RU2561393C1 - Kochetov(s sound absorber for lining manufacturing facilities - Google Patents
Kochetov(s sound absorber for lining manufacturing facilities Download PDFInfo
- Publication number
- RU2561393C1 RU2561393C1 RU2014104822/03A RU2014104822A RU2561393C1 RU 2561393 C1 RU2561393 C1 RU 2561393C1 RU 2014104822/03 A RU2014104822/03 A RU 2014104822/03A RU 2014104822 A RU2014104822 A RU 2014104822A RU 2561393 C1 RU2561393 C1 RU 2561393C1
- Authority
- RU
- Russia
- Prior art keywords
- sound
- absorbing
- layers
- type
- wool
- Prior art date
Links
Landscapes
- Building Environments (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
Description
Изобретение относится к промышленной акустике.The invention relates to industrial acoustics.
Известны звукопоглощающие конструкции [1, 2, 3], содержащие жесткую стенку, на которой расположен звукопоглощающий элемент, выполненный из жесткого звукопоглотителя, например пенобетона.Sound-absorbing structures [1, 2, 3] are known, comprising a rigid wall on which a sound-absorbing element is made made of a hard sound-absorbing material, for example foam concrete.
Недостатком такого вида звукопоглощающих конструкций является относительно невысокая степень шумоглушения на средних и низких частотах спектра.The disadvantage of this type of sound-absorbing structures is the relatively low degree of sound attenuation at medium and low frequencies of the spectrum.
Известны звукопоглощающие конструкции [4, 5, 6], содержащие жесткую и перфорированную стенки, между которыми расположен мягкий звукопоглощающий элемент, выполненный, например, из пенополиуретана.Sound-absorbing constructions are known [4, 5, 6], which contain rigid and perforated walls, between which a soft sound-absorbing element is located, made, for example, of polyurethane foam.
Недостатком такого вида звукопоглощающих конструкций является относительно невысокая степень шумоглушения на высоких и низких частотах спектра.The disadvantage of this type of sound-absorbing structures is the relatively low degree of noise attenuation at high and low frequencies of the spectrum.
Известны звукопоглощающие конструкции [7, 8], содержащие жесткую и перфорированную стенки, между которыми расположен звукопоглощающий элемент, выполненный из звукопоглотителя с относом от жесткой стенки.Sound-absorbing structures are known [7, 8], which contain rigid and perforated walls, between which a sound-absorbing element is made, made of a sound absorber with respect to the rigid wall.
Недостатком такого вида звукопоглощающих конструкций является относительно невысокая степень шумоглушения на средних частотах спектра.The disadvantage of this type of sound-absorbing structures is the relatively low degree of noise attenuation at medium frequencies of the spectrum.
Наиболее близким техническим решением по технической сущности и достигаемому результату является звукопоглощающий элемент, применяемый в качестве облицовки производственных помещений, известный из патента РФ №2463412 (прототип [9]).The closest technical solution to the technical nature and the achieved result is a sound-absorbing element used as a facing of industrial premises, known from RF patent No. 2463412 (prototype [9]).
Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет наличия пустот между слоями, где отсутствует поглощение звука между слоями звукопоглотителя.The disadvantage of the technical solution adopted as a prototype is the relatively low noise reduction due to the presence of voids between the layers, where there is no sound absorption between the layers of the sound absorber.
Технический результат - повышение эффективности шумоглушения и надежности конструкции в целом.The technical result is an increase in the efficiency of sound attenuation and the reliability of the structure as a whole.
Это достигается тем, что в звукопоглощающем устройстве для облицовки производственных помещений, содержащим жесткую и перфорированную стенки, между которыми расположен многослойный звукопоглощающий элемент, многослойный звукопоглощающий элемент выполнен в виде пяти слоев, два из которых, прилегающих к стенкам, являются звукопоглощающими слоями из материалов разной плотности, а три центральных слоя являются комбинированными, причем осевой слой выполнен звукопоглощающим, а два симметрично расположенных, прилегающих к нему слоя выполнены из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден».This is achieved by the fact that in a sound-absorbing device for facing industrial premises containing a rigid and perforated wall, between which a multilayer sound-absorbing element is located, the multilayer sound-absorbing element is made in the form of five layers, two of which adjacent to the walls are sound-absorbing layers of materials of different densities and the three central layers are combined, moreover, the axial layer is made sound-absorbing, and two symmetrically located adjacent layers are made They are made of sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedra, which allow reflecting sound waves incident in all directions, each of the perforated walls has the following perforation parameters: hole diameter 3 ÷ 7 mm, percent perforation 10% ÷ 15%, and in shape the holes can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes, the maximum diameter should be considered the diameter of the circle inscribed into the polygon, and as sound-absorbing material, slabs made of rockwool basalt-based mineral wool or URSA-type mineral wool or P-75 basalt wool or glass wool lined with glass wool are used as sound-absorbing material, and the sound-absorbing element it is lined with an acoustically transparent material over its entire surface, for example, fiberglass type EZ-100 or a polymer of the “poviden” type.
