RU2583442C2 - Sound absorbing structure - Google Patents

Sound absorbing structure Download PDF

Info

Publication number
RU2583442C2
RU2583442C2 RU2014134898/03A RU2014134898A RU2583442C2 RU 2583442 C2 RU2583442 C2 RU 2583442C2 RU 2014134898/03 A RU2014134898/03 A RU 2014134898/03A RU 2014134898 A RU2014134898 A RU 2014134898A RU 2583442 C2 RU2583442 C2 RU 2583442C2
Authority
RU
Russia
Prior art keywords
sound
absorbing
materials
diameter
holes
Prior art date
Application number
RU2014134898/03A
Other languages
Russian (ru)
Other versions
RU2014134898A (en
Inventor
Олег Савельевич Кочетов
Мария Олеговна Стареева
Мария Михайловна Стареева
Анна Михайловна Стареева
Татьяна Дмитриевна Ходакова
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2014134898/03A priority Critical patent/RU2583442C2/en
Publication of RU2014134898A publication Critical patent/RU2014134898A/en
Application granted granted Critical
Publication of RU2583442C2 publication Critical patent/RU2583442C2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/8409Sound-absorbing elements sheet-shaped
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8423Tray or frame type panels or blocks, with or without acoustical filling
    • E04B2001/8433Tray or frame type panels or blocks, with or without acoustical filling with holes in their face
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8457Solid slabs or blocks
    • E04B2001/8461Solid slabs or blocks layered

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

FIELD: acoustics.
SUBSTANCE: invention relates to industrial acoustics and can be used for machine drive noise reduction, lining manufacturing facilities. Sound absorbing structure is made in form of symmetrically arranged perforated walls, between which sound-absorbing element made up of three layers: central layer from sound reflecting material from complex profile composed of evenly distributed hollow tetrahedrons, which enable to reflect sound waves incident in all directions, and symmetrically adjacent thereto sound-absorbing layers from materials of different density. Each of perforated walls has following perforation parameters: hole diameter of 3÷7 mm, perforation percentage of 10÷15 %. As for the shape the holes can be circular, triangular, square, rectangular or diamond-shaped. In case of non-circular holes, it is necessary to consider as the nominal diameter the maximum diameter of the circle inscribed in the polygon. As sound-absorbing material used or sheet sound material which is based on magnesite binder with reinforcing glass or glass, or polyester, or porous sound-absorbing ceramic material with volume density 500÷1,000 kg/m3 and consisting of 100 weight parts of pearlite with grain diameter of 0.1÷8.0 mm, 80÷250 pts.wt of one of sintering materials selected from group comprising ash dust, slag , quartz, lava, stones or clay as main material, 5÷30 pts.wt inorganic binder. After sintering mixture of pearlite particles form communicating holes between contact surfaces so that inner pores are interconnected.
EFFECT: invention allows to improve efficiency of sound absorption and reliability of the structure on the whole.
3 cl, 1 tbl, 1 dwg

Description

Изобретение относится к промышленной акустике.The invention relates to industrial acoustics.

Наиболее близким техническим решением по технической сущности и достигаемому результату является звукопоглощающий элемент, применяемый в качестве облицовки производственных помещений, известный из патента РФ №2463412 (прототип).The closest technical solution to the technical nature and the achieved result is a sound-absorbing element used as a facing of industrial premises, known from the RF patent No. 2463412 (prototype).

Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет наличия пустот между слоями, где отсутствует поглощение звука между слоями звукопоглотителя.The disadvantage of the technical solution adopted as a prototype is the relatively low noise reduction due to the presence of voids between the layers, where there is no sound absorption between the layers of the sound absorber.

Технический результат - повышение эффективности шумоглушения и надежности конструкции в целом.The technical result is an increase in the efficiency of sound attenuation and the reliability of the structure as a whole.

Это достигается тем, что звукопоглощающая конструкция, содержащая перфорированные поверхности, между которыми размещен многослойный звукопоглощающий элемент, выполнена в виде симметрично расположенных перфорированных стенок, между которыми расположен звукопоглощающий элемент, выполненный в виде трех слоев: центрального слоя из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев из материалов разной плотности, каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден».This is achieved by the fact that the sound-absorbing structure containing perforated surfaces, between which a multilayer sound-absorbing element is placed, is made in the form of symmetrically arranged perforated walls, between which there is a sound-absorbing element made in the form of three layers: a central layer of sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, and symmetrically adjacent to n sound absorbing layers of materials of different densities, each of the perforated walls has the following perforation parameters: hole diameter 3 ÷ 7 mm, perforation percentage 10 ÷ 15%, and the shape of the hole can be made in the form of holes of round, triangular, square, rectangular or diamond-shaped profile, while in the case of non-circular holes, the maximum diameter of the circle inscribed in the polygon should be considered as the conditional diameter, and mineral plates are used as sound-absorbing material rockwool-type basalt wool, or URSA-type mineral wool, or P-75 basalt wool, or glass wool lined with glass wool, and the sound-absorbing element is lined with acoustically transparent material over its entire surface, such as fiberglass type EZ-100 or “poviden” polymer.

