RU2611650C1 - Low noise seismic resistance industrial building - Google Patents

Low noise seismic resistance industrial building Download PDF

Info

Publication number
RU2611650C1
RU2611650C1 RU2016101179A RU2016101179A RU2611650C1 RU 2611650 C1 RU2611650 C1 RU 2611650C1 RU 2016101179 A RU2016101179 A RU 2016101179A RU 2016101179 A RU2016101179 A RU 2016101179A RU 2611650 C1 RU2611650 C1 RU 2611650C1
Authority
RU
Russia
Prior art keywords
vibration
sound
damping
floor
absorbing
Prior art date
Application number
RU2016101179A
Other languages
Russian (ru)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2016101179A priority Critical patent/RU2611650C1/en
Application granted granted Critical
Publication of RU2611650C1 publication Critical patent/RU2611650C1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground

Abstract

FIELD: construction.
SUBSTANCE: low noise seismic-resistant industrial building containing the building frame with a foundation, the bearing walls with enclosures in the form of the floor and the ceiling, which are lined with sound-absorbing constructions, the window and door openings, and also the piece sound absorbers containing the frame in which the sound-absorbing material is arranged, and installed above the noisy equipment, the basic bearing floor slabs equipped in the places of their attachment to the bearing building walls with the spatial vibration isolation system consisting of horizontally spaced vibration isolators perceiving the vertical static and dynamic loads, as well as vertically arranged vibration isolators perceiving the horizontal static and dynamic loads, wherein the floor in the premises is made on an elastic foundation and contains the installation plate made of concrete reinforced with vibration damping material, which is installed on the base intermediate floor slab with cavities through the layers of vibration-damping material and waterproofing material with a gap relative to the bearing walls of the industrial premise, wherein the base slab cavities are filled with vibration damping material, e.g. foamed polymer.
EFFECT: increased noise reduction efficiency and seismic stability of the building.
3 cl, 11 dwg

Description

Изобретение относится к промышленной акустике.The invention relates to industrial acoustics.

Наиболее близким техническим решением по технической сущности и достигаемому результату является малошумное сейсмостойкое производственное здание по патенту РФ №129125, опубл. 20.06.13 [прототип], содержащая каркас на перекрытии здания и стены со звукопоглощающей облицовкой.The closest technical solution to the technical nature and the achieved result is a low noise earthquake-resistant industrial building according to the patent of the Russian Federation No. 129125, publ. 06/20/13 [prototype], containing the frame on the ceiling of the building and walls with sound-absorbing lining.

Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет сравнительно невысокого коэффициента вибродемпфирования межэтажного перекрытия, а также низкая сейсмостойкость здания.The disadvantage of the technical solution adopted as a prototype is the relatively low noise reduction due to the relatively low coefficient of vibration damping of the floor, as well as low seismic resistance of the building.

Технический результат - повышение эффективности шумоглушения и сейсмостойкости здания при тех же габаритах элементов, повышающих эффективность снижения шума и вибрации.The technical result is an increase in the efficiency of sound attenuation and earthquake resistance of a building with the same dimensions of elements that increase the efficiency of reducing noise and vibration.

Это достигается тем, что в малошумном сейсмостойком производственном здании, содержащем каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером.This is achieved by the fact that in a low noise earthquake-resistant industrial building containing a building frame with a base, bearing walls with fences in the form of floor and ceiling, which are lined with sound-absorbing structures, window and door openings, as well as piece sound absorbers containing a frame in which sound-absorbing material is located , and the basic load-bearing floor slabs installed above the noisy equipment are equipped in the places of their fastening to the load-bearing walls of the building with a spatial vibration isolation system consisting of located vibration isolators that accept vertical static and dynamic loads, and vertically located vibration isolators that accept horizontal static and dynamic loads, while the floor in the rooms is made on an elastic base and contains a mounting plate made of concrete reinforced with vibration damping material, which is installed on the base plate interfloor overlapping with cavities through layers of vibration damping material and waterproofing material with a clearance of relative to the bearing walls of the production room, and the cavity of the base plate is filled with vibration damping material, such as foamed polymer.

На фиг. 1 изображен общий вид малошумного сейсмостойкого производственного здания, на фиг. 2 - разрез междуэтажного перекрытия здания, на фиг. 3 - конструкция подвесного потолка, на фиг. 4 - схема виброизоляции железобетонной плиты в основании здания, на фиг. 5 - общий вид виброизолятора, на фиг. 6 - разрез А-А виброизолятора, на фиг. 7 изображен общий вид штучного звукопоглотителя, на фиг. 8 - разрез звукопоглощающего винтового элемента штучного поглотителя, на фиг. 9 - вариант выполнения конструкции пола на упругом основании, на фиг. 10 показана схема варианта штучного сферического звукопоглотителя, на фиг. 11 - схема вибродемпфирующей вставки в полостях базовых плит.In FIG. 1 shows a general view of a low noise earthquake-resistant industrial building; FIG. 2 is a section through a floor of a building, in FIG. 3 - design of a false ceiling, in FIG. 4 is a diagram of vibration isolation of a reinforced concrete slab at the base of a building; FIG. 5 is a general view of the vibration isolator, in FIG. 6 is a section AA of a vibration isolator, in FIG. 7 is a perspective view of a piece of sound absorber; FIG. 8 is a sectional view of a sound absorbing screw element of a piece absorber; FIG. 9 is an embodiment of a floor structure on an elastic base; FIG. 10 shows a diagram of an embodiment of a piece spherical sound absorber, FIG. 11 is a diagram of a vibration damping insert in the cavities of the base plates.

Малошумное сейсмостойкое производственное здание (фиг. 1) содержит каркас здания с основанием (фиг. 4), оконные 9 и дверные 10 проемы и несущие стены 1, 2, 3, 4 с ограждениями 5,6 (пол и потолок), которые облицованы звукопоглощающими конструкциями, а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал и установленные над шумным оборудованием 11.The low-noise earthquake-resistant industrial building (Fig. 1) contains the building frame with the base (Fig. 4), window 9 and door 10 openings and load-bearing walls 1, 2, 3, 4 with 5.6 fences (floor and ceiling), which are lined with sound-absorbing structures, as well as piece sound absorbers 7 and 8, containing a frame in which sound-absorbing material is located and installed above noisy equipment 11.

Конструкция пола на упругом основании (фиг. 2) содержит установочную плиту 12, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 15 межэтажного перекрытия с полостями 16 через слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 с зазором 17 относительно несущих стен 1, 2, 3, 4 производственного здания. Чтобы обеспечить эффективную виброизоляцию установочной плиты 12 по всем направлениям слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 1, 2, 3, 4 и к базовой несущей плите 15 перекрытия.The floor structure on an elastic base (Fig. 2) contains a mounting plate 12 made of concrete reinforced with vibration damping material, which is installed on the base plate 15 of the floor with cavities 16 through layers of vibration damping material 14 and waterproofing material 13 with a gap 17 relative to the bearing walls 1, 2, 3, 4 of the industrial building. In order to ensure effective vibration isolation of the mounting plate 12 in all directions, the layers of the vibration damping material 14 and the waterproofing material 13 are made with a flange that is closely adjacent to the supporting structures of the walls 1, 2, 3, 4 and to the base supporting plate 15 of the floor.

