RU2641335C2 - Kochetov's seismic-resistant building - Google Patents
Kochetov's seismic-resistant building Download PDFInfo
- Publication number
- RU2641335C2 RU2641335C2 RU2014113616A RU2014113616A RU2641335C2 RU 2641335 C2 RU2641335 C2 RU 2641335C2 RU 2014113616 A RU2014113616 A RU 2014113616A RU 2014113616 A RU2014113616 A RU 2014113616A RU 2641335 C2 RU2641335 C2 RU 2641335C2
- Authority
- RU
- Russia
- Prior art keywords
- vibration
- damping
- vibration damping
- isolators
- building
- Prior art date
Links
Images
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
Изобретение относится к области строительства, а именно к реконструкции, восстановлению или возведению сейсмостойких зданий и сооружений.The invention relates to the field of construction, namely to the reconstruction, restoration or construction of earthquake-resistant buildings and structures.
Известны малошумные конструкции для производственных зданий в виде акустических облицовок и штучных звукопоглотителей, полости которых заполнены звукопоглощающим материалом [1, 2, 3, 4, 5]. В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике.Known low-noise structures for industrial buildings in the form of acoustic cladding and piece sound absorbers, the cavities of which are filled with sound-absorbing material [1, 2, 3, 4, 5]. Currently, fibrous sound absorbers are the most common in construction practice.
Недостатками известных конструкций звукопоглотителей являются их сравнительно невысокая эффективность на низких и средних частотах, а также они не отвечают возросшим требованиям, предъявляемым к дизайну помещений и сейсмической стойкости возводимых сооружений.The disadvantages of the known designs of sound absorbers are their relatively low efficiency at low and medium frequencies, and they do not meet the increased requirements for the design of the premises and the seismic resistance of the structures being constructed.
Известны малошумные сейсмостойкие производственные здания, содержащие каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием [6, 7, 8].Known low noise earthquake-resistant industrial buildings containing a building frame with a base, bearing walls with fences in the form of floor and ceiling, which are lined with sound-absorbing structures, window and door openings, as well as piece sound absorbers containing a frame in which sound-absorbing material is located, and installed above the noisy equipment [6, 7, 8].
Их недостаток - сравнительно невысокая эффективность шумоглушения на высоких частотах, из-за отсутствия в элементах конструкций схем, содержащих резонаторы Гельмгольца.Their disadvantage is the relatively low noise attenuation efficiency at high frequencies, due to the lack of circuit designs containing Helmholtz resonators in structural elements.
Известны малошумные сейсмостойкие производственные здания, содержащие базовые несущие плиты перекрытия, которые снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки [9, 10].Known low noise earthquake-resistant industrial buildings containing basic load-bearing floor slabs, which are equipped at the places of their attachment to the load-bearing walls of the building with a system of spatial vibration isolation, consisting of horizontally located vibration isolators that absorb vertical static and dynamic loads, as well as vertically located vibration isolators that accept horizontal and static and dynamic load [9, 10].
Недостатками известных конструкций зданий являются их сравнительно невысокая эффективность на низких и средних частотах, а также они не отвечают возросшим требованиям, предъявляемым к сейсмической стойкости возводимых сооружений.The disadvantages of the known building designs are their relatively low efficiency at low and medium frequencies, and they do not meet the increased requirements for the seismic resistance of structures under construction.
