RU2606887C1 - Kochetov low-noise aseismic production building - Google Patents
Kochetov low-noise aseismic production building Download PDFInfo
- Publication number
- RU2606887C1 RU2606887C1 RU2016102656A RU2016102656A RU2606887C1 RU 2606887 C1 RU2606887 C1 RU 2606887C1 RU 2016102656 A RU2016102656 A RU 2016102656A RU 2016102656 A RU2016102656 A RU 2016102656A RU 2606887 C1 RU2606887 C1 RU 2606887C1
- Authority
- RU
- Russia
- Prior art keywords
- vibration
- building
- base
- frame
- sound
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 35
- 238000013016 damping Methods 0.000 claims abstract description 33
- 239000011150 reinforced concrete Substances 0.000 claims abstract description 16
- 239000011358 absorbing material Substances 0.000 claims abstract description 14
- 238000002955 isolation Methods 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 229920001971 elastomer Polymers 0.000 claims abstract description 9
- 229920000642 polymer Polymers 0.000 claims abstract description 9
- 230000003068 static effect Effects 0.000 claims abstract description 8
- 239000004567 concrete Substances 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000006096 absorbing agent Substances 0.000 claims description 6
- 239000004576 sand Substances 0.000 claims description 5
- 239000000725 suspension Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 238000004078 waterproofing Methods 0.000 claims description 4
- 239000000806 elastomer Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000012780 transparent material Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 239000012212 insulator Substances 0.000 claims 3
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000001629 suppression Effects 0.000 abstract 1
- -1 polyethylene Polymers 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 239000011490 mineral wool Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- WWYNJERNGUHSAO-XUDSTZEESA-N (+)-Norgestrel Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 WWYNJERNGUHSAO-XUDSTZEESA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Environmental & Geological Engineering (AREA)
- Electromagnetism (AREA)
- Building Environments (AREA)
Abstract
Description
Изобретение относится к промышленной акустике.The invention relates to industrial acoustics.
Наиболее близким техническим решением по технической сущности и достигаемому результату является акустическая конструкция по патенту РФ №2425196, кл. F01N 1/04 [прототип], содержащая каркас на перекрытии здания и стены со звукопоглощающей облицовкой.The closest technical solution to the technical nature and the achieved result is the acoustic design according to the patent of the Russian Federation No. 2425196, class. F01N 1/04 [prototype], comprising a frame on the ceiling of a building and a wall with sound-absorbing lining.
Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет сравнительно невысокого коэффициента вибродемпфирования межэтажного перекрытия, а также низкая сейсмостойкость здания.The disadvantage of the technical solution adopted as a prototype is the relatively low noise reduction due to the relatively low coefficient of vibration damping of the floor, as well as low seismic resistance of the building.
Технический результат - повышение эффективности шумоглушения и сейсмостойкости.The technical result is an increase in the efficiency of sound attenuation and earthquake resistance.
Это достигается тем, что в малошумном сейсмостойком производственном здании, содержащим каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером.This is achieved by the fact that in a low noise earthquake-resistant industrial building containing a building frame with a base, bearing walls with fences in the form of floor and ceiling, which are lined with sound-absorbing structures, window and door openings, as well as piece sound absorbers containing a frame in which sound-absorbing material is located , and installed above the noisy equipment, the basic load-bearing floor slabs are equipped in the places of their attachment to the load-bearing walls of the building with a spatial vibration isolation system consisting of horizons of completely located vibration isolators that accept vertical static and dynamic loads, as well as vertically located vibration isolators that take horizontal static and dynamic loads, while the floor in the rooms is made on an elastic base and contains a mounting plate made of concrete reinforced with vibration-damping material, which is installed on the base plate floors with cavities through layers of vibration damping material and waterproofing material with a gap tnositelno bearing walls industrial premise, wherein the baseplate cavity filled vibration damping material, such as foamed polymer.
На фиг. 1 изображен общий вид малошумного сейсмостойкого производственного здания, на фиг. 2 - разрез междуэтажного перекрытия здания, на фиг. 3 - конструкция подвесного потолка, на фиг. 4 - схема виброизоляции железобетонной плиты в основании здания, на фиг. 5 - общий вид виброизолятора, на фиг. 6 - разрез А-А виброизолятора, на фиг. 7 - схема вибродемпфирующей вставки в полостях базовой плиты.In FIG. 1 shows a general view of a low noise earthquake-resistant industrial building; FIG. 2 is a section through a floor of a building, in FIG. 3 - design of a false ceiling, in FIG. 4 is a diagram of vibration isolation of a reinforced concrete slab at the base of a building; FIG. 5 is a general view of the vibration isolator, in FIG. 6 is a section AA of a vibration isolator, in FIG. 7 is a diagram of a vibration damping insert in the cavities of the base plate.