Для повышения эффективности виброизоляции и сейсмостойкости здания базовые несущие плиты 15 перекрытия (на фиг. 2 показана плита 15 перекрытия только для одного этажа здания и с одной стороны несущих стен 1, 2, 3, 4) снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов 26 и 28, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов 27, воспринимающих горизонтальные статические и динамические нагрузки. Схема виброизоляторов, выполненных из эластомера, представлена на фиг. 5-6. Каждый из виброизоляторов 26, 27, 28 состоит из жестко связанных между собой резиновых плит: верхней 38 и нижней 39 (фиг. 5 и 6), в которых выполнены сквозные отверстия 40, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-го порядка, обеспечивающих равночастотность системы виброизоляции в целом. Отверстия 40 имеют в сечении форму, обеспечивающую равночастотность виброизолятора.To increase the vibration isolation and earthquake resistance of the building, the basic supporting slabs 15 of the floor (Fig. 2 shows the slab 15 of the floor for only one floor of the building and on one side of the supporting walls 1, 2, 3, 4) are equipped with a system in their places of attachment to the supporting walls of the building spatial vibration isolation, consisting of horizontally located vibration isolators 26 and 28, perceiving vertical static and dynamic loads, as well as vertically located vibration isolators 27, perceiving horizontal static and dynamo cal load. A diagram of vibration isolators made of elastomer is shown in FIG. 5-6. Each of the vibration isolators 26, 27, 28 consists of rubber plates rigidly interconnected: upper 38 and lower 39 (Figs. 5 and 6), in which through holes 40 are made, located on the surface of the vibration isolator in a checkerboard pattern. The shape of the vibration isolators is made square or rectangular, and their side faces can be made in the form of curved surfaces of the n-th order, ensuring the uniform frequency of the vibration isolation system as a whole. The holes 40 have a cross-sectional shape that provides equal frequency vibration isolation.

Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием, полости 16 заполнены вибродемпфирующим материалом, например вспененным полимером, например полиэтиленом или полипропиленом, а стены 1, 2, 3, 4 облицованы звукопоглощающими конструкциями. В качестве звукопоглощающего материала звукопоглощающих конструкций используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом (на чертеже не показано), например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».To increase the efficiency of sound insulation and sound absorption in workshops located under the floor, the cavities 16 are filled with vibration damping material, for example, foamed polymer, for example polyethylene or polypropylene, and walls 1, 2, 3, 4 are lined with sound-absorbing structures. As sound-absorbing material of sound-absorbing structures, slabs made of rockwool basalt-based mineral wool or URSA-type mineral wool or P-75 basalt wool or glass-wool lining are used, and the sound-absorbing element is acoustically lined over its entire surface transparent material (not shown in the drawing), for example, fiberglass type EZ-100 or polymer type "Poviden."

В качестве звукопоглощающего материала может быть использован также жесткий пористый материал, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%. В качестве звукопоглощающего материала может быть использован материал в виде крошки из твердых вибродемпфирующих материалов, например эластомера, или полиуретана, или пластиката, причем размер фракций крошки лежит в оптимальном интервале величин: 0,3÷2,5 мм (на чертеже не показано).As a sound-absorbing material, a rigid porous material, for example, foam aluminum, or cermet, or a shell rock with a degree of porosity in the range of optimal values: 30–45%, can also be used. As a sound-absorbing material, a material in the form of crumbs from solid vibration-damping materials, for example, elastomer, or polyurethane, or plastic compound can be used, moreover, the size of the fractions of the crumb lies in the optimal range of values: 0.3 ÷ 2.5 mm (not shown in the drawing).

Подвесной акустический потолок (фиг. 3) состоит из жесткого каркаса 19, выполненного по форме в виде прямоугольного параллелепипеда с размерами сторон в плане В×С, отношение которых лежит в оптимальном интервале величин В:С=1:1…2:1, подвешиваемого к потолку производственного здания с помощью подвесок 21, имеющих скобы 22 для прокладки проводов электропитания к светильникам 24, установленным в каркасе 19. Крепление каркаса к потолку осуществляется с помощью дюбель-винтов 23. К каркасу прикреплен перфорированный лист 20, на котором через слой акустического прозрачного материала 25 расположен слой звукопоглощающего материала 18. При монтаже акустического потолка должны соблюдаться оптимальные соотношения размеров: D - от точки подвеса каркаса до любой из его сторон и Е - толщины слоя звукопоглощающего материала, причем отношение этих размеров должно находиться в оптимальном интервале величин: E:D=0,1…0,5. Перфорированный лист 20 имеет следующие параметры перфорации: диаметр перфорации - 3…7 мм, процент перфорации 10%…15%, причем по форме перфорация может быть выполнена в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного сечения (на чертеже показаны квадратные отверстия). В случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.Suspended acoustic ceiling (Fig. 3) consists of a rigid frame 19, made in the form of a rectangular parallelepiped with dimensions of the sides in the plan B × C, the ratio of which lies in the optimal range of values B: C = 1: 1 ... 2: 1, suspended to the ceiling of the industrial building using hangers 21 having brackets 22 for laying power wires to the fixtures 24 installed in the frame 19. The frame is fixed to the ceiling using dowels-screws 23. A perforated sheet 20 is attached to the frame, through which an acoustical layer of transparent transparent material 25, a layer of sound-absorbing material 18 is located. When installing an acoustic ceiling, the optimum size ratios must be observed: D - from the point of suspension of the frame to either side and E - thickness of the layer of sound-absorbing material, and the ratio of these sizes should be in the optimal range of values: E: D = 0.1 ... 0.5. The perforated sheet 20 has the following perforation parameters: the diameter of the perforation is 3 ... 7 mm, the percentage of perforation is 10% ... 15%, and the shape of the perforation can be made in the form of holes of round, triangular, square, rectangular or diamond-shaped cross-section (square holes are shown in the drawing ) In the case of non-circular holes, the maximum diameter of a circle inscribed in a polygon should be considered as a conditional diameter.

На фиг. 4 представлена схема виброизоляции железобетонной плиты, состоящей из связанных между собой железобетонных балок 29 в основании здания, которая является вариантом виброзащиты без домкратов и включает в себя по крайней мере четыре резиновых виброизолятора 33 (фиг. 5 и 6), устанавливаемых между металлической плитой 34 и железобетонной балкой 29, расположенной в основании 30 здания, выполненного за одно целое с по крайней мере восемью ленточными фундаментными блоками 31 и 32, являющимися своеобразными "ловушками", а каждая из металлических плит 34 установлена на по крайней мере трех железобетонных столбах-упорах 35. Между каждыми ленточными фундаментными блоками 31 и 32 и каждой из железобетонных балок 29 устанавливаются песчаные подушки 37, а под резиновыми виброизоляторами 33 закреплены тензорезисторные датчики 36, контролирующие осадку виброизоляторов 33. Песчаные подушки 37 установлены в металлических разъемных обоймах.In FIG. 4 is a diagram of the vibration isolation of a reinforced concrete slab consisting of interconnected reinforced concrete beams 29 at the base of the building, which is a variant of vibration protection without jacks and includes at least four rubber vibration isolators 33 (Figs. 5 and 6) installed between the metal plate 34 and reinforced concrete beam 29, located at the base 30 of the building, made in one piece with at least eight strip foundation blocks 31 and 32, which are kind of “traps”, and each of the metal plates 34 mounted on at least three reinforced concrete pillars-supports 35. Between each strip foundation blocks 31 and 32 and each of the reinforced concrete beams 29 sand cushions 37 are installed, and strain gauge sensors 36 are mounted under the rubber vibration isolators 33 to monitor the settlement of vibration isolators 33. Sand cushions 37 are installed in metal split clips.