На чертеже изображена схема звукопоглощающей конструкции.The drawing shows a diagram of a sound-absorbing structure.

Звукопоглощающая конструкция выполнена в виде симметрично расположенных перфорированных 1 и 5 стенок, между которыми расположен звукопоглощающий элемент, выполненный в виде трех слоев: центрального слоя 3 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев 2 и 4 из материалов разной плотности. Каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.The sound-absorbing structure is made in the form of symmetrically arranged perforated walls 1 and 5, between which there is a sound-absorbing element made in the form of three layers: the central layer 3 of sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedrons, which allow reflecting sound waves incident in all directions, and sound-absorbing layers 2 and 4 symmetrically adjacent to it from materials of different densities. Each of the perforated walls has the following perforation parameters: hole diameter 3 ÷ 7 mm, perforation percentage 10 ÷ 15%, and the shape of the hole can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes as the conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon.

Каждая из перфорированных стенок 1 и 5 может быть выполнена из конструкционных материалов с нанесенным на их поверхности с одной или двух сторон слоем мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).Each of the perforated walls 1 and 5 can be made of structural materials with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material applied on one or two sides of the surface, and the ratio between the thicknesses of the material and vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).

Каждая из перфорированных стенок 1 и 5 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.Each of the perforated walls 1 and 5 can be made of stainless steel or a galvanized sheet with a thickness of 0.7 mm with a protective and decorative polymer coating of 50 μm thick or Polyester 25 μm thick, or aluminum sheet 1.0 mm thick and a coating thickness of 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

Каждая из перфорированных стенок 1 и 5 может быть выполнена из твердых декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкция, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или неткаными материалами, например «лутрасилом».Each of the perforated walls 1 and 5 can be made of solid decorative vibration-damping materials, such as plastic compounds such as Agate, Anti-Vibrate, Shvim, and the inner surface of the perforated surface facing the sound-absorbing structure is faced with an acoustically transparent material, such as fiberglass type EZ-100 or a polymer of the “poviden” type, or nonwoven materials, for example, “lutrasil”.

В качестве материала звукоотражающего слоя 3 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия, или применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала равной 60÷80 кг/м3.As the material of the sound-reflecting layer 3, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example foam aluminum, or soundproof boards based on glass staple fiber of the Shumostop type with a material density of 60 ÷ 80 kg / m 3 were used .

В качестве звукопоглощающего материала слоев 2 и 4 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Причем звукопоглощающий материал по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Τ), или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом. Кроме того, в качестве звукопоглощающего материала слоев 2 и 4 может быть использован пористый шумопоглощающий материала, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например, типа Acutex Τ, или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.As sound-absorbing material of layers 2 and 4, rockwool type mineral wool or URSA type mineral wool or P-75 type basalt wool or glass wool lined with glass wool or foamed polymer, such as polyethylene or polypropylene. Moreover, the sound-absorbing material is lined with an acoustically transparent material over its entire surface, for example, EZ-100 fiberglass or a “visible” polymer, or the surface of the fibrous sound absorbers is treated with special porous paints that allow air to pass through (for example, Acutex Τ), or coated with breathable fabrics or non-woven materials e.g. Lutrasil. In addition, as the sound-absorbing material of layers 2 and 4, a porous sound-absorbing material, for example, foam aluminum, or cermets, or a shell rock with a degree of porosity in the range of optimal values: 30–45%, or metal foam, or a material in the form of pressed crumbs from solid vibration-damping materials, for example elastomer, polyurethane, or plastic compound like “Agate”, “Anti-vibration”, “Shvim”, and the size of the crumbs fractions lies in the optimal range of values: 0.3 ... 2.5 mm, and they could also porous mineral piece materials were used, for example, pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, such as Acutex Τ, or covered with breathable fabrics or non-woven materials, for example Lutrasil.