На чертеже изображено звукопоглощающее устройство для облицовки производственных помещений.The drawing shows a sound-absorbing device for facing industrial premises.
Звукопоглощающее устройство для облицовки производственных помещений, которое выполнено в виде гладкой, жесткой стенки 1 и перфорированной стенки 7, между которыми расположен многослойный звукопоглощающий элемент, выполненный в виде пяти слоев, два из которых, прилегающих к стенкам 1 и 7, являются звукопоглощающими слоями 2 и 6 из материалов разной плотности, а три центральных слоя 3, 4, 5 являются комбинированными, причем осевой слой 4 выполнен звукопоглощающим, а два симметрично расположенных и прилегающих к нему слоя 3 и 5 выполнены из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны. Перфорированная стенка 7 имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.A sound-absorbing device for facing industrial premises, which is made in the form of a smooth, rigid wall 1 and a perforated wall 7, between which there is a multilayer sound-absorbing element made in the form of five layers, two of which adjacent to the walls 1 and 7 are sound-absorbing layers 2 and 6 from materials of different densities, and the three central layers 3, 4, 5 are combined, the axial layer 4 being made sound-absorbing, and two symmetrically located and adjacent layers 3 and 5 made of sound property of reflecting material complex profile, consisting of uniformly distributed hollow tetrahedrons allowing reflect incident in all directions the sound waves. The perforated wall 7 has the following perforation parameters: the diameter of the holes 3 ÷ 7 mm, the percentage of perforation 10% ÷ 15%, and the shape of the holes can be made in the form of holes of round, triangular, square, rectangular or diamond-shaped profile, while in the case of non-circular holes as the conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon.
Каждая из стенок 1 и 7 может быть выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).Each of walls 1 and 7 can be made of structural materials, with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material deposited on their surface on one or two sides, and the ratio between the thicknesses of the material and vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).
Каждая из стенок 1 и 7 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.Each of walls 1 and 7 can be made of stainless steel or a galvanized sheet with a thickness of 0.7 mm with a polymer protective and decorative coating of the Pural type with a thickness of 50 μm or Polyester with a thickness of 25 μm, or an aluminum sheet with a thickness of 1.0 mm and coating thickness 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.
Каждая из стенок 1 и 7 может быть выполнена из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкции, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или неткаными материалами, например Лутрасилом.Each of walls 1 and 7 can be made of solid, decorative vibration-damping materials, for example, agate, anti-vibrate, and shvim plastic compounds, and the inner surface of the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent material, such as fiberglass type EZ-100 or a polymer of the “poviden” type, or nonwoven materials, for example Lutrasil.
В качестве материала звукоотражающих слоев 3 и 5 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия, или применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As the material of the sound-reflecting layers 3 and 5, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength within 10 ... 20 MPa, for example foam aluminum, or soundproofing boards based on glass staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 were used .
В качестве звукопоглощающего материала слоев 2, 4 и 6 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененный полимер, например полиэтилен или полипропилен. Причем звукопоглощающий материал по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т), или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом. Кроме того, в качестве звукопоглощающего материала слоев 2 и 4 может быть использован пористый шумопоглощающий материал, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например, типа Acutex Т, или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.As sound-absorbing material of layers 2, 4 and 6, rockwool type mineral wool or URSA type mineral wool or P-75 type basalt wool or glass wool lined with glass wool or foamed polymer, for example, can be used. polyethylene or polypropylene. Moreover, the sound-absorbing material is lined with an acoustically transparent material over its entire surface, for example, EZ-100 fiberglass or a “visible” polymer, or the surface of the fibrous sound absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T), or coated with breathable fabrics or non-woven materials e.g. Lutrasil. In addition, as the sound-absorbing material of layers 2 and 4, a porous sound-absorbing material, for example, foam aluminum, or cermet, or a shell rock with a degree of porosity in the range of optimal values: 30–45%, or metal foam, or material in the form of pressed crumbs from solid vibration-damping materials, for example elastomer, polyurethane, or plastic compound of the type “Agat”, “Anti-vibration”, “Shvim”, moreover, the size of the fractions of the crumb lies in the optimal range of values: 0.3 ... 2.5 mm, and can also be used porous mineral piece materials, for example pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, for example, Acutex T, or covered with breathable fabrics or non-woven materials e.g. Lutrasil.
Для снижения или коррекции времени реверберации помещений в его отделке применяют звукопоглощающие материалы и конструкции (звукопоглотители).To reduce or correct the reverberation time of premises, sound-absorbing materials and structures (sound absorbers) are used in its decoration.
Пористые звукопоглотители изготавливают в виде плит, которые крепятся к ограждающим поверхностям непосредственно или на относе, из легких и пористых минеральных штучных материалов - пемзы, вермикулита, каолина, шлаков и т.п., с цементом или другим вяжущим. Такие материалы достаточно прочны и могут быть использованы для снижения шума в коридорах, фойе, лестничных маршах общественных и промышленных зданий.Porous sound absorbers are made in the form of plates, which are attached to the enclosing surfaces directly or on the basis of light and porous mineral piece materials - pumice, vermiculite, kaolin, slag, etc., with cement or another binder. Such materials are strong enough and can be used to reduce noise in corridors, foyers, staircases of public and industrial buildings.
Сырьем для их производства служат древесные волокна, минеральная вата, стеклянная вата, синтетические волокна. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т), или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.The raw materials for their production are wood fibers, mineral wool, glass wool, synthetic fibers. The surface of the fibrous sound absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T), or covered with breathable fabrics or non-woven materials, such as Lutrasil.
В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике. Они не только оказались наиболее эффективными с акустической точки зрения в широком частотном диапазоне, но и отвечают возросшим требованиям, предъявляемым к дизайну помещений.Currently, fibrous sound absorbers are the most common in construction practice. They not only proved to be the most effective from an acoustic point of view in a wide frequency range, but also meet the increased requirements for room design.
В качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.As a sound-reflecting material, a material based on a magnesian binder with a reinforcing fiberglass or fiberglass was used.
В качестве звукопоглощающего материала использован полиэстер.Polyester is used as a sound-absorbing material.
В качестве звукопоглощающего материала использован пористый волокнистый или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочкой из тонкой стеклоткани или алюминизированной лавсановой пленки.As a sound-absorbing material, a porous fibrous or foamy sound-absorbing material is used, which is made on the basis of basalt or glass fibers, or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass or aluminized lavsan film.
В качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов. В процессе спекания частицы перлита в точках соприкосновения образуют смежные поры. Этот материал обладает хорошей звукопоглощающей способностью в широком диапазоне частот, но имеет высокую плотность, связанную с содержанием большого количества спекающих материалов.As the sound-absorbing material, a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 mass parts of one or more sintering materials and 10 ÷ 20 mass parts of binder materials. During sintering, perlite particles at adjacent points form adjacent pores. This material has good sound absorption in a wide frequency range, but has a high density associated with the content of a large number of sintering materials.
Звукопоглощающее устройство для облицовки производственных помещений работает следующим образом.Sound-absorbing device for facing industrial premises works as follows.
Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум объекта, пройдя через перфорированную стенку 7, попадает на слой 6 из мягкого звукопоглощающего материала, а затем встречает на своем пути соответственно слои 5, 4 и 3 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, но часть звуковой энергии проходит через слои 3 и 5 из звукоотражающего материала и взаимодействует с осевым слоем 4 из звукопоглощающего материала, где происходит окончательное рассеивание звуковой энергии.Sound energy from equipment located in the room or another object that emits intense noise from the object, passing through the perforated wall 7, enters layer 6 of soft sound-absorbing material, and then meets layers 5, 4 and 3 of reflective material of complex profile, respectively, in its path , consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, but part of the sound energy passes through layers 3 and 5 of sound-reflecting material and interact with an axial layer 4 of sound-absorbing material, where the final dissipation of sound energy occurs.
Слои 2 и 6 из мягкого звукопоглощающего материала разной плотности могут быть выполнены например, из базальтового или стеклянного волокна. В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга, и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.Layers 2 and 6 of soft sound-absorbing material of different densities can be made, for example, of basalt or glass fiber. In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of the sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the excitation frequency against the wall of the neck itself, which has the form branched network of pore sound absorbers. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other, and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0.