Малошумное сейсмостойкое производственное здание (фиг. 1) содержит каркас здания с основанием (фиг. 4), оконные 9 и дверные 10 проемы и несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол и потолок), которые облицованы звукопоглощающими конструкциями, а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием 11.Low noise earthquake-resistant industrial building (Fig. 1) contains the building frame with the base (Fig. 4), window 9 and
Конструкция пола на упругом основании (фиг. 2) содержит установочную плиту 12, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 15 межэтажного перекрытия с полостями 16 через слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 с зазором 17 относительно несущих стен 1, 2, 3, 4 производственного здания. Чтобы обеспечить эффективную виброизоляцию установочной плиты 12 по всем направлениям слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 1, 2, 3, 4 и базовой несущей плите 15 перекрытия.The floor structure on an elastic base (Fig. 2) contains a
Возможен вариант, когда полости базовой плиты перекрытия заполнены вибродемпфирующим материалом, выполненным в виде шнековой вставки (на чертеже не показано) из упругого полимера, например полиуретана, заполненной вспененным полимером, например полиэтиленом или полипропиленом, или строительной пеной.It is possible that the cavities of the base floor slab are filled with vibration damping material made in the form of a screw insert (not shown in the drawing) made of an elastic polymer, for example polyurethane, filled with a foamed polymer, for example polyethylene or polypropylene, or construction foam.
Для повышения эффективности виброизоляции и сейсмостойкости здания базовые несущие плиты 15 перекрытия (на фиг. 2 показана плита 15 перекрытия только для одного этажа здания и с одной стороны несущих стен 1, 2, 3, 4) снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов 26 и 28, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов 27, воспринимающих горизонтальные статические и динамические нагрузки. Схема виброизоляторов, выполненных из эластомера, представлена на фиг. 5-6. Каждый из виброизоляторов 26, 27, 28 состоит из жестко связанных между собой резиновых плит: верхней 38 и нижней 39 (фиг. 5 и 6), в которых выполнены сквозные отверстия 40, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-ого порядка, обеспечивающих равночастотность системы виброизоляции в целом. Отверстия 40 имеют в сечении форму, обеспечивающую равночастотность виброизолятора.To increase the vibration isolation and earthquake resistance of the building, the basic supporting
Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием, полости 16 заполнены вибродемпфирующим материалом, например вспененным полимером, например полиэтиленом или полипропиленом, а стены 1, 2, 3, 4 облицованы звукопоглощающими конструкциями. В качестве звукопоглощающего материала звукопоглощающих конструкций используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом (на чертеже не показано), например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».To increase the efficiency of sound insulation and sound absorption in workshops located under the floor, the
В качестве звукопоглощающего материала может быть использован также жесткий пористый материал, например пеноалюминий или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%. В качестве звукопоглощающего материала может быть использован материал в виде крошки из твердых вибродемпфирующих материалов, например эластомера, или полиуретана, или пластиката, причем размер фракций крошки лежит в оптимальном интервале величин: 0,3÷2,5 мм (на чертеже не показано).As a sound-absorbing material, a rigid porous material can also be used, for example, foam aluminum or cermets, or a shell rock with a degree of porosity in the range of optimal values: 30–45%. As a sound-absorbing material, a material in the form of crumbs from solid vibration-damping materials, for example, elastomer, or polyurethane, or plastic compound can be used, moreover, the size of the fractions of the crumb lies in the optimal range of values: 0.3 ÷ 2.5 mm (not shown in the drawing).
Подвесной акустический потолок (фиг. 3) состоит из жесткого каркаса 19, выполненного по форме в виде прямоугольного параллелепипеда с размерами сторон в плане В×С, отношение которых лежит в оптимальном интервале величин В:С=1:1…2:1, подвешиваемого к потолку производственного здания с помощью подвесок 21, имеющих скобы 22 для прокладки проводов электропитания к светильникам 24, установленным в каркасе 19. Крепление каркаса к потолку осуществляется с помощью дюбель-винтов 23. К каркасу прикреплен перфорированный лист 20, на котором через слой акустического прозрачного материала 25 расположен слой звукопоглощающего материала 18. При монтаже акустического потолка должны соблюдаться оптимальные соотношения размеров: D - от точки подвеса каркаса до любой из его сторон и E - толщины слоя звукопоглощающего материала, причем отношение этих размеров должно находиться в оптимальном интервале величин: E:D=0,1…0,5. Перфорированный лист 20 имеет следующие параметры перфорации: диаметр перфорации - 3…7 мм, процент перфорации 10%…15%, причем по форме перфорация может быть выполнена в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного сечения (на чертеже показаны квадратные отверстия). В случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.Suspended acoustic ceiling (Fig. 3) consists of a
На фиг. 4 представлена схема виброизоляции железобетонной плиты, состоящей из связанных между собой железобетонных балок 29 в основании здания, которая является вариантом виброзащиты без домкратов и включает в себя, по крайней мере, четыре резиновых виброизолятора 33 (фиг. 5 и 6), устанавливаемых между металлической плитой 34 и железобетонной балкой 29, расположенной в основании 30 здания, выполненного за одно целое с, по крайней мере, восемью ленточными фундаментными блоками 31 и 32, являющимися своеобразными "ловушками", а каждая из металлических плит 34 установлена на, по крайней мере, трех железобетонных столбах-упорах 35. Между каждыми ленточными фундаментными блоками 31 и 32 и каждой из железобетонных балок 29 устанавливаются песчаные подушки 37, а под резиновыми виброизоляторами 33 закреплены тензорезисторные датчики 36, контролирующие осадку виброизоляторов 33. Песчаные подушки 37 установлены в металлических разъемных обоймах.In FIG. 4 is a diagram of the vibration isolation of a reinforced concrete slab consisting of interconnected reinforced
В процессе возведения сейсмостойкого здания опалубка железобетонной монолитной стены опирается на песчаные подушки 37, заключенные в разборную металлическую обойму. После отвердения бетона и снятия опалубки между выступами "ловушками" 31 и 32 устанавливается виброизолятор 33 в сборе. После того как бетон в балке 29 наберет достаточную прочность, металлическая обойма размыкается и песок из "подушки" извлекается, а балка 29 опирается на виброизолятор 33. В дальнейшем, по мере воздвижения здания, виброизолятор 33 сжимается. Демонтаж и замена виброизолятора 33 производятся с помощью домкратов (на чертеже не показано).During the construction of an earthquake-resistant building, the formwork of a reinforced concrete monolithic wall is based on
Каждый из виброизоляторов 33 (фиг. 5 и 6) состоит из жестко связанных между собой резиновых плит: верхней 38 и нижней 39, в которых выполнены сквозные отверстия 40, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы 33 выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-ого порядка, обеспечивающих равночастотность системы виброизоляции в целом. Отверстия 40 имеют в сечении форму, обеспечивающую равночастотность виброизолятора 33 и заполнены вибродемпфирующим материалом из упругого полимера, например полиуретана (на чертеже не показано).Each of the vibration isolators 33 (Figs. 5 and 6) consists of rubber plates rigidly interconnected: upper 38 and lower 39, in which through
Малошумное сейсмостойкое производственное здание работает следующим образом.Low noise earthquake-resistant industrial building operates as follows.
Звуковая энергия от оборудования 11, находящегося в помещении, попадает на слои звукопоглощающего материала звукопоглощающих конструкций, которыми облицованы несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол 6 и потолок 5), а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал и которые установлены над шумным оборудованием 11. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины.Sound energy from the equipment 11 located in the room falls on the layers of sound-absorbing material of sound-absorbing structures, which are lined with load-bearing
При установке виброактивного оборудования на плиту 12 происходит двухкаскадная виброзащита за счет вибродемпфирующих вкраплений в саму массу плиты 12, а также за счет слоя вибродемпфирующего материала 14, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.When installing vibroactive equipment on
Подвешивание подвесного акустического потолка осуществляют на подвесках 21, которые крепятся к потолку с помощью дюбель-винтов 23, а другим концом закреплены на каркасе 19. Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.Suspension of a suspended acoustic ceiling is carried out on