Для снижения или коррекции времени реверберации помещений в его отделке применяют звукопоглощающие материалы и конструкции (звукопоглотители).To reduce or correct the reverberation time of premises, sound-absorbing materials and structures (sound absorbers) are used in its decoration.

Пористые звукопоглотители изготавливают в виде плит, которые крепятся к ограждающим поверхностям непосредственно или на относе, из легких и пористых минеральных штучных материалов - пемзы, вермикулита, каолина, шлаков и т.п. с цементом или другим вяжущим. Такие материалы достаточно прочны и могут быть использованы для снижения шума в коридорах, фойе, лестничных маршах общественных и промышленных зданий.Porous sound absorbers are made in the form of plates that are attached to the enclosing surfaces directly or on the basis of light and porous mineral piece materials - pumice, vermiculite, kaolin, slag, etc. with cement or other binder. Such materials are strong enough and can be used to reduce noise in corridors, foyers, staircases of public and industrial buildings.

Сырьем для их производства служат древесные волокна, минеральная вата, стеклянная вата, синтетические волокна. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Τ), или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.The raw materials for their production are wood fibers, mineral wool, glass wool, synthetic fibers. The surface of the fibrous absorbers is treated with special porous air-permeable paints (e.g. Acutex Τ), or coated with breathable fabrics or non-woven materials, such as Lutrasil.

В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике. Они не только оказались наиболее эффективными с акустической точки зрения в широком частотном диапазоне, но и отвечают возросшим требованиям, предъявляемые к дизайну помещений.Currently, fibrous sound absorbers are the most common in construction practice. They not only proved to be the most effective from an acoustic point of view in a wide frequency range, but also meet the increased requirements for room design.

В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Кроме этого, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0. Коэффициент звукопоглощения α равен отношению не отразившейся (поглощенной внутри и прошедшей сквозь) от поверхности энергии колебания воздуха к полной энергии, воздействующей на поверхность. Коэффициенты звукопоглощения большинства строительных материалов см. в таблице 1.In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0. The sound absorption coefficient α is equal to the ratio of the energy of the air vibration not reflected (absorbed inside and passed through) from the surface to the total energy acting on the surface. Sound absorption coefficients for most building materials are shown in table 1.

Figure 00000001
Figure 00000001

В качестве звукопоглощающего материала может быть использован листовой шумозащитный материал, который выполнен на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом. В качестве звукопоглощающего материала может быть использован полиэстер. В качестве звукопоглощающего материала может быть использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 мас. частей перлита с диаметром зерна 0,1÷8,0 мм, 80÷250 мас. частей одного из спекающих материалов, выбранных из группы, включающей зольную пыль, шлак, кварц, лаву, камни или глину в качестве основного материала, 5÷30 мас. частей неорганического связующего, причем после спекания смеси частицы перлита образуют сообщающиеся отверстия между своими контактирующими поверхностями так, что внутренние поры являются сообщающимися между собой.As sound-absorbing material can be used sheet soundproofing material, which is made on the basis of magnesia binder with reinforcing fiberglass or fiberglass. As sound-absorbing material, polyester can be used. As a sound-absorbing material may be used a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m3 and consisting of 100 wt. parts of perlite with a grain diameter of 0.1 ÷ 8.0 mm, 80 ÷ 250 wt. parts of one of the sintering materials selected from the group including fly ash, slag, quartz, lava, stones or clay as the main material, 5 ÷ 30 wt. parts of the inorganic binder, and after sintering the mixture, the perlite particles form interconnected holes between their contacting surfaces so that the inner pores are interconnected.

Звукопоглощающая конструкция работает следующим образом.Sound-absorbing design works as follows.

Звуковая энергия от оборудования, находящегося в помещении, или другого излучающего интенсивный шум объекта, пройдя через перфорированные стенки 1 и 5, попадает на слои 2 и 4 мягкого звукопоглощающего материала разной плотности, расположенные в два слоя (например, выполненного из базальтового или стеклянного волокна), а затем на слой 3 звукоотражающего материала сложного профиля, состоящий из равномерно распределенных пустотелых тетраэдров, позволяющий отражать падающие во всех направлениях звуковые волны и который расположен между слоями 2 и 4 мягкого звукопоглощающего материала разной плотности. В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя.Sound energy from equipment located in the room, or other object emitting intense noise, passing through the perforated walls 1 and 5, falls on layers 2 and 4 of soft sound-absorbing material of different density, located in two layers (for example, made of basalt or glass fiber) and then onto layer 3 of a sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedrons, which allows reflecting sound waves incident in all directions and which is located between the layer 2 and 4 and the soft sound absorbing material of different density. In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of a sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the frequency of excitation on the neck wall, which has the form of a branched sound absorber pore network.