В процессе возведения сейсмостойкого здания опалубка железобетонной монолитной стены опирается на песчаные подушки 37, заключенные в разборную металлическую обойму. После отвердения бетона и снятия опалубки между выступами "ловушками" 31 и 32 устанавливается виброизолятор 33 в сборе. После того как бетон в балке 29 наберет достаточную прочность, металлическая обойма размыкается и песок из "подушки" извлекается, а балка 29 опирается на виброизолятор 33. В дальнейшем, по мере воздвижения здания, виброизолятор 33 сжимается. Демонтаж и замена виброизолятора 33 производятся с помощью домкратов (на чертеже не показано).During the construction of an earthquake-resistant building, the formwork of a reinforced concrete monolithic wall is based on sand cushions 37 enclosed in a collapsible metal cage. After hardening the concrete and removing the formwork between the protrusions of the "traps" 31 and 32, a vibration isolator 33 is assembled. After the concrete in the beam 29 has gained sufficient strength, the metal cage opens and the sand is removed from the "cushion", and the beam 29 rests on the vibration isolator 33. Subsequently, as the building is raised, the vibration isolator 33 is compressed. The dismantling and replacement of the vibration isolator 33 is carried out using jacks (not shown in the drawing).

При монтаже системы виброзащиты здания указанным способом необходимо соблюдать следующие положения:When installing the building vibration protection system in this way, the following provisions must be observed:

- виброизоляторы 33 должны быть смонтированы уже в начальной стадии строительства, в связи с чем они должны быть заранее изготовлены и испытаны;- vibration isolators 33 must be mounted already in the initial stage of construction, in connection with which they must be prefabricated and tested;

- должна быть обеспечена сохранность виброизоляторов 33 и тензорезисторных датчиков 36 от воздействия неблагоприятных природных факторов в период строительства;- the vibration isolators 33 and the strain gauge sensors 36 should be protected from the effects of adverse natural factors during the construction period;

- высота песчаной подушки 37 назначается по расчету исходя из осадки виброизоляторов 33 под нагрузкой и с течением времени.- the height of the sand cushion 37 is assigned based on the settlement of the vibration isolators 33 under load and over time.

- для регулировки зазора между железобетонной балкой 29 и "ловушкой" на последней устанавливаются по крайней мере две съемные металлические плиты толщиной по 1 см.- to adjust the gap between the reinforced concrete beam 29 and the "trap", at least two removable metal plates 1 cm thick are installed on the latter.

Каждый из виброизоляторов 33 (фиг. 5 и 6) состоит из жестко связанных между собой резиновых плит: верхней 38 и нижней 39, в которых выполнены сквозные отверстия 40, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы 33 выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-го порядка, обеспечивающие равночастотность системы виброизоляции в целом. Отверстия 40 имеют в сечении форму, обеспечивающую равночастотность виброизолятора 33.Each of the vibration isolators 33 (Figs. 5 and 6) consists of rubber plates rigidly interconnected: upper 38 and lower 39, in which through holes 40 are made, located on the surface of the vibration isolator in a checkerboard pattern. The shape of the vibration isolators 33 is made square or rectangular, and their side faces can be made in the form of curved surfaces of the n-th order, ensuring the uniform frequency of the vibration isolation system as a whole. The holes 40 have a cross-sectional shape that provides equal frequency vibration isolator 33.

Штучный звукопоглотитель состоит из жесткого перфорированного каркаса (фиг. 7 и 8), состоящего из нижней части 41 конической формы с крышкой 42, и верхней части 44 цилиндрической формы с верхним основанием 46 и нижним основанием 45, которое крепится к крышке 42 нижней части перфорированного каркаса посредством вибродемпфирующей прокладки 48, позволяющей демпфировать высокочастотные колебания, передающиеся от объекта (на чертеже не показано). Прокладка 48 может быть выполнена из вибродемпфирующего материала, например пластиката типа «Агат» или мастики ВД-17.The piece sound absorber consists of a rigid perforated frame (Figs. 7 and 8), consisting of a lower part 41 of a conical shape with a cover 42, and an upper part 44 of a cylindrical shape with an upper base 46 and a lower base 45, which is attached to the cover 42 of the lower part of the perforated frame by means of a vibration damping pad 48, which allows damping high-frequency vibrations transmitted from the object (not shown in the drawing). The gasket 48 may be made of vibration damping material, such as plastic compound type "Agate" or mastic VD-17.

К верхнему основанию 46 верхней части цилиндрического перфорированного каркаса шарнирно закреплен элемент 50, при помощи которого каркас крепится к требуемому объекту, например потолку производственного помещения, переборке судовой каюты, несущей конструкции производственного оборудования, причем полости нижней части 41 и верхней части 44 перфорированного каркаса заполнены соответственно звукопоглощающими материалами 43 и 47 различной плотности, подавляющих шумы соответственно в различных полосах частот, например на низких и средних частотах соответственно.An element 50 is pivotally fixed to the upper base 46 of the upper part of the cylindrical perforated frame by which the frame is attached to the desired object, for example, the ceiling of the production room, the bulkhead of the ship’s cabin, the supporting structure of the production equipment, the cavities of the lower part 41 and the upper part 44 of the perforated frame are filled respectively sound-absorbing materials 43 and 47 of different densities, suppressing noise, respectively, in different frequency bands, for example, at low and medium frequencies totah respectively.

Вокруг верхней части 44 цилиндрической формы перфорированного каркаса расположен по крайней мере один винтовой звукопоглощающий элемент 49 штучного поглотителя, выполненный в виде цилиндрической винтовой пружины из плотного негорючего звукопоглощающего материала, например винипора, или тонкого стекловолокна, обернутого акустически прозрачным материалом, например стеклотканью.Around the upper portion 44 of the cylindrical shape of the perforated frame is at least one screw sound absorbing element 49 of the piece absorber, made in the form of a cylindrical helical spring of a dense non-combustible sound-absorbing material, such as Vinipore, or thin glass fiber wrapped in an acoustically transparent material, such as fiberglass.

Винтовой звукопоглощающий элемент 49 штучного поглотителя (фиг. 8) может быть выполнен в виде полого винтового звукопоглощающего элемента, образованного внешней 51 и внутренней 52 винтовыми поверхностями, образующими полость 54, при этом пространство, образованное внешней 51 и внутренней 52 винтовыми поверхностями, например круглого сечения, заполнено звукопоглощающим материалом 53.The screw sound-absorbing element 49 of the piece absorber (Fig. 8) can be made in the form of a hollow screw sound-absorbing element formed by the outer 51 and inner 52 screw surfaces forming the cavity 54, while the space formed by the outer 51 and inner 52 screw surfaces, for example, round filled with sound-absorbing material 53.

Конструкция пола на упругом основании (фиг. 9) относительно несущих стен 1, 2, 3, 4 производственного здания может быть выполнена в виде плавающего пола, которая предусматривает дополнительную шумоизоляцию междуэтажных перекрытий. Эта конструкция представляет собой слой 56 звукоизоляционного прокладочного материала «пенотерм НПП ЛЭ», расположенного на плите перекрытия 55, поверх которого выполняется цементно-песчаная стяжка 58 через металлическую сетку 57. На стяжку 58 укладывается подложка 59 типа «Порилекс», затем ламинат 60 с плинтусом 61.The floor structure on an elastic base (Fig. 9) relative to the bearing walls 1, 2, 3, 4 of the industrial building can be made in the form of a floating floor, which provides additional noise insulation of floors. This design is a layer 56 of the soundproofing cushioning material “Penotherm NPP LE”, located on the floor slab 55, on top of which a cement-sand screed 58 is made through a metal mesh 57. A substrate 59 of the Porilex type is laid on the screed 58, then a laminate 60 with a plinth 61.

ЗАО «Уралпластик», являясь крупнейшим производителем вспененных полимеров в России, специально разработало вибродемпфирующий материал ПЕНОТЕРМ НПП ЛЭ для шумоизоляции междуэтажных перекрытий. Пенотерм НПП ЛЭ - рулонный вибродемпфирующий материал с закрытопористой ячеистой структурой, изготовленный экструзионным методом из полипропилена, с введением вспенивателя, антипиренов. стабилизирующих, пластифицирующих и других технологических добавок, обеспечивающих оптимальный показатель динамического модуля упругости ЕД=0,66 МПа и сохранение всех заложенных характеристик в течение всего срока службы объекта. Упругие свойства скелета материала пенотерм НПП ЛЭ, химическая стойкость и наличие воздуха, заключенного в его порах, обуславливают гашение энергии удара и вибрации, что способствует снижению ударного и воздушного шума. Структура пенополипропилена способна препятствовать воздействию агрессивных сред, механическим нагрузкам и процессу старения.CJSC Uralplastic, being the largest producer of foamed polymers in Russia, specially developed the vibration damping material PENOTERM NPP LE for noise insulation of floors. Penotherm NPP LE - roll vibrodamping material with a closed-cell cellular structure, made by extrusion method of polypropylene, with the introduction of a blowing agent, flame retardants. stabilizing, plasticizing and other technological additives that provide an optimal indicator of the dynamic modulus of elasticity ED = 0.66 MPa and the preservation of all the inherent characteristics throughout the entire service life of the object. The elastic properties of the skeleton of the foam material of the NPP LE, the chemical resistance and the presence of air enclosed in its pores, dampen shock energy and vibration, which helps to reduce shock and airborne noise. The structure of polypropylene is able to inhibit the effects of aggressive environments, mechanical stress and the aging process.

Основные физико-механические свойства материала пенотерм НПП ЛЭ:The main physical and mechanical properties of the foam material NPP LE:

Динамический модуль упругости при нагрузке 2000 Н/м2, - 0,66 МПа,Dynamic modulus of elasticity at a load of 2000 N / m 2 , - 0.66 MPa,

Относительное сжатие при нагрузке 2000 Н/м2, - 11%,Relative compression at a load of 2000 N / m 2 , - 11%,

Индекс снижения ударного шума в конструкциях "плавающих полов", - 20÷22 дБ,Impact noise reduction index in the construction of "floating floors", - 20 ÷ 22 dB,

Плотность - 40 кг/м3,Density - 40 kg / m 3 ,

Толщина поставляемого ЗАО «Уралпластик» материала, - 6, 8 и 10 мм.The thickness of the material supplied by Uralplastic CJSC is 6, 8 and 10 mm.

Малошумное сейсмостойкое производственное здание работает следующим образом.Low noise earthquake-resistant industrial building operates as follows.

Звуковая энергия от оборудования 11, находящегося в помещении, попадает на слои звукопоглощающего материала звукопоглощающих конструкций, которыми облицованы несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол 6 и потолок 5), а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал и которые установлены над шумным оборудованием 11. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Коэффициент перфорации перфорированной стенки принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрена стеклоткань, например типа ЭЗ-100, расположенная между звукопоглотителем и перфорированной стенкой.Sound energy from the equipment 11 located in the room falls on the layers of sound-absorbing material of sound-absorbing structures, which are lined with load-bearing walls 1, 2, 3, 4 with fences 5, 6 (floor 6 and ceiling 5), as well as piece sound absorbers 7 and 8, containing a frame in which sound-absorbing material is located and which are installed above noisy equipment 11. The transition of sound energy into heat (dissipation, energy dissipation) occurs in the pores of the sound absorber, which are a model of Helmholtz resonators, where energy occur due to friction with the driving frequency of the oscillating mass of air located in the neck of the resonator neck wall itself, has the form of branched networks pore absorber. The perforation coefficient of the perforated wall is taken to be equal to or more than 0.25. To prevent the eruption of a soft sound absorber, a fiberglass fabric, for example, type EZ-100, is located between the sound absorber and the perforated wall.

Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.Sound waves propagating in the production room interact with cavities filled with sound absorber.

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a non-combustible sound absorber leads to sound attenuation in the high-frequency range, and due to the presence of cavities, the sound absorption surface increases and, as a result, the sound absorption coefficient increases.

При установке виброактивного оборудования на плиту 12 происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 12, а также за счет слоя вибродемпфирующего материала 14, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.When installing vibroactive equipment on the plate 12, two-stage vibration protection occurs, due to vibration damping inclusions in the mass of the plate 12, as well as due to the layer of vibration damping material 14, which can be used as: needle-punched mats of the type “Vibrosil” based on silica or aluminosilicate fiber, material from solid vibration-damping materials, for example plastic compound, from soundproof plates based on glass staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 .

Подвесной акустический потолок работает следующим образом.False acoustic ceiling works as follows.

Подвешивание подвесного акустического потолка осуществляют на подвесках 21, которые крепятся к потолку с помощью дюбель-винтов 23, а другим концом закреплены на каркасе 19. Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.Suspension of a suspended acoustic ceiling is carried out on suspensions 21, which are attached to the ceiling using dowels-screws 23, and the other end is fixed to the frame 19. Sound waves propagating in the production room interact with the cavities filled with the sound absorber.

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a non-combustible sound absorber leads to sound attenuation in the high-frequency range, and due to the presence of cavities, the sound absorption surface increases and, as a result, the sound absorption coefficient increases.

Штучный звукопоглотитель работает следующим образом.Piece sound absorber works as follows.

Звуковые волны, распространяясь на промышленном или транспортном объектах, взаимодействуют со звукопоглощающим материалом 43 и 47 различной плотности, подавляющих шумы соответственно в различных полосах частот, например на низких и средних частотах соответственно.Sound waves propagating at industrial or transport facilities interact with sound-absorbing material 43 and 47 of different densities, which suppress noise in different frequency bands, for example, at low and medium frequencies, respectively.

Возможны следующие варианты используемых материалов:The following options are used materials:

- в качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.- a material based on a magnesian binder with a reinforcing fiberglass or fiberglass was used as a sound-reflecting material.

- в качестве звукопоглощающего материала использован полиэстер.- Polyester is used as a sound-absorbing material.

- в качестве звукопоглощающего материала использован пористый волокнистый или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочкой из тонкой стеклоткани или алюминизированной лавсановой пленки.- as a sound-absorbing material, a porous fibrous or foamy sound-absorbing material is used, which is made on the basis of basalt or glass fibers, or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass or aluminized lavsan film.

- в качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0.5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов.- as a sound-absorbing material, a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 mass parts of one or more sintering materials and 10 ÷ 20 mass parts of binder materials.

Звукопоглощение на средних и высоких частотах происходит за счет акустического эффекта, построенного по принципу резонаторов Гельмгольца, образованных воздушными полостями перфорированного каркаса. Различные объемы резонансных полостей: нижней части 41 конической формы и верхней части 44 цилиндрической формы, служат для подавления звуковых колебаний в требуемом звуковом диапазоне частот, как правило, большие объемы служат для подавления шума в низкочастотном диапазоне, а малые - в области средних и высоких частот. Взаимодействие звуковых волн с винтовым звукопоглощающим элементом 49 приводит к шумоглушению в высокочастотном диапазоне, а выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.Sound absorption at medium and high frequencies occurs due to the acoustic effect built on the principle of Helmholtz resonators formed by air cavities of a perforated frame. Different volumes of resonant cavities: the lower part 41 of the conical shape and the upper part 44 of a cylindrical shape, serve to suppress sound vibrations in the desired sound frequency range, as a rule, large volumes serve to suppress noise in the low-frequency range, and small ones - in the medium and high frequencies . The interaction of sound waves with a screw sound-absorbing element 49 leads to noise attenuation in the high frequency range, and the implementation of a sound absorber from non-combustible materials makes the design fireproof.

На фиг. 10 показана схема варианта штучного сферического звукопоглотителя.In FIG. 10 shows a diagram of an embodiment of a piece spherical sound absorber.

Штучный сферический звукопоглотитель для мобильных транспортных средств содержит звукопоглотители активного и реактивного типов, размещенные на жестком каркасе. Каркас выполнен из двух частей, при этом нижняя, реактивная, часть 7 выполнена в виде конструкции сферической формы с внутренней конгруэнтной сферической резонансной полостью 8, образованной жесткой сплошной сферической оболочкой 6, эквидистантной внешней перфорированной сферической оболочке 4, соединенной с верхней, активной, частью 1, которая выполнена в виде жесткой перфорированной цилиндрической обечайки 2 с перфорированной крышкой и сплошным основанием, причем полость цилиндрической обечайки заполнена звукопоглощающим материалом, а соединение верхней 1 и нижней 7 частей звукопоглотителя выполнено посредством упругодемпфирующего элемента 5, позволяющего демпфировать высокочастотные колебания, при этом к перфорированной крышке перфорированной цилиндрической обечайки шарнирно закреплен элемент, при помощи которого каркас крепится к требуемому объекту, например потолку производственного помещения.A piece spherical sound absorber for mobile vehicles contains active and jet type sound absorbers placed on a rigid frame. The frame is made of two parts, while the lower, reactive, part 7 is made in the form of a spherical shape with an internal congruent spherical resonant cavity 8 formed by a rigid continuous spherical shell 6, an equidistant external perforated spherical shell 4 connected to the upper, active, part 1 , which is made in the form of a rigid perforated cylindrical shell 2 with a perforated lid and a solid base, and the cavity of the cylindrical shell is filled with sound-absorbing material, and the connection of the upper 1 and lower 7 parts of the sound absorber is made by means of an elastic damping element 5, which allows damping high-frequency vibrations, while an element is pivotally fixed to the perforated cover of the perforated cylindrical shell, by which the frame is attached to the desired object, for example, the ceiling of the production room.

Сферическая резонансная полость 8 реактивной части 7 каркаса жестко соединена по крайней мере одной втулкой 9 с осевым отверстием, выполняющим функцию горловины резонатора Гельмгольца, с внешней перфорированной сферической оболочкой 4, а пространство между ними заполнено звукопоглотителем. Вокруг перфорированной цилиндрической обечайки 2 расположен по крайней мере один винтовой звукопоглощающий элемент 3, выполненный по форме в виде цилиндрической винтовой пружины, охватывающей обечайку 2.The spherical resonant cavity 8 of the reactive part 7 of the frame is rigidly connected by at least one sleeve 9 with an axial hole that serves as the neck of the Helmholtz resonator, with an external perforated spherical shell 4, and the space between them is filled with a sound absorber. Around the perforated cylindrical shell 2 is located at least one screw sound-absorbing element 3, made in the form of a cylindrical helical spring, covering the shell 2.

Винтовой звукопоглощающий элемент 3 может быть выполнен в виде полого винтового звукопоглощающего элемента, образованного внешней и внутренней винтовыми поверхностями, образующими полость.The screw sound-absorbing element 3 can be made in the form of a hollow screw sound-absorbing element formed by the external and internal helical surfaces forming a cavity.

В качестве звукопоглощающего материала штучного сферического звукопоглотителя использован пористый шумопоглощающий материала, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например типа «Acutex Т», или покрывается воздухопроницаемыми тканями или неткаными материалами, например «Лутрасилом».As the sound-absorbing material of a piece of spherical sound absorber, a porous sound-absorbing material is used, for example, foam aluminum, or cermets, or a shell rock with a porosity degree that is in the range of optimal values: 30–45%, or metal foam, or a material in the form of pressed crumbs from solid vibration dampers , for example, elastomer, polyurethane or plastic compound such as "Agate", "Anti-Vibrate", "Shvim", moreover, the size of the fractions of the crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and Porous mineral piece materials, such as pumice, vermiculite, kaolin, slag with cement or other binder or synthetic fibers, can be used, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, such as Acutex T, or coated with breathable fabrics or non-woven materials, such as Lutrasil.

В качестве звукоотражающего материала штучного сферического звукопоглотителя применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.As a sound-reflecting material of a piece spherical sound absorber, a material based on a magnesian binder with a reinforcing fiberglass or fiberglass is used.

В качестве звукопоглощающего материала штучного сферического звукопоглотителя использован полиэстер, или пористый волокнистый, или пенистый звукопоглощающий материал, который выполнен на основе базальтовых, или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочки из тонкой стеклоткани или алюминизированной лавсановой пленки, или пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷4000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов.As the sound-absorbing material of a piece spherical sound absorber, polyester or porous fibrous or foamy sound-absorbing material is used, which is made on the basis of basalt or glass fibers, or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass or aluminized lavsan film, or a porous sound-absorbing material having a bulk density of 500 ÷ 4000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 ma sow parts of one or more sintering materials and 10 ÷ 20 mass parts of binder materials.

