound absorber for lining manufacturing facilities
RU2583434C1 (en) Kochetov sound absorber of circular type
RU2582137C2 (en) Sound absorbing element
RU2649681C2 (en) Kochetov sound-absorbing lining
RU2547529C1 (en) Kochetov's sound-absorbing structure
RU2583442C2 (en) Sound absorbing structure
RU2669813C2 (en) Low-noise ship cabin
RU2531154C1 (en) Sound-absorbing structure
RU2610013C1 (en) Kochetov low-noise manufacturing building
RU2655639C2 (en) Soundproofing enclosure
RU2579021C1 (en) Acoustic panel
RU2656438C1 (en) Sound-absorbing structure for manufacturing buildings
RU2646252C1 (en) Sound-absorbing lining
RU2646238C1 (en) Acoustic device
RU2530434C1 (en) Kochetov's acoustic panel
RU2576264C1 (en) Kochetov(s noise absorber with sound reflecting layer
RU2565281C1 (en) Kochetov's shop acoustic structure
RU2652003C1 (en) Sound absorbing construction for industrial premises
RU2648114C1 (en) Sound absorbing structure

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant