RU2652003C1 - Sound absorbing construction for industrial premises - Google Patents

Sound absorbing construction for industrial premises Download PDF

Info

Publication number
RU2652003C1
RU2652003C1 RU2017120339A RU2017120339A RU2652003C1 RU 2652003 C1 RU2652003 C1 RU 2652003C1 RU 2017120339 A RU2017120339 A RU 2017120339A RU 2017120339 A RU2017120339 A RU 2017120339A RU 2652003 C1 RU2652003 C1 RU 2652003C1
Authority
RU
Russia
Prior art keywords
sound
absorbing
materials
layers
range
Prior art date
Application number
RU2017120339A
Other languages
Russian (ru)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2017120339A priority Critical patent/RU2652003C1/en
Application granted granted Critical
Publication of RU2652003C1 publication Critical patent/RU2652003C1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements

Abstract

FIELD: acoustics.
SUBSTANCE: invention relates to industrial acoustics and can be used for machine drive noise reduction, lining of manufacturing facilities and in other sound-absorbing structures. Sound-absorbing construction for industrial premises contains a continuous and perforated surface, between which is placed a multi-layer sound-absorbing element, made in the form of three layers: a central layer of sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, and sound-absorbing layers from materials of different density symmetrically adjacent thereto. Central layer is made with a perforation, which acoustically connects it to the sound-absorbing layers that are symmetrically adjacent to it from sound-absorbing materials of different density.
EFFECT: technical result consists in increasing the efficiency of sound attenuation and the reliability of the structure as a whole.
1 cl, 1 dwg

Description

Изобретение относится к промышленной акустике.The invention relates to industrial acoustics.

Наиболее близким техническим решением по технической сущности и достигаемому результату является звукопоглощающий элемент, применяемый в качестве облицовки производственных помещений, известный из патента РФ №2547529 (прототип).The closest technical solution to the technical nature and the achieved result is a sound-absorbing element used as a facing of industrial premises, known from RF patent No. 2547529 (prototype).

Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет наличия пустот между слоями, где отсутствует поглощение звука между слоями звукопоглотителя.The disadvantage of the technical solution adopted as a prototype is the relatively low noise reduction due to the presence of voids between the layers, where there is no sound absorption between the layers of the sound absorber.

Технический результат - повышение эффективности шумоглушения и надежности конструкции в целом.The technical result is an increase in the efficiency of sound attenuation and reliability of the structure as a whole.

Это достигается тем, что в звукопоглощающей конструкции для производственных помещений, содержащей сплошную и перфорированную поверхности, между которыми размещен многослойный звукопоглощающий элемент, многослойный звукопоглощающий элемент выполнен в виде трех слоев: центрального слоя из звукоотражающего материала, сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев из материалов разной плотности, каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден».This is achieved by the fact that in a sound-absorbing structure for industrial premises containing a continuous and perforated surface, between which a multilayer sound-absorbing element is placed, the multilayer sound-absorbing element is made in the form of three layers: a central layer of sound-reflecting material, a complex profile consisting of uniformly distributed hollow tetrahedrons, allowing reflecting sound waves incident in all directions, and sound-absorbing layers of material symmetrically adjacent to it different densities, each of the perforated walls has the following perforation parameters: hole diameter - 3 ÷ 7 mm, perforation percentage 10% ÷ 15%, and the shape of the hole can be made in the form of holes of a round, triangular, square, rectangular or diamond shape, with in the case of non-circular holes, the maximum diameter of the circle inscribed in the polygon should be considered as the conditional diameter, and basalt-based mineral wool slabs of the “Roc” type are used as sound-absorbing material kwool ", or mineral wool of the URSA type, or basalt wool of the P-75 type, or glass wool with a glass-fiber lining, and the sound-absorbing element is lined with acoustically transparent material over its entire surface, for example, EZ-100 fiberglass or a" see-like "polymer.

На чертеже изображена схема звукопоглощающей конструкции.The drawing shows a diagram of a sound-absorbing structure.

Звукопоглощающая конструкция для производственных помещений выполнена в виде сплошной 1 и перфорированной 5 стенок (поверхностей), между которыми расположен многослойный звукопоглощающий элемент, выполненный в виде трех слоев: центрального слоя 3 из звукоотражающего материала, сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев 2 и 4 из материалов разной плотности. Перфорированная стенка 5 имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.The sound-absorbing structure for industrial premises is made in the form of a continuous 1 and perforated 5 walls (surfaces), between which there is a multilayer sound-absorbing element made in the form of three layers: the central layer 3 of sound-reflecting material, a complex profile consisting of evenly distributed hollow tetrahedrons that allow to reflect sound waves incident in all directions, and sound-absorbing layers 2 and 4 symmetrically adjoining to it from materials of different densities. The perforated wall 5 has the following perforation parameters: hole diameter 3–7 mm, perforation percentage 10% ÷ 15%, and the shape of the hole can be made in the form of holes of a round, triangular, square, rectangular or diamond-shaped profile, while in the case of non-circular holes as the conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon.

Каждая из стенок 1 и 5 может быть выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/ (2,5…3,5).Each of walls 1 and 5 can be made of structural materials, with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material, applied on one or two sides of the material, and the ratio between the thicknesses of the material and vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).

Каждая из стенок 1 и 5 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.Each of walls 1 and 5 can be made of stainless steel or a galvanized sheet with a thickness of 0.7 mm with a polymer protective and decorative coating of the Pural type with a thickness of 50 μm or Polyester with a thickness of 25 μm, or an aluminum sheet with a thickness of 1.0 mm and coating thickness 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

Каждая из стенок 1 и 5 может быть выполнена из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкции, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или неткаными материалами, например «Лутрасилом».Each of walls 1 and 5 can be made of solid, decorative vibration-damping materials, such as plastic compounds such as Agate, Anti-Vibrate, Shvim, and the inner surface of the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent material, such as fiberglass type EZ-100 or a polymer of the “poviden” type, or nonwoven materials, for example, “Lutrasil”.

В качестве материала звукоотражающего слоя 3 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10...20 МПа, например пеноалюминия, или применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As the material of the sound-reflecting layer 3, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example foam aluminum, or soundproofing boards based on glass staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 were used .

В качестве звукопоглощающего материала слоев 2 и 4 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Причем звукопоглощающий материал по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т) или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом. Кроме того, в качестве звукопоглощающего материала слоев 2 и 4 может быть использован пористый шумопоглощающий материала, например пеноалюминий или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например типа Acutex Т, или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.As sound-absorbing material of layers 2 and 4, rockwool type mineral wool or URSA type mineral wool or P-75 type basalt wool or glass wool lined with glass wool or foamed polymer, such as polyethylene or polypropylene. Moreover, the sound-absorbing material over its entire surface is lined with an acoustically transparent material, for example, EZ-100 fiberglass or a “visible” polymer, or the surface of the fibrous sound absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T) or coated with breathable fabrics or non-woven materials, e.g. Lutrasil. In addition, as the sound-absorbing material of layers 2 and 4, a porous sound-absorbing material can be used, for example, foam aluminum or cermets, or a shell rock with a porosity degree in the range of optimal values: 30–45%, or metal foam, or a compressed material crumbs from solid vibration damping materials, such as elastomer, polyurethane, or plastic compound such as Agate, Anti-Vibrate, Shvim, and the size of the fractions of the crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and can also be used porous mineral piece materials were used, for example, pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, such as Acutex T, or covered with breathable fabrics or non-woven materials e.g. Lutrasil.

Для снижения или коррекции времени реверберации помещений в его отделке применяют звукопоглощающие материалы и конструкции (звукопоглотители).To reduce or correct the reverberation time of premises, sound-absorbing materials and structures (sound absorbers) are used in its decoration.

Пористые звукопоглотители изготавливают в виде плит, которые крепятся к ограждающим поверхностям непосредственно или на относе, из легких и пористых минеральных штучных материалов - пемзы, вермикулита, каолина, шлаков и т.п.с цементом или другим вяжущим. Такие материалы достаточно прочны и могут быть использованы для снижения шума в коридорах, фойе, лестничных маршах общественных и промышленных зданий.Porous sound absorbers are made in the form of plates that are attached to the enclosing surfaces directly or on the basis of light and porous mineral piece materials - pumice, vermiculite, kaolin, slag, etc. with cement or other binder. Such materials are strong enough and can be used to reduce noise in corridors, foyers, staircases of public and industrial buildings.

Сырьем для их производства служат древесные волокна, минеральная вата, стеклянная вата, синтетические волокна. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т) или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.The raw materials for their production are wood fibers, mineral wool, glass wool, synthetic fibers. The surface of the fibrous absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T) or coated with breathable fabrics or non-woven materials, such as Lutrasil.