Возможен вариант, когда вибродемпфирующие вставки (фиг. 11), расположенные в полостях базовых плит межэтажного перекрытия, выполнены в виде цилиндра 71 из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник 72, вдоль оси которого жестко закреплены по всей длине полости, демпфирующие диски 73, 74, 76, при этом крайние диски 73 и 74 закреплены «заподлицо» с цилиндром из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовой плиты, а промежуточные демпфирующие диски расположены равномерно с шагом, не превышающим внутренний диаметр цилиндра. Упругий сердечник 72, осесимметрично и коаксиально расположенный внутри цилиндра вибродемпфирующей вставки, выполнен комбинированным и состоящим из упругой части в виде стержня 77, и демпфирующей части, выполненной в виде внешней коаксиальной оболочки из вибродемпфирующего материала, например полиуретана. Демпфирующие диски, жестко закрепленные по всей длине упругого сердечника 72 вибродемпфирующей вставки, выполнены комбинированными и состоящими из упругой части в виде оппозитно закрепленных на упругом сердечнике дисков 75 из жесткого вибродемпфирующего материала, и демпфирующей части, выполненной в виде диска 78 из вибродемпфирующего материала, например полиуретана.It is possible that the vibration damping inserts (Fig. 11) located in the cavities of the base floor slabs are made in the form of a cylinder 71 of rigid vibration damping material, inside of which an elastic core 72 is axisymmetrically and coaxially located, along the axis of which are rigidly fixed along the entire length of the cavity, damping disks 73, 74, 76, while the extreme disks 73 and 74 are fixed “flush” with a cylinder of vibration-damping material, the ends of which, in turn, are “flush” with the side surfaces of the base plates, and intermediate damping disks are arranged evenly with a step not exceeding the internal diameter of the cylinder. The elastic core 72, axisymmetrically and coaxially located inside the cylinder of the vibration damping insert, is made combined and consisting of an elastic part in the form of a rod 77, and a damping part made in the form of an external coaxial shell made of vibration damping material, for example polyurethane. Damping disks, rigidly fixed along the entire length of the elastic core 72 of the vibration damping insert, are made combined and consisting of the elastic part in the form of disks oppositely mounted on the elastic core 75 of the hard vibration damping material, and a damping part made in the form of a disk 78 of vibration damping material, for example polyurethane .

Claims (3)