Возможен вариант (фиг. 7), когда в полостях 16 базовых плит 15 межэтажного перекрытия расположены вибродемпфирующие вставки, выполненные в виде цилиндра 41 из жесткого вибродемпфирующего материала, например пластиката типа «Агат», «Антивибрит», «Швим», внутри которого осесимметрично и коаксиально расположен упругий сердечник 42, вдоль оси которого жестко закреплены по всей длине полости демпфирующие диски 43, при этом крайние диски закреплены «заподлицо» с цилиндром 41 из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовых плит 15.A variant is possible (Fig. 7) when vibration damping inserts are arranged in the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016102656A RU2606887C1 (en) | 2016-01-27 | 2016-01-27 | Kochetov low-noise aseismic production building |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016102656A RU2606887C1 (en) | 2016-01-27 | 2016-01-27 | Kochetov low-noise aseismic production building |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2606887C1 true RU2606887C1 (en) | 2017-01-10 |
Family
ID=58452451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016102656A RU2606887C1 (en) | 2016-01-27 | 2016-01-27 | Kochetov low-noise aseismic production building |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2606887C1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2665720C1 (en) * | 2017-10-03 | 2018-09-04 | Олег Савельевич Кочетов | Low noise design for earth-quake proof industrial buildings |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5653099A (en) * | 1993-05-19 | 1997-08-05 | Heriot-Watt University | Wall panelling and floor construction (buildings) |
RU106269U1 (en) * | 2010-11-30 | 2011-07-10 | Государственное образовательное учреждение высшего профессионального образования "Вологодский государственный технический университет" (ВоГТУ) | Soundproof Panel with Vibration Damping Layers |
RU2425196C1 (en) * | 2010-08-20 | 2011-07-27 | Олег Савельевич Кочетов | Low noise shop |
KR20120007999A (en) * | 2010-07-15 | 2012-01-25 | 주식회사 건축음향연구센터 | Complex floor structure for damping and isolation of floor impact sound |
RU2014113453A (en) * | 2014-04-07 | 2015-10-20 | Олег Савельевич Кочетов | LOW SEISMIC-RESISTANT PRODUCTION BUILDING |
-
2016
- 2016-01-27 RU RU2016102656A patent/RU2606887C1/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5653099A (en) * | 1993-05-19 | 1997-08-05 | Heriot-Watt University | Wall panelling and floor construction (buildings) |
KR20120007999A (en) * | 2010-07-15 | 2012-01-25 | 주식회사 건축음향연구센터 | Complex floor structure for damping and isolation of floor impact sound |
RU2425196C1 (en) * | 2010-08-20 | 2011-07-27 | Олег Савельевич Кочетов | Low noise shop |
RU106269U1 (en) * | 2010-11-30 | 2011-07-10 | Государственное образовательное учреждение высшего профессионального образования "Вологодский государственный технический университет" (ВоГТУ) | Soundproof Panel with Vibration Damping Layers |
RU2014113453A (en) * | 2014-04-07 | 2015-10-20 | Олег Савельевич Кочетов | LOW SEISMIC-RESISTANT PRODUCTION BUILDING |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2665720C1 (en) * | 2017-10-03 | 2018-09-04 | Олег Савельевич Кочетов | Low noise design for earth-quake proof industrial buildings |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU129125U1 (en) | LOW SEISMIC-RESISTANT PRODUCTION BUILDING | |
RU138068U1 (en) | LOW SEISMIC-RESISTANT PRODUCTION BUILDING | |
RU2641335C2 (en) | Kochetov's seismic-resistant building | |
RU2544182C2 (en) | Earthquake-resistant building structure | |
RU2611650C1 (en) | Low noise seismic resistance industrial building | |
RU2606887C1 (en) | Kochetov low-noise aseismic production building | |
RU148123U1 (en) | SEISMIC RESISTANT QUIET PRODUCTION BUILDING | |
RU2573882C1 (en) | Kochetov(s low-noise aseismic production building | |
RU2583436C1 (en) | Low-noise earthquake-resistant manufacturing building | |
RU2665720C1 (en) | Low noise design for earth-quake proof industrial buildings | |
RU2600236C1 (en) | Kochetov low-noise structure for earthquake-resistant industrial buildings | |
RU2656425C2 (en) | Low-noise earthquake-resistant industrial building | |
RU2555986C2 (en) | Low-noise earthquake-resistant manufacturing building | |
RU2643225C2 (en) | Vibrizolated foundation of industrial building | |
RU2572863C1 (en) | Kochetov earthquake-proof building structure | |
RU2578220C1 (en) | Earthquake-resistant building structure | |
RU2576697C1 (en) | Low-noise earthquake-resistant manufacturing building | |
RU141328U1 (en) | SEISMIC RESISTANT BUILDING CONSTRUCTION WITH NOISE SILENCING ELEMENTS | |
RU2576258C1 (en) | Low noise seismic stable buildings | |
RU2656432C2 (en) | Kochetov low-noise aseismic production building | |
RU2544183C2 (en) | Low-noise quakeproof production building | |
RU2572861C1 (en) | Low-noise earthquake-resistant manufacturing building | |
RU141106U1 (en) | LOW SEISMIC-RESISTANT PRODUCTION BUILDING | |
RU2643217C2 (en) | Aseismic building | |
RU2582686C1 (en) | Kochetov low-noise building |