Claims (3)

1. Звукопоглощающая конструкция, содержащая перфорированные поверхности, между которыми размещен многослойный звукопоглощающий элемент, отличающаяся тем, что она выполнена в виде симметрично расположенных перфорированных стенок, между которыми расположен звукопоглощающий элемент, выполненный в виде трех слоев: центрального слоя из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев из материалов разной плотности, каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала используются или листовой шумозащитный материал, который выполнен на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом, или полиэстер, или пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 мас.ч. перлита с диаметром зерна 0,1÷8,0 мм, 80÷250 мас.ч. одного из спекающих материалов, выбранных из группы, включающей зольную пыль, шлак, кварц, лаву, камни или глину в качестве основного материала, 5÷30 мас.ч. неорганического связующего, причем после спекания смеси частицы перлита образуют сообщающиеся отверстия между своими контактирующими поверхностями так, что внутренние поры являются сообщающимися между собой.1. Sound-absorbing structure containing perforated surfaces, between which a multilayer sound-absorbing element is placed, characterized in that it is made in the form of symmetrically arranged perforated walls, between which there is a sound-absorbing element made in the form of three layers: a central layer of sound-reflecting material of a complex profile, consisting from uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, and symmetrically adjacent sound-absorbing layers of materials of different densities, each of the perforated walls has the following perforation parameters: hole diameter 3 ÷ 7 mm, perforation percentage 10 ÷ 15%, and the shape of the hole can be made in the form of holes of round, triangular, square, rectangular or diamond-shaped profile, while in the case of non-circular holes, the maximum diameter of the circle inscribed in the polygon should be considered as a conditional diameter, and sheet metal or mozaschitny material which is based on magnesia binder with reinforcing glass fleece or glass fabric, or polyester, or a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m3 and consisting of 100 parts by weight perlite with a grain diameter of 0.1 ÷ 8.0 mm, 80 ÷ 250 wt.h. one of the sintering materials selected from the group comprising fly ash, slag, quartz, lava, stones or clay as the main material, 5 ÷ 30 parts by weight inorganic binder, and after sintering the mixture, the perlite particles form interconnected holes between their contacting surfaces so that the inner pores are interconnected. 2. Звукопоглощающая конструкция по п. 1, отличающаяся тем, что в качестве звукоотражающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала равной 60÷80 кг/м3.2. The sound-absorbing structure according to claim 1, characterized in that a material based on aluminum-containing alloys is used as a sound-reflecting material, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties : compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example foamed aluminum, or soundproofing boards based on glass staple fiber of the Shumostop type with a material density of 60 ÷ 80 kg / m 3 . 3. Звукопоглощающая конструкция по п. 1, отличающаяся тем, что каждая перфорированная стенка может быть выполнена из конструкционных материалов с нанесенным на их поверхности с одной или двух сторон слоем мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5), или из нержавеющей стали, или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм, или из твердых декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкции, облицована акустически прозрачным нетканым материалом, например Лутрасилом. 3. The sound-absorbing structure according to claim 1, characterized in that each perforated wall can be made of structural materials with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type, applied to their surface on one or two sides. ", The ratio between the thicknesses of the material and the vibration damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5), or stainless steel, or a galvanized sheet 0.7 mm thick with a polymer protective and decorative coating of the type" Pural " 50 microns thick or “Polyester” 25 microns thick, or 1.0 mm thick aluminum sheet and 25 microns coating thickness, or from hard decorative vibration-damping materials, for example, Agate, Anti-Vibrate, Shvim plastic compounds, with the inner surface the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent non-woven material, for example Lutrasil.
RU2014134898/03A 2014-08-27 2014-08-27 Sound absorbing structure RU2583442C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014134898/03A RU2583442C2 (en) 2014-08-27 2014-08-27 Sound absorbing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014134898/03A RU2583442C2 (en) 2014-08-27 2014-08-27 Sound absorbing structure

Publications (2)

Publication Number Publication Date
RU2014134898A RU2014134898A (en) 2016-03-27
RU2583442C2 true RU2583442C2 (en) 2016-05-10

Family

ID=55638468

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014134898/03A RU2583442C2 (en) 2014-08-27 2014-08-27 Sound absorbing structure

Country Status (1)