1. Малошумное сейсмостойкое производственное здание, содержащее каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером, основание каркаса здания выполнено с виброизоляцией железобетонной плиты, состоящей из связанных между собой железобетонных балок в основании здания, которая включает в себя по крайней мере четыре виброизолятора, устанавливаемых между металлической плитой и железобетонной балкой, расположенной в основании здания, выполненного за одно целое с по крайней мере восемью ленточными фундаментными блоками, являющимися своеобразными "ловушками", а каждая из металлических плит установлена на по крайней мере трех железобетонных столбах-упорах, а между каждыми ленточными фундаментными блоками и каждой из железобетонных балок устанавливаются песчаные подушки, а под виброизоляторами закреплены тензорезисторные датчики, контролирующие осадку виброизоляторов, при этом песчаные подушки установлены в металлических разъемных обоймах, а каждый из виброизоляторов состоит из жестко связанных между собой резиновых плит: верхней и нижней, в которых выполнены сквозные отверстия, расположенные по поверхности виброизолятора в шахматном порядке, а по форме виброизоляторы выполнены квадратными или прямоугольными, а их боковые грани выполнены в виде криволинейных поверхностей n-го порядка, обеспечивающих равночастотность системы виброизоляции в целом, при этом отверстия имеют в сечении форму, обеспечивающую равночастотность виброизолятора, конструкция пола помещения выполнена в виде плавающего пола, которая предусматривает дополнительную шумоизоляцию междуэтажных перекрытий и представляет собой слой звукоизоляционного прокладочного материала «пенотерм НПП ЛЭ», расположенного на плите перекрытия, поверх которого выполнена цементно-песчаная стяжка через металлическую сетку, а на стяжку уложена подложка из материала типа «порилекс», затем ламинат с плинтусом, а упругое основание пола выполнено из жесткого пористого вибропоглощающего материала, например эластомера или полиуретана со степенью пористости, находящейся в диапазоне оптимальных величин 30÷45%, или упругое основание пола выполнено из иглопробивных матов типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, или упругое основание пола выполнено из твердых вибродемпфирующих материалов, например пластиката, или упругое основание пола выполнено из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3, отличающееся тем, что штучный звукопоглотитель содержит звукопоглотители активного и реактивного типов, размещенные на жестком каркасе, каркас выполнен из двух частей, при этом нижняя, реактивная, часть выполнена в виде конструкции сферической формы с внутренней конгруэнтной сферической резонансной полостью, образованной жесткой сплошной сферической оболочкой, эквидистантной внешней перфорированной сферической оболочке, соединенной с верхней, активной, частью, которая выполнена в виде жесткой перфорированной цилиндрической обечайки с перфорированной крышкой и сплошным основанием, причем полость цилиндрической обечайки заполнена звукопоглощающим материалом, а соединение верхней и нижней частей звукопоглотителя выполнено посредством упругодемпфирующего элемента, позволяющего демпфировать высокочастотные колебания, при этом к перфорированной крышке перфорированной цилиндрической обечайки шарнирно закреплен элемент, при помощи которого каркас крепится к требуемому объекту, например потолку производственного помещения, а сферическая резонансная полость реактивной части каркаса жестко соединена по крайней мере одной втулкой с осевым отверстием, выполняющим функцию горловины резонатора Гельмгольца, с внешней перфорированной сферической оболочкой, а пространство между ними заполнено звукопоглотителем, при этом вокруг перфорированной цилиндрической обечайки расположен по крайней мере один винтовой звукопоглощающий элемент, выполненный по форме в виде цилиндрической винтовой пружины, охватывающей обечайку, причем винтовой звукопоглощающий элемент выполнен в виде полого винтового звукопоглощающего элемента, образованного внешней и внутренней винтовыми поверхностями, образующими полость, при этом пространство, образованное внешней и внутренней винтовыми поверхностями, заполнено звукопоглощающим материалом с плотностью, меньшей чем у винтового звукопоглощающего элемента, а перфорированные поверхности имеют следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10% ÷ 15%, а отверстия в перфорированных поверхностях могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве материала перфорированных поверхностей применены конструкционные материалы с нанесенным на их поверхности с одной или двух сторон слоем мягкого вибродемпфирующего материала, например мастики ВД-17 или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5), или из нержавеющей стали, или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм, или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм, или из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден».1. Low noise earthquake-resistant industrial building, containing the building frame with the base, bearing walls with fences in the form of floor and ceiling, which are lined with sound-absorbing structures, window and door openings, as well as piece sound absorbers, containing the frame in which the sound-absorbing material is located, and installed above noisy equipment, the basic load-bearing floor slabs are equipped in places of their attachment to the load-bearing walls of the building with a spatial vibration isolation system consisting of horizontally located vibrations insulators perceiving vertical static and dynamic loads, as well as vertically located vibration insulators perceiving horizontal static and dynamic loads, the floor in the rooms is made on an elastic base and contains a mounting plate made of concrete reinforced with vibration damping material, which is installed on the base plate of the floor with cavities through layers of vibration-damping material and waterproofing material with a gap relative to the supporting walls the production room, and the cavity of the base plate is filled with vibration damping material, such as foamed polymer, the base of the building frame is made with vibration isolation of the reinforced concrete slab consisting of interconnected reinforced concrete beams in the base of the building, which includes at least four vibration isolators installed between the metal plate and a reinforced concrete beam located at the base of a building made in one piece with at least eight strip foundation blocks is peculiar "traps", and each of the metal plates is mounted on at least three reinforced concrete pillars-stops, and sandbags are installed between each tape foundation blocks and each of the reinforced concrete beams, and strain gauge sensors are fixed under the vibration isolators, which monitor the settling of the vibration isolators, while sand cushions are installed in detachable metal clips, and each of the vibration isolators consists of rubber plates rigidly interconnected: upper and lower, in which through holes are located that are staggered on the surface of the vibration isolator, and the shape of the vibration isolators is made square or rectangular, and their side faces are made in the form of curved surfaces of the n-th order, ensuring equal frequency of the vibration isolation system as a whole, while the holes have a cross-sectional shape, ensuring equal frequency of the vibration isolator, the floor structure of the room is made in the form of a floating floor, which provides additional noise isolation of floors and It is a layer of soundproofing cushioning material “Penotherm NPP LE”, located on the floor slab, on top of which a cement-sand screed is made through a metal mesh, and a substrate made of “porilex” type material is laid on the screed, then a laminate with a plinth, and the elastic floor base is made made of rigid porous vibration-absorbing material, for example, elastomer or polyurethane with a degree of porosity in the range of optimal values 30–45%, or the elastic floor base is made of needle-punched mats type and Vibrosil based on silica or aluminoborosilicate fiber, or the elastic floor base is made of solid vibration-damping materials, such as plastic, or the elastic floor base is made of soundproof plates based on glass staple fiber of the Shumostop type with a material density of 60 ÷ 80 kg / m 3 , characterized in that the piece of sound absorber contains active and reactive sound absorbers located on a rigid frame, the frame is made of two parts, while the lower, reactive, part is made it is in the form of a spherical structure with an internal congruent spherical resonant cavity formed by a rigid continuous spherical shell, an equidistant external perforated spherical shell connected to the upper active part, which is made in the form of a rigid perforated cylindrical shell with a perforated cover and a solid base, and the cavity the cylindrical shell is filled with sound-absorbing material, and the connection of the upper and lower parts of the sound absorber is made by a damping element that allows you to damp high-frequency vibrations, while the element is pivotally fixed to the perforated cover of the perforated cylindrical shell, by which the frame is attached to the desired object, for example, the ceiling of the production room, and the spherical resonant cavity of the reactive part of the frame is rigidly connected with at least one axial bushing a hole that serves as the neck of the Helmholtz resonator, with an external perforated spherical shell, and the space between them is filled with a sound absorber, while at least one screw sound-absorbing element is arranged around the perforated cylindrical shell, made in the form of a cylindrical helical spring spanning the shell, and the screw sound-absorbing element is made in the form of a hollow screw sound-absorbing element formed by external and internal helical surfaces forming a cavity, while the space formed by the external and internal screw surfaces is filled with sound absorption material with a density lower than that of a screw sound-absorbing element, and the perforated surfaces have the following perforation parameters: hole diameter 3 ÷ 7 mm, perforation percentage 10% ÷ 15%, and holes in the perforated surfaces can be made in the form of round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes, the conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon, and as the perforation material On the indicated surfaces, structural materials are applied with a layer of soft vibration-damping material applied on their surface from one or two sides, for example, VD-17 mastic or “Gerlen-D” type material, while the ratio between the thicknesses of the material and vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5), or stainless steel, or galvanized sheet 0.7 mm thick with a polymer protective and decorative coating of the Pural type 50 microns thick, or Polyester 25 microns thick, or an aluminum sheet thick 1.0 mm and a coating thickness of 25 microns, or from solid, decorative vibration-damping materials, for example, plastic compound like Agate, Anti-Vibrate, Shvim, and as sound-absorbing material, plates made of rockwool basalt based mineral wool or mineral wool are used type URSA, or basalt wool type P-75, or glass wool lined with glass wool, and the sound-absorbing element over its entire surface is lined with an acoustically transparent material, such as fiberglass type EZ-100 or a polymer of the “seen” type. 2. Малошумное сейсмостойкое производственное здание по п. 1, отличающееся тем, что в качестве звукопоглощающего материала использован пористый шумопоглощающий материала, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например типа «Acutex Т», или покрывается воздухопроницаемыми тканями или неткаными материалами, например «Лутрасилом», а в качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом, при этом в качестве звукопоглощающего материала использован полиэстер, или пористый волокнистый, или пенистый звукопоглощающий материал, который выполнен на основе базальтовых, или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочкой из тонкой стеклоткани, или алюминизированной лавсановой пленки, или пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷4000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов.2. Low-noise earthquake-resistant industrial building according to claim 1, characterized in that a porous noise-absorbing material, such as foam aluminum, or cermet, or a shell rock with a degree of porosity in the optimal range of 30–45%, or metal foam, is used as sound-absorbing material. , or a material in the form of compressed crumb from solid vibration-damping materials, for example, elastomer, polyurethane or plastic compound such as Agate, Anti-Vibrate, Shvim, and the size of the fractions of crumbs is optimal the nominal range of values 0.3 ... 2.5 mm, and also porous mineral piece materials, for example pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers can be used, while the surface of the fibrous absorbers is treated with special porous paints, air-permeable, such as Acutex T, or covered with breathable fabrics or non-woven materials, such as Lutrasil, and a material based on a magnesia binder with ar is used as a sound-reflecting material covering glass fabric or fiberglass, while polyester, or porous fibrous, or foamy sound-absorbing material, which is made on the basis of basalt or glass fibers, or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass, or aluminized lavsan film, is used as a sound-absorbing material. porous sound-absorbing ceramic material having a bulk density of 500 ÷ 4000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2, 0 mm, 100 ÷ 200 mass parts of one or more sintering materials and 10 ÷ 20 mass parts of binder materials. 3. Малошумное сейсмостойкое производственное здание по п. 1, отличающееся тем, что конструкция пола на упругом основании содержит вибродемпфирующие вставки, расположенные в полостях базовых плит межэтажного перекрытия, выполненные в виде цилиндра из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник, вдоль оси которого жестко закреплены по всей длине полости цилиндра демпфирующие диски, при этом крайние диски закреплены «заподлицо» с цилиндром, а промежуточные демпфирующие диски расположены равномерно с шагом, не превышающим внутренний диаметр цилиндра, при этом упругий сердечник, осесимметрично и коаксиально расположенный внутри цилиндра вибродемпфирующей вставки, выполнен комбинированным и состоящим из упругой части в виде стержня и демпфирующей части, выполненной в виде внешней коаксиальной оболочки из вибродемпфирующего материала, например полиуретана, а демпфирующие диски, жестко закрепленные по всей длине упругого сердечника вибродемпфирующей вставки, выполнены комбинированными и состоящими из упругой части в виде оппозитно закрепленных на упругом сердечнике дисков из жесткого вибродемпфирующего материала и демпфирующей части, выполненной в виде диска из вибродемпфирующего материала, например полиуретана.3. Low-noise earthquake-resistant industrial building according to claim 1, characterized in that the floor structure on an elastic base contains vibration damping inserts located in the cavities of the base floor slabs, made in the form of a cylinder of rigid vibration-damping material, inside of which an elastic core is axisymmetrically and coaxially located along the axis of which damping disks are rigidly fixed along the entire length of the cavity of the cylinder, while the extreme disks are fixed "flush" with the cylinder, and the intermediate ones are damping e disks are evenly spaced with a step not exceeding the inner diameter of the cylinder, while the elastic core, axisymmetrically and coaxially located inside the cylinder of the vibration damping insert, is made combined and consisting of an elastic part in the form of a rod and a damping part made in the form of an external coaxial shell of vibration damping material , for example polyurethane, and damping disks, rigidly fixed along the entire length of the elastic core of the vibration damping insert, are made combined and consisting from the elastic part in the form of disks of a hard vibration-damping material opposite mounted on the elastic core and a damping part made in the form of a disk of vibration-damping material, for example polyurethane.
RU2016101179A 2016-01-18 2016-01-18 Low noise seismic resistance industrial building RU2611650C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016101179A RU2611650C1 (en) 2016-01-18 2016-01-18 Low noise seismic resistance industrial building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016101179A RU2611650C1 (en) 2016-01-18 2016-01-18 Low noise seismic resistance industrial building