Наиболее близким техническим решением по технической сущности и достигаемому результату является малошумное сейсмостойкое производственное здание по патенту РФ №129125 [11] на полезную модель, основание каркаса здания которого выполнено с виброизоляцией железобетонной плиты, состоящей из связанных между собой железобетонных балок в основании здания, которая включает в себя, по крайней мере, четыре виброизолятора, устанавливаемых между металлической плитой и железобетонной балкой, расположенной в основании здания, выполненного заодно целое с, по крайней мере, восемью ленточными фундаментными блоками, являющимися своеобразными "ловушками", а каждая из металлических плит установлена на, по крайней мере, трех железобетонных столбах-упорах, а между каждыми ленточными фундаментными блоками и каждой из железобетонных балок устанавливаются песчаные подушки, а под виброизоляторами закреплены тензорезисторные датчики, контролирующие осадку виброизоляторов, при этом песчаные подушки установлены в металлических разъемных обоймах.The closest technical solution to the technical nature and the achieved result is a low noise earthquake-resistant industrial building according to RF patent No. 129125 [11] for a utility model, the base of the building frame of which is made with vibration isolation of a reinforced concrete slab consisting of interconnected reinforced concrete beams at the base of the building, which includes at least four vibration isolators installed between a metal plate and a reinforced concrete beam located at the base of a building made at the same time a bed with at least eight strip foundation blocks, which are a kind of "trap", and each of the metal plates is mounted on at least three reinforced concrete pillars, emphasis, and sandbags are installed between each strip foundation blocks and each of the reinforced concrete beams and under the vibration isolators are fixed strain gauge sensors that monitor the sediment of the vibration isolators, while the sand cushions are installed in detachable metal clips.
Недостатками этого сейсмостойкого производственного здания является сравнительно невысокая эффективность шумоподавления на низких и средних частотах, а также сравнительно невысокое демпфирование на резонансных частотах в системах виброизоляции, и как следствие - сравнительно невысокая сейсмостойкость.The disadvantages of this earthquake-resistant industrial building are the relatively low noise reduction efficiency at low and medium frequencies, as well as the relatively low damping at resonant frequencies in vibration isolation systems, and as a result, the relatively low seismic resistance.
Технический результат - повышение сейсмостойкости здания путем увеличения демпфирования в плитах межэтажного перекрытия и основании каркаса здания с виброизоляцией железобетонной плиты.EFFECT: increased seismic resistance of a building by increasing damping in floor slabs and the base of a building frame with vibration isolation of a reinforced concrete slab.
Это достигается тем, что в сейсмостойком здании, содержащем виброизолированный фундамент, горизонтальные и вертикальные несущие конструкции с системой виброизоляции, внутренние перегородки, кровлю здания, а также дверные и оконные проемы с усилением, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером, а в полостях базовой плиты межэтажного перекрытия расположены вибродемпфирующие вставки, выполненные в виде цилиндра из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник, вдоль оси которого жестко закреплены с шагом, кратном длине полости, демпфирующие диски, при этом крайние диски закреплены «заподлицо» с цилиндром из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовой плиты.This is achieved by the fact that in an earthquake-resistant building containing a vibration-insulated foundation, horizontal and vertical load-bearing structures with a vibration isolation system, internal partitions, the roof of the building, as well as door and window openings with reinforcement, basic load-bearing floor slabs are provided in places of their attachment to the load-bearing walls of the building spatial vibration isolation system, consisting of horizontally located vibration isolators, perceiving vertical static and dynamic loads, as well as vertically located x vibration isolators that accept horizontal static and dynamic loads, while the floor in the rooms is made on an elastic base and contains a mounting plate made of concrete reinforced with vibration damping material, which is installed on the base plate of the floor with cavities through layers of vibration damping material and waterproofing material with a gap with respect to bearing walls of the production room, and the cavity of the base plate is filled with vibration damping material, for example polymer, and in the cavities of the base plate of the interfloor overlap there are vibration-damping inserts made in the form of a cylinder of a rigid vibration-damping material, inside of which an elastic core is axisymmetrically and coaxially located, along the axis of which are damped disks rigidly fixed in increments of a multiple of the length of the cavity, while the extreme the disks are fixed “flush” with a cylinder of vibration-damping material, the ends of which, in turn, are “flush” with the side surfaces of the base plate.
На фиг.1 изображен общий вид сейсмостойкой конструкции здания, на фиг.2 - разрез междуэтажного перекрытия здания, на фиг.3 - схема виброизоляции цокольного этажа в основании здания, на фиг.4 - схема виброизоляции железобетонной плиты в основании здания, на фиг.5 - общий вид виброизолятора, фиг.6 - разрез А-А виброизолятора, фиг.7 - общий вид вибродемпфирующей вставки в отверстия виброизолятора, на фиг.8 - вариант вибродемпфирующей вставки в отверстия виброизолятора, фиг.9 - схема вибродемпфирующей вставки в полости базовой плиты.In Fig.1 shows a General view of the earthquake-resistant construction of the building, Fig.2 is a section of the floor of the building, Fig.3 is a diagram of the vibration isolation of the basement at the base of the building, Fig.4 is a diagram of the vibration insulation of the reinforced concrete slab at the base of the building, Fig. 5 is a general view of the vibration isolator, FIG. 6 is a section AA of the vibration isolator, FIG. 7 is a general view of the vibration damping insert into the holes of the vibration isolator, FIG. 8 is a variant of the vibration damping insert into the holes of the vibration isolator, FIG. 9 is a diagram of the vibration damping insert in the base cavity slabs.