Country Link
RU (1) RU2583442C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656438C1 (en) * 2017-06-09 2018-06-05 Олег Савельевич Кочетов Sound-absorbing structure for manufacturing buildings
PL446387A1 (en) * 2023-10-14 2024-07-29 Kaim Janusz Granit-Pol Spółka Cywilna Sound wave damping cladding plate, especially the cladding plate of metro station walls and the damping plate with Helmholtz resonators

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108316586B (en) * 2018-01-30 2024-02-13 佛山市南海高陶材料有限公司 Anti-fouling ceramic tile with sound absorption/adsorption functions and preparation method thereof
CN111341292A (en) * 2019-12-05 2020-06-26 南京航空航天大学 Perforated plate laminated sound absorption structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU44700U1 (en) * 2004-11-09 2005-03-27 Симонов Алексей Владимирович SOUND-ABSORBING PANEL
DE102004037260A1 (en) * 2004-07-31 2006-03-23 Südluft Systemtechnik GmbH & Co. KG Sound-absorbing or sound-damping cassette structure and a method for cleaning such
RU2277075C2 (en) * 2000-10-17 2006-05-27 МИЗУТАНИ, Масару Porous sound-absorbing ceramic article and method of production of such article (versions)
RU2463412C2 (en) * 2010-08-20 2012-10-10 Олег Савельевич Кочетов Sound-absorbing structure of production room
RU132455U1 (en) * 2012-11-20 2013-09-20 Общество с ограниченной ответственностью "ОЗМК" NOISE PROTECTIVE PANEL (OPTIONS) AND NOISE PROTECTIVE SCREEN

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2277075C2 (en) * 2000-10-17 2006-05-27 МИЗУТАНИ, Масару Porous sound-absorbing ceramic article and method of production of such article (versions)
DE102004037260A1 (en) * 2004-07-31 2006-03-23 Südluft Systemtechnik GmbH & Co. KG Sound-absorbing or sound-damping cassette structure and a method for cleaning such
RU44700U1 (en) * 2004-11-09 2005-03-27 Симонов Алексей Владимирович SOUND-ABSORBING PANEL
RU2463412C2 (en) * 2010-08-20 2012-10-10 Олег Савельевич Кочетов Sound-absorbing structure of production room
RU132455U1 (en) * 2012-11-20 2013-09-20 Общество с ограниченной ответственностью "ОЗМК" NOISE PROTECTIVE PANEL (OPTIONS) AND NOISE PROTECTIVE SCREEN

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656438C1 (en) * 2017-06-09 2018-06-05 Олег Савельевич Кочетов Sound-absorbing structure for manufacturing buildings
PL446387A1 (en) * 2023-10-14 2024-07-29 Kaim Janusz Granit-Pol Spółka Cywilna Sound wave damping cladding plate, especially the cladding plate of metro station walls and the damping plate with Helmholtz resonators

Also Published As

Publication number Publication date
RU2014134898A (en) 2016-03-27

Similar Documents

Publication Publication Date Title
RU2583463C1 (en) Sound-absorbing coating
RU2592871C1 (en) Kochetov sound absorber for lining manufacturing facilities
RU2528356C1 (en) Kochetov's sound-absorbing structure
RU2528802C1 (en) Sound absorbing element
RU2561389C1 (en) Sound-absorbing structure
RU2561393C1 (en) Kochetov(s sound absorber for lining manufacturing facilities
RU2561394C1 (en) Kochetov(s sound-absorbing element
RU2541701C1 (en) Kochetov's sound-absorbing structure
RU2583442C2 (en) Sound absorbing structure
RU2583434C1 (en) Kochetov sound absorber of circular type
RU2582137C2 (en) Sound absorbing element
RU2649681C2 (en) Kochetov sound-absorbing lining
RU2547529C1 (en) Kochetov's sound-absorbing structure
RU2603857C1 (en) Ring-type kochetov sound absorbing element
RU2579021C1 (en) Acoustic panel
RU2646252C1 (en) Sound-absorbing lining
RU2531154C1 (en) Sound-absorbing structure
RU2583438C1 (en) Kochetov sound-absorbing element
RU2648724C1 (en) Sound absorbing element for industrial premises
RU2656438C1 (en) Sound-absorbing structure for manufacturing buildings
RU2603858C1 (en) Helical-type kochetov sound absorbing element
RU2550604C2 (en) Acoustic dissipation element for acoustic baffles, piece sound absorbers, partitions
RU2655639C2 (en) Soundproofing enclosure
RU2576264C1 (en) Kochetov(s noise absorber with sound reflecting layer
RU2627517C1 (en) Sound-absorbing structure