Источники библиографии, цитируемые при патентном поиске:Sources of bibliographies cited in a patent search:
1. Кочетов О.С., Кочетова М.О., Ходакова Т.Д. Звукопоглощающая панель // Заявка на изобретение №2004115479 А. Опубликовано 10.11.2005. Бюллетень изобретений №31.1. Kochetov O.S., Kochetova M.O., Khodakova T.D. Sound-absorbing panel // Application for invention No. 2004115479 A. Published on November 10, 2005. Bulletin of inventions No. 31.
2. Кочетов О.С, Кочетова М.О., Ходакова Т.Д. Шумопоглощающая панель // Заявка на изобретение №2004115481 А. Опубликовано 10.11.2005. Бюллетень изобретений №31.2. Kochetov O.S., Kochetova M.O., Khodakova T.D. Sound-absorbing panel // Application for invention No. 2004115481 A. Published on November 10, 2005. Bulletin of inventions No. 31.
3. Кочетов О.С, Кочетова М.О., Ходакова Т.Д. Акустическая панель // Заявка на изобретение №2005101161 А. Опубликовано 27.06.2006. Бюллетень изобретений №18.3. Kochetov O.S., Kochetova M.O., Khodakova T.D. Acoustic panel // Application for invention No. 2005101161 A. Published on June 27, 2006. Bulletin of inventions No. 18.
4. Кочетов О.С, Сажин Б.С.Снижение шума и вибраций в производстве: теория, расчет, технические решения. - М.: МГТУ им. А.Н.Косыгина, 2001.-319 с. (рис.3.9, стр.54).4. Kochetov O.S., Sazhin B.S. Decrease in noise and vibrations in production: theory, calculation, technical solutions. - M.: MSTU. A.N. Kosygina, 2001.-319 p. (Fig. 3.9, p. 54).
5. Кочетов О.С.Текстильная виброакустика. Учебное пособие для вузов. М.: МГТУ им. А.Н.Косыгина, группа «Совьяж Бево» 2003.-191 с. (рис.П.2, стр.176).5. Kochetov O.S. Textile vibroacoustics. Textbook for universities. M .: MSTU im. A.N. Kosygina, the group "Sovezh Bevo" 2003.-191 p. (Fig. A.2, p. 176).
6. Кочетов О.С. Звукопоглощающие конструкции для снижения шума на рабочих местах производственных помещений. Журнал «Безопасность труда в промышленности», №11, 2010, стр.46-50 (рис.1; стр.48 и рис.2; стр.48).6. Kochetov O.S. Sound-absorbing structures to reduce noise in the workplace of industrial premises. The journal "Labor safety in industry", No. 11, 2010, pp. 46-50 (Fig. 1; p. 48 and Fig. 2; p. 48).
7. Кочетов О.С, Голубева М.В., Зубова И.Ю., Костылева А.В., Боброва Е.О., Горнушкина Н.И., Павлова Д.О., Духанина Е.В., Колаева Л.В., Шевченко Н.В., Соколова Т.В. Звукопоглощающее акустическое ограждение // Патент на изобретение РФ №2344488 С2. Опубликовано 20.01.2009. Бюллетень изобретений №2.7. Kochetov O.S., Golubeva M.V., Zubova I.Yu., Kostyleva A.V., Bobrova E.O., Gornushkina N.I., Pavlova D.O., Dukhanina E.V., Kolaeva L.V., Shevchenko N.V., Sokolova T.V. Sound-absorbing acoustic fence // Patent for the invention of the Russian Federation No. 2344488 C2. Published on January 20, 2009. Bulletin of inventions No. 2.
8. Кочетов О.С, Голубева М.В., Зубова И.Ю., Костылева А.В., Боброва Е.О., Горнушкина Н.И., Павлова Д.О., Духанина Е.В., Колаева Л.В., Шевченко Н.В., Соколова Т.В. Звукопоглощающая конструкция // Патент на изобретение РФ №2344490 С2. Опубликовано 20.01.2009. Бюллетень изобретений №2.8. Kochetov O.S., Golubeva MV, Zubova I.Yu., Kostyleva A.V., Bobrova E.O., Gornushkina N.I., Pavlova D.O., Dukhanina E.V., Kolaeva L.V., Shevchenko N.V., Sokolova T.V. Sound-absorbing construction // Patent for the invention of the Russian Federation No. 2344490 C2. Published on January 20, 2009. Bulletin of inventions No. 2.