Сейсмостойкое здание (фиг.1) содержит виброизолированный фундамент 1, горизонтальные 3 и вертикальные 2 несущие конструкции с системой виброизоляции, внутренние перегородки 4, кровлю здания 5, а также дверные 6 и оконные 7 проемы с усилением.The earthquake-resistant building (Fig. 1) contains a vibration-insulated
Конструкция пола выполнена на упругом основании (фиг.2) и содержит установочную плиту 8, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 9 межэтажного перекрытия с полостями 10 через слои вибродемпфирующего материала 11 и гидроизоляционного материала 12 с зазором 13 относительно несущих стен 2 здания. Чтобы обеспечить эффективную виброизоляцию установочной плиты 8 по всем направлениям, слои вибродемпфирующего материала 11 и гидроизоляционного материала 12 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 2 и базовой несущей плите 9 перекрытия.The floor structure is made on an elastic base (figure 2) and contains a
Возможен вариант, когда в полостях 10 базовой плиты 9 межэтажного перекрытия расположены вибродемпфирующие вставки (фиг.9), выполненные в виде цилиндра 41 из жесткого вибродемпфирующего материала, например пластиката типа «Агат», «Антивибрит», «Швим», внутри которого осесимметрично и коаксиально расположен упругий сердечник 42, вдоль оси которого жестко закреплены с шагом, кратном длине полости 10, демпфирующие диски 43, при этом крайние диски закреплены «заподлицо» с цилиндром 41 из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовой плиты 9.A variant is possible when in the
Для повышения эффективности виброизоляции и сейсмостойкости здания базовые несущие плиты 9 перекрытия (на фиг.2 показана плита 9 перекрытия только для одного этажа здания и с одной стороны несущих стен 2) снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов 14 и 15, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов 16, воспринимающих горизонтальные статические и динамические нагрузки. Схема виброизоляторов, выполненных из эластомера, представлена на фиг.5-6. Каждый из виброизоляторов 14, 15, 16 состоит из жестко связанных между собой резиновых плит: верхней 32 и нижней 33 (фиг.5 и 6), в которых выполнены сквозные отверстия 34, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-ого порядка, обеспечивающие равночастотность системы виброизоляции в целом. Отверстия 34 имеют в сечении форму, обеспечивающую равночастотность виброизолятора.To improve the vibration isolation and earthquake resistance of the building, the
Система виброизоляции фундамента 17 с цокольным этажом 18 (фиг.3) осуществляется путем установки поднимаемой части здания на виброизоляторы (фиг.5-6) с одновременной отрезкой его швами типа антисейсмических (на чертеже не показано) от соседних зданий и окружающего грунта. Для защиты от вибраций вертикального направления виброизоляторы устанавливаются в ниши стен цокольного этажа 18 на участки ленточного фундамента 19. Каждый комплект системы виброизоляции состоит из металлической плиты, 4-х виброизолятов (фиг.5 и 6), 2-х листов наждачной бумаги для исключения возможности скольжения элементов фундамента и 2-х опорных железобетонных блоков (на чертеже не показано).The system of vibration isolation of the
Для защиты здания от вибраций горизонтального направления, распространяющихся по грунту, устраивается система виброизоляции по вертикальным граням наружных стен 20 цокольного этажа 18 на уровне фундамента 17 и перекрытий 9 (фиг.2). С этой целью вокруг всего здания устраивается подпорная стенка, контрфорсы 21 которой соединяются с торцами несущих стен через виброизоляторы (фиг.5 и 6), которые устанавливаются в нишах 22 контрфорсов 21. Конструкция виброизолированного здания имеет повышенную жесткость.To protect the building from horizontal vibrations propagating through the ground, a vibration isolation system is arranged along the vertical faces of the