Publications (1)

Publication Number Publication Date
RU2611650C1 true RU2611650C1 (en) 2017-02-28

Family

ID=58459215

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016101179A RU2611650C1 (en) 2016-01-18 2016-01-18 Low noise seismic resistance industrial building

Country Status (1)

Country Link
RU (1) RU2611650C1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2646117C1 (en) * 2017-04-03 2018-03-01 Олег Савельевич Кочетов Earthquake-resistant building structure
CN108657377A (en) * 2018-05-23 2018-10-16 武汉麦康德设备有限公司 Four buckets are nested shape marine pump group vibration isolation mounts
CN114810677A (en) * 2022-04-19 2022-07-29 河南远航隔音材料科技有限公司 Noise reduction room structure of coal mine ventilator and installation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1296225A1 (en) * 1985-04-01 1987-03-15 Ереванский политехнический институт им.К.Маркса Resonance low-frequency sound absorber
FR2857392A1 (en) * 2003-07-09 2005-01-14 Distrib Staff Mecanique Dsm Acoustic insulation panel, especially for ceiling, has facing layer of perforated plaster
RU2528356C1 (en) * 2013-08-19 2014-09-10 Олег Савельевич Кочетов Kochetov's sound-absorbing structure
RU2555986C2 (en) * 2013-10-09 2015-07-10 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) Low-noise earthquake-resistant manufacturing building
RU2561393C1 (en) * 2014-02-12 2015-08-27 Олег Савельевич Кочетов Kochetov(s sound absorber for lining manufacturing facilities
RU2014107099A (en) * 2014-02-26 2015-09-10 Татьяна Дмитриевна Ходакова SPHERICAL PIECE SOUND MISSILES FOR MOBILE VEHICLES

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1296225A1 (en) * 1985-04-01 1987-03-15 Ереванский политехнический институт им.К.Маркса Resonance low-frequency sound absorber
FR2857392A1 (en) * 2003-07-09 2005-01-14 Distrib Staff Mecanique Dsm Acoustic insulation panel, especially for ceiling, has facing layer of perforated plaster
RU2528356C1 (en) * 2013-08-19 2014-09-10 Олег Савельевич Кочетов Kochetov's sound-absorbing structure
RU2555986C2 (en) * 2013-10-09 2015-07-10 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) Low-noise earthquake-resistant manufacturing building
RU2561393C1 (en) * 2014-02-12 2015-08-27 Олег Савельевич Кочетов Kochetov(s sound absorber for lining manufacturing facilities
RU2014107099A (en) * 2014-02-26 2015-09-10 Татьяна Дмитриевна Ходакова SPHERICAL PIECE SOUND MISSILES FOR MOBILE VEHICLES

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2646117C1 (en) * 2017-04-03 2018-03-01 Олег Савельевич Кочетов Earthquake-resistant building structure
CN108657377A (en) * 2018-05-23 2018-10-16 武汉麦康德设备有限公司 Four buckets are nested shape marine pump group vibration isolation mounts
CN108657377B (en) * 2018-05-23 2024-01-30 武汉麦康德设备有限公司 Four-bucket overlapping type marine pump set vibration isolation base
CN114810677A (en) * 2022-04-19 2022-07-29 河南远航隔音材料科技有限公司 Noise reduction room structure of coal mine ventilator and installation method thereof

Similar Documents

Publication Publication Date Title
RU129125U1 (en) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU2425196C1 (en) Low noise shop
RU2543826C2 (en) Shop acoustic finishing
RU138068U1 (en) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU2611650C1 (en) Low noise seismic resistance industrial building
RU2544182C2 (en) Earthquake-resistant building structure
RU2610013C1 (en) Kochetov low-noise manufacturing building
RU2665720C1 (en) Low noise design for earth-quake proof industrial buildings
RU148123U1 (en) SEISMIC RESISTANT QUIET PRODUCTION BUILDING
RU2600236C1 (en) Kochetov low-noise structure for earthquake-resistant industrial buildings
RU2583436C1 (en) Low-noise earthquake-resistant manufacturing building
RU2555986C2 (en) Low-noise earthquake-resistant manufacturing building
RU2606887C1 (en) Kochetov low-noise aseismic production building
RU2573882C1 (en) Kochetov(s low-noise aseismic production building
RU2656425C2 (en) Low-noise earthquake-resistant industrial building
RU2565281C1 (en) Kochetov's shop acoustic structure
RU141328U1 (en) SEISMIC RESISTANT BUILDING CONSTRUCTION WITH NOISE SILENCING ELEMENTS
RU2582686C1 (en) Kochetov low-noise building
RU2572861C1 (en) Low-noise earthquake-resistant manufacturing building
RU2655710C2 (en) Low-noise earthquake-resistant industrial building
RU2643225C2 (en) Vibrizolated foundation of industrial building
RU2611768C1 (en) Low noise industrial building
RU2655667C2 (en) Low-noise earthquake-resistant industrial building
RU2651559C1 (en) Low-noise production building
RU2644792C1 (en) Low-noise earthquake-resistant industrial building