9. Кочетов О.С, Стареева М.О. Звукопоглощающая конструкция производственного помещения // Патент на изобретение РФ №2463412 С2. Опубликовано 10.10.2012. Бюллетень изобретений №28.9. Kochetov O.S., Stareeva M.O. Sound-absorbing construction of the production room // Patent for the invention of the Russian Federation No. 2463412 C2. Published on October 10, 2012. Bulletin of inventions No. 28.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014104822/03A RU2561393C1 (en) | 2014-02-12 | 2014-02-12 | Kochetov(s sound absorber for lining manufacturing facilities |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014104822/03A RU2561393C1 (en) | 2014-02-12 | 2014-02-12 | Kochetov(s sound absorber for lining manufacturing facilities |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014104822A RU2014104822A (en) | 2015-08-20 |
RU2561393C1 true RU2561393C1 (en) | 2015-08-27 |
Family
ID=53879996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014104822/03A RU2561393C1 (en) | 2014-02-12 | 2014-02-12 | Kochetov(s sound absorber for lining manufacturing facilities |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2561393C1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2592871C1 (en) * | 2015-08-19 | 2016-07-27 | Олег Савельевич Кочетов | Kochetov sound absorber for lining manufacturing facilities |
RU2598236C1 (en) * | 2015-08-19 | 2016-09-20 | Олег Савельевич Кочетов | Sound absorbing structure |
RU2611650C1 (en) * | 2016-01-18 | 2017-02-28 | Олег Савельевич Кочетов | Low noise seismic resistance industrial building |
RU2623912C1 (en) * | 2016-04-11 | 2017-06-29 | Олег Савельевич Кочетов | Kochetov's low noise ventilation unit |
RU2625826C1 (en) * | 2016-05-10 | 2017-07-19 | Олег Савельевич Кочетов | Cabin for operator, working under conditions of increased dust and high noise levels |
RU2627508C1 (en) * | 2016-07-05 | 2017-08-08 | Олег Савельевич Кочетов | Kochetov`s sound absorption device for industrial premises lining |
RU2634889C2 (en) * | 2015-08-26 | 2017-11-07 | Олег Савельевич Кочетов | Fence for textile machine spindles |
RU2635780C2 (en) * | 2016-04-11 | 2017-11-15 | Олег Савельевич Кочетов | Low noise ventilation unit |
RU2651555C1 (en) * | 2017-05-05 | 2018-04-20 | Олег Савельевич Кочетов | Operator's cabin, working in conditions of high dust content and high noise levels |
RU2652944C1 (en) * | 2017-03-24 | 2018-05-03 | Олег Савельевич Кочетов | Casing for textile machine spindles |
RU2655637C1 (en) * | 2017-05-12 | 2018-05-29 | Олег Савельевич Кочетов | Operator's cabin, working under conditions of high dust content, high noise and vibration levels |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU920141A1 (en) * | 1980-02-07 | 1982-04-15 | Ленинградская Ордена Ленина Лесотехническая Академия Им.С.М.Кирова | Sound-insulating module |
DE10214778A1 (en) * | 2001-04-04 | 2003-02-13 | Ver Holzbaubetr E Wilhelm Pfal | Sound-absorbing panel includes membrane plate penetrated by perforations |
RU28502U1 (en) * | 2002-12-25 | 2003-03-27 | Федеральное государственное унитарное предприятие "Акустический институт им. акад. Н.Н.Андреева" | Double-walled panel of modular type |
FR2857392A1 (en) * | 2003-07-09 | 2005-01-14 | Distrib Staff Mecanique Dsm | Acoustic insulation panel, especially for ceiling, has facing layer of perforated plaster |
RU2275476C1 (en) * | 2005-03-24 | 2006-04-27 | Государственное Унитарное Предприятие "Водоканал Санкт-Петербурга" | Noise-protective structure |
RU2463412C2 (en) * | 2010-08-20 | 2012-10-10 | Олег Савельевич Кочетов | Sound-absorbing structure of production room |
RU2471935C1 (en) * | 2011-09-20 | 2013-01-10 | Олег Савельевич Кочетов | Comfort structure of room |
-
2014
- 2014-02-12 RU RU2014104822/03A patent/RU2561393C1/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU920141A1 (en) * | 1980-02-07 | 1982-04-15 | Ленинградская Ордена Ленина Лесотехническая Академия Им.С.М.Кирова | Sound-insulating module |