Цокольный этаж здания выполнен в виде пространственной рамной конструкции из монолитного железобетона с включенными в раму перекрытием и перегородками (на чертеже не показано). Такая конструкция обеспечивает повышенную жесткость здания, компенсирующую ее снижение из-за опирания на виброизоляторы. С этой же целью усилены перемычки над дверными и иными проемами (на чертеже не показано) так, чтобы жесткость перегородок не изменилась, а фундамент 17 выполнен в виде ленточной перекрестной конструкции высотой порядка 50 см, выступающей над фундаментной плитой-стяжкой.The basement of the building is made in the form of a spatial frame structure made of monolithic reinforced concrete with overlapping and partitions included in the frame (not shown in the drawing). This design provides increased rigidity of the building, compensating for its decrease due to bearing on vibration isolators. For the same purpose, jumpers are reinforced above door and other openings (not shown in the drawing) so that the stiffness of the partitions does not change, and the
На фиг.4 представлена схема виброизоляции железобетонной плиты, состоящей из связанных между собой железобетонных балок 23 в основании здания, которая является вариантом виброзащиты без домкратов и включает в себя, по крайней мере, четыре резиновых виброизолятора 24 (фиг.5 и 6), устанавливаемых между металлической плитой 25 и железобетонной балкой 23, расположенной в основании 26 здания, выполненного заодно целое с, по крайней мере, восемью ленточными фундаментными блоками 27 и 28, являющимися своеобразными "ловушками", а каждая из металлических плит 25 установлена на, по крайней мере, трех железобетонных столбах-упорах 29. Между каждыми ленточными фундаментными блоками 27 и 28 и каждой из железобетонных балок 23 устанавливаются песчаные подушки 30, а под резиновыми виброизоляторами 24 закреплены тензорезисторные датчики 31, контролирующие осадку виброизоляторов 24. Песчаные подушки 30 установлены в металлических разъемных обоймах.Figure 4 presents a diagram of the vibration isolation of a reinforced concrete slab consisting of interconnected reinforced
Каждый из виброизоляторов 24 (фиг.5 и 6) состоит из жестко связанных между собой резиновых плит: верхней 32 и нижней 33, в которых выполнены сквозные отверстия 34, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы 24 выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-ого порядка, обеспечивающие равночастотность системы виброизоляции в целом. Отверстия 34 имеют в сечении форму, обеспечивающую равночастотность виброизолятора 24. Каждый из виброизоляторов 24 снабжен вибродемпфирующими вставками (фиг.7), размещенными в отверстиях 34 каждого из виброизоляторов 24 и выполненных в виде цилиндрического демпфирующего элемента 35, к концам которого жестко присоединены плоские упругие упоры 36, а внутренняя полость 37 заполнена слоем вибродемпфирующего материала, например песком, при этом плотность вибродемпфирующего слоя меньше плотности внешней цилиндрической обечайки демпфирующего элемента.Each of the vibration isolators 24 (FIGS. 5 and 6) consists of rubber plates rigidly interconnected: upper 32 and lower 33, in which through
Возможен вариант выполнения арматурных стержней в виде набора чередующихся цилиндрических обечаек 35 и 38 (фиг.8) и трубчатых демпфирующих элементов 40, количество которых подбирается с учетом требуемого демпфирования, зависящего от уровня сейсмозащищенности объекта.A possible embodiment of reinforcing bars in the form of a set of alternating
Арматурные стержни выполнены демпфирующими, и каждый из них представляет собой коаксиально расположенные цилиндрические обечайки 35 и 38, между которыми коаксиально расположены трубчатые демпфирующие элементы 40 из вибродемпфирующего материала, к концам которых жестко присоединены плоские жесткие упоры 36, а внутренняя центральная полость 39 заполнена песком, при этом плотность слоев вибродемпфирующего материала меньше плотности коаксиально расположенных цилиндрических обечаек 35 и 38. Сейсмостойкая конструкция здания работает следующим образом.The reinforcing bars are made damping, and each of them is a coaxially arranged
В процессе возведения сейсмостойкого здания опалубка железобетонной монолитной стены опирается на песчаные подушки 30, заключенные в разборную металлическую обойму. После отвердения бетона и снятия опалубки между выступами "ловушками" 27 и 28 устанавливается виброизолятор 24 в сборе. После того как бетон в балке 23 наберет достаточную прочность, металлическая обойма размыкается и песок из "подушки" извлекается, а балка 23 опирается на виброизолятор 24. В дальнейшем, по мере воздвижения здания, виброизолятор 24 сжимается. Демонтаж и замена виброизолятора 24 производятся с помощью домкратов (на чертеже не показано).In the process of erecting an earthquake-resistant building, the formwork of a reinforced concrete monolithic wall is supported by