В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике. Они не только оказались наиболее эффективными с акустической точки зрения в широком частотном диапазоне, но и отвечают возросшим требованиям, предъявляемым к дизайну помещений.Currently, fibrous sound absorbers are the most common in construction practice. They not only proved to be the most effective from an acoustic point of view in a wide frequency range, but also meet the increased requirements for room design.

В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Кроме этого, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0.

В качестве звукоотражающего материала может быть применен материал на основе фольги, или стеклопластика, или углепластика, или пластмассы, содержащей в качестве упрочняющего наполнителя углеродные волокна. Звукопоглощающая конструкция работает следующим образом.As a sound-reflecting material, a material based on foil, or fiberglass, or carbon fiber, or plastic containing carbon fibers as a reinforcing filler can be used. Sound-absorbing design works as follows.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через стенки 1 и 5 попадает на звукопоглощающие слои 2 и 4 из материалов разной плотности, а затем звуковые волны падают на центральный слой 3 из звукоотражающего материала, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а затем падает на слои 2 и 4 мягкого звукопоглощающего материала разной плотности, расположенные в два слоя (например, выполненного из базальтового или стеклянного волокна). В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.Sound energy from equipment located in the room, or another object that emits intense noise, passing through walls 1 and 5 falls on the sound-absorbing layers 2 and 4 of materials of different densities, and then sound waves fall on the central layer 3 of sound-reflecting material consisting from uniformly distributed hollow tetrahedra, which allow reflecting sound waves incident in all directions, and then falls onto layers 2 and 4 of soft sound-absorbing material of different densities located in two layers (for example, ennogo basalt or glass fibers). In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of a sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the frequency of excitation on the neck wall, which has the form of a branched sound absorber pore network. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0.

Возможен вариант, когда центральный слой 3, выполненный из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, выполнен с перфорацией (на чертеже не показано), акустически соединяющей его с симметрично прилегающими к нему звукопоглощающими слоями 2 и 4 из звукопоглощающих материалов разной плотности.It is possible that the central layer 3, made of a sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedrons, which allow reflecting the sound waves incident in all directions, is made with perforation (not shown in the drawing), acoustically connecting it with sound-absorbing symmetrically adjacent to it layers 2 and 4 of sound-absorbing materials of different densities.

Выполнение перфорации на центральном слое 3 из звукоотражающего материала способствует более эффективному шумоглушению на средних частотах, так как часть звуковых волн будет проходить через перфорацию 5 звукопоглощающей конструкции и рассеиваться на слоях 2 и 4 из звукопоглощающего материала разной плотности.Performing perforation on the central layer 3 of sound-reflecting material contributes to more efficient sound attenuation at medium frequencies, as part of the sound waves will pass through the perforation 5 of the sound-absorbing structure and scatter on layers 2 and 4 of sound-absorbing material of different densities.

Claims (1)

Звукопоглощающая конструкция для производственных помещений, содержащая сплошную и перфорированную поверхности, между которыми размещен многослойный звукопоглощающий элемент, выполненный в виде трех слоев: центрального слоя из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев из материалов разной плотности, каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий – 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», при этом в качестве звукопоглощающего материала использован пористый шумопоглощающий материал, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например типа Acutex T, или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом, а в качестве звукоотражающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3, отличающаяся тем, что центральный слой, выполненный из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, выполнен с перфорацией, акустически соединяющей его с симметрично прилегающими к нему звукопоглощающими слоями из звукопоглощающих материалов разной плотности.A sound-absorbing structure for industrial premises, containing continuous and perforated surfaces, between which a multilayer sound-absorbing element is placed, made in the form of three layers: a central layer of sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedrons, which allow reflecting sound waves incident in all directions, and sound-absorbing layers symmetrically adjoining to it from materials of different density, each of the perforated walls has a trace The perforation parameters are as follows: the diameter of the holes is 3–7 mm, the percentage of perforation is 10% ÷ 15%, and the shape of the holes can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes as a conditional the diameter should be considered the maximum diameter of the circle inscribed in the polygon, and as sound-absorbing material, slabs made of rockwool basalt mineral wool or URSA mineral wool or basalt wool of the type P-75, or glass wool with glass fiber lining, and the sound-absorbing element over its entire surface is lined with an acoustically transparent material, such as fiberglass type EZ-100 or a polymer of the "visible" type, while a porous sound-absorbing material, such as foam aluminum, or cermet, or shell rock with a degree of porosity in the range of optimal values 30 ÷ 45%, or metal roll, or a material in the form of pressed crumbs from solid vibration damping their materials, for example elastomer, polyurethane, or plastic compound such as "Agate", "Anti-Vibrate", "Shvim", and the size of the fractions of the crumbs lies in the optimal range of values of 0.3 ... 2.5 mm, and porous mineral piece materials can also be used for example pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, such as Acutex T, or covered with breathable fabrics or not materials, for example Lutrasil, and as a sound-reflecting material, a material based on aluminum-containing alloys was used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example foam aluminum, or soundproofing boards based on glass staple fibers of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 , characterized in that the central layer, vyp nenny of a reflecting material complex profile, consisting of uniformly distributed hollow tetrahedrons allowing reflect incident in all directions the sound waves, is formed with perforations, acoustically connecting it with symmetrically adjoining sound-absorbing layers of sound absorptive materials of different densities.
RU2017120339A 2017-06-09 2017-06-09 Sound absorbing construction for industrial premises RU2652003C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017120339A RU2652003C1 (en) 2017-06-09 2017-06-09 Sound absorbing construction for industrial premises