DE10214778A1 (en) * | 2001-04-04 | 2003-02-13 | Ver Holzbaubetr E Wilhelm Pfal | Sound-absorbing panel includes membrane plate penetrated by perforations |
RU28502U1 (en) * | 2002-12-25 | 2003-03-27 | Федеральное государственное унитарное предприятие "Акустический институт им. акад. Н.Н.Андреева" | Double-walled panel of modular type |
FR2857392A1 (en) * | 2003-07-09 | 2005-01-14 | Distrib Staff Mecanique Dsm | Acoustic insulation panel, especially for ceiling, has facing layer of perforated plaster |
RU2275476C1 (en) * | 2005-03-24 | 2006-04-27 | Государственное Унитарное Предприятие "Водоканал Санкт-Петербурга" | Noise-protective structure |
RU2463412C2 (en) * | 2010-08-20 | 2012-10-10 | Олег Савельевич Кочетов | Sound-absorbing structure of production room |
RU2471935C1 (en) * | 2011-09-20 | 2013-01-10 | Олег Савельевич Кочетов | Comfort structure of room |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2592871C1 (en) * | 2015-08-19 | 2016-07-27 | Олег Савельевич Кочетов | Kochetov sound absorber for lining manufacturing facilities |
RU2598236C1 (en) * | 2015-08-19 | 2016-09-20 | Олег Савельевич Кочетов | Sound absorbing structure |
RU2634889C2 (en) * | 2015-08-26 | 2017-11-07 | Олег Савельевич Кочетов | Fence for textile machine spindles |
RU2611650C1 (en) * | 2016-01-18 | 2017-02-28 | Олег Савельевич Кочетов | Low noise seismic resistance industrial building |
RU2623912C1 (en) * | 2016-04-11 | 2017-06-29 | Олег Савельевич Кочетов | Kochetov's low noise ventilation unit |
RU2635780C2 (en) * | 2016-04-11 | 2017-11-15 | Олег Савельевич Кочетов | Low noise ventilation unit |
RU2625826C1 (en) * | 2016-05-10 | 2017-07-19 | Олег Савельевич Кочетов | Cabin for operator, working under conditions of increased dust and high noise levels |
RU2627508C1 (en) * | 2016-07-05 | 2017-08-08 | Олег Савельевич Кочетов | Kochetov`s sound absorption device for industrial premises lining |
RU2652944C1 (en) * | 2017-03-24 | 2018-05-03 | Олег Савельевич Кочетов | Casing for textile machine spindles |
RU2651555C1 (en) * | 2017-05-05 | 2018-04-20 | Олег Савельевич Кочетов | Operator's cabin, working in conditions of high dust content and high noise levels |
RU2655637C1 (en) * | 2017-05-12 | 2018-05-29 | Олег Савельевич Кочетов | Operator's cabin, working under conditions of high dust content, high noise and vibration levels |
Also Published As
Publication number | Publication date |
---|---|
RU2014104822A (en) | 2015-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2561393C1 (en) | Kochetov(s sound absorber for lining manufacturing facilities | |
RU2561389C1 (en) | Sound-absorbing structure | |
RU2583463C1 (en) | Sound-absorbing coating | |
RU2592871C1 (en) | Kochetov sound absorber for lining manufacturing facilities | |
RU2561394C1 (en) | Kochetov(s sound-absorbing element | |
RU2528356C1 (en) | Kochetov's sound-absorbing structure | |
RU2528802C1 (en) | Sound absorbing element | |
RU2541701C1 (en) | Kochetov's sound-absorbing structure | |
RU2583434C1 (en) | Kochetov sound absorber of circular type | |
RU2649681C2 (en) | Kochetov sound-absorbing lining | |
RU2547529C1 (en) | Kochetov's sound-absorbing structure | |
RU2583442C2 (en) | Sound absorbing structure | |
RU2582137C2 (en) | Sound absorbing element | |
RU2603857C1 (en) | Ring-type kochetov sound absorbing element | |
RU2646252C1 (en) | Sound-absorbing lining | |
RU2531154C1 (en) | Sound-absorbing structure | |
RU2656420C2 (en) | Sound absorbing element with sound-reflecting layer | |
RU2583438C1 (en) | Kochetov sound-absorbing element | |
RU2603858C1 (en) | Helical-type kochetov sound absorbing element | |
RU2656438C1 (en) | Sound-absorbing structure for manufacturing buildings | |
RU2648724C1 (en) | Sound absorbing element for industrial premises | |
RU2627517C1 (en) | Sound-absorbing structure | |
RU2576264C1 (en) | Kochetov(s noise absorber with sound reflecting layer | |
RU2596222C1 (en) | Kochetov sound absorber for lining manufacturing facilities | |
RU2655639C2 (en) | Soundproofing enclosure |