При монтаже системы виброзащиты здания указанным способом необходимо соблюдать следующие положения:When installing the building vibration protection system in this way, the following provisions must be observed:
- виброизоляторы 24 должны быть смонтированы уже в начальной стадии строительства, в связи с чем они должны быть заранее изготовлены и испытаны;-
- должна быть обеспечена сохранность виброизоляторов 23 и тензорезисторных датчиков 31 от воздействия неблагоприятных природных факторов в период строительства;- the
- высота песчаной подушки 39 назначается по расчету, исходя из осадки виброизоляторов 24 под нагрузкой и с течением времени.- the height of the
- для регулировки зазора между железобетонной балкой 23 и "ловушкой" на последней устанавливаются, по крайней мере, две съемные металлические плиты толщиной по 1 см.- to adjust the gap between the reinforced
Швы, отделяющие подпорную стенку от здания и здание от соседних зданий, устроены по типу антисейсмических швов (на чертеже не показано) и тщательно расчищены от строительного мусора. Предусмотрена система их защиты (на чертеже не показано) от засорения во время эксплуатации здания для исключения путей проникновения вибраций в здание.The seams separating the retaining wall from the building and the building from neighboring buildings are arranged as anti-seismic seams (not shown in the drawing) and thoroughly cleaned from construction waste. A system for their protection is provided (not shown in the drawing) from clogging during the operation of the building to exclude the penetration of vibrations into the building.
Все магистрали, трубопроводы и т.п. коммуникации, проходящие через фундамент в здание или установленное на нем оборудование, устроены с компенсаторами либо отрезаны от фундамента скользящими швами (на чертеже не показано). Места установки вентиляционного, электрического и т.п. оборудования в цокольном этаже выбраны из условия доступа к виброизоляторам (на чертеже не показано), их монтажа и демонтажа.All highways, pipelines, etc. communications passing through the foundation to the building or equipment installed on it are arranged with compensators or cut off from the foundation by sliding seams (not shown in the drawing). Installation locations for ventilation, electrical, etc. equipment in the basement selected from the conditions of access to vibration isolators (not shown in the drawing), their installation and dismantling.
Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения, и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a non-combustible sound absorber leads to sound attenuation in the high-frequency range, and due to the presence of cavities, the sound absorption surface increases, and, as a result, the sound absorption coefficient increases.
При установке виброактивного оборудования на плиту 8, происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 8, а также за счет слоя вибродемпфирующего материала 11, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например, пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.When installing vibroactive equipment on
По сравнению с конструкцией прототипа предлагаемая сейсмостойкая панель обладает следующими преимуществами: расширен диапазон гашения колебаний механических воздействий за счет комплексных конструктивных особенностей: более коротких арматурных стержней и наличия в их полостях 38, 39 вибродемпфирующего материала.Compared with the design of the prototype, the proposed earthquake-resistant panel has the following advantages: the range of damping the fluctuations of mechanical effects due to complex design features has been expanded: shorter reinforcing bars and the presence of 38, 39 vibration-damping material in their cavities.
Источники библиографииSources of Bibliography
1. Кочетов О.С., Сажин Б.С. Снижение шума и вибраций в производстве: теория, расчет, технические решения. М.: МГТУ им. А.Н. Косыгина, 2001. - 319 с. (рис.II. III. 10, стр.263).1. Kochetov O.S., Sazhin B.S. Noise and vibration reduction in production: theory, calculation, technical solutions