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017120339A RU2652003C1 (en) 2017-06-09 2017-06-09 Sound absorbing construction for industrial premises

Publications (1)

Publication Number Publication Date
RU2652003C1 true RU2652003C1 (en) 2018-04-24

Family

ID=62045433

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017120339A RU2652003C1 (en) 2017-06-09 2017-06-09 Sound absorbing construction for industrial premises

Country Status (1)

Country Link
RU (1) RU2652003C1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU920141A1 (en) * 1980-02-07 1982-04-15 Ленинградская Ордена Ленина Лесотехническая Академия Им.С.М.Кирова Sound-insulating module
DE10214778A1 (en) * 2001-04-04 2003-02-13 Ver Holzbaubetr E Wilhelm Pfal Sound-absorbing panel includes membrane plate penetrated by perforations
RU2547529C1 (en) * 2014-02-17 2015-04-10 Олег Савельевич Кочетов Kochetov's sound-absorbing structure
RU2592871C1 (en) * 2015-08-19 2016-07-27 Олег Савельевич Кочетов Kochetov sound absorber for lining manufacturing facilities

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU920141A1 (en) * 1980-02-07 1982-04-15 Ленинградская Ордена Ленина Лесотехническая Академия Им.С.М.Кирова Sound-insulating module
DE10214778A1 (en) * 2001-04-04 2003-02-13 Ver Holzbaubetr E Wilhelm Pfal Sound-absorbing panel includes membrane plate penetrated by perforations
RU2547529C1 (en) * 2014-02-17 2015-04-10 Олег Савельевич Кочетов Kochetov's sound-absorbing structure
RU2592871C1 (en) * 2015-08-19 2016-07-27 Олег Савельевич Кочетов Kochetov sound absorber for lining manufacturing facilities

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БОГОЛЕПОВ И.И. Промышленная звукоизоляция. Л., Судостроение, 1986, всего 368 с., с.290-309. *

Similar Documents

Publication Publication Date Title
RU2583463C1 (en) Sound-absorbing coating
RU2592871C1 (en) Kochetov sound absorber for lining manufacturing facilities
RU2561389C1 (en) Sound-absorbing structure
RU2528356C1 (en) Kochetov's sound-absorbing structure
RU2561393C1 (en) Kochetov(s sound absorber for lining manufacturing facilities
RU2561394C1 (en) Kochetov(s sound-absorbing element
RU2541701C1 (en) Kochetov's sound-absorbing structure
RU2583434C1 (en) Kochetov sound absorber of circular type
RU2547529C1 (en) Kochetov's sound-absorbing structure
RU2649681C2 (en) Kochetov sound-absorbing lining
RU2582137C2 (en) Sound absorbing element
RU2603857C1 (en) Ring-type kochetov sound absorbing element
RU2583442C2 (en) Sound absorbing structure
RU2531154C1 (en) Sound-absorbing structure
RU2583438C1 (en) Kochetov sound-absorbing element
RU2603858C1 (en) Helical-type kochetov sound absorbing element
RU2646252C1 (en) Sound-absorbing lining
RU2656420C2 (en) Sound absorbing element with sound-reflecting layer
RU2656438C1 (en) Sound-absorbing structure for manufacturing buildings
RU2652003C1 (en) Sound absorbing construction for industrial premises
RU2576264C1 (en) Kochetov(s noise absorber with sound reflecting layer
RU2646238C1 (en) Acoustic device
RU2627517C1 (en) Sound-absorbing structure
RU2648114C1 (en) Sound absorbing structure
RU2651985C1 (en) Sound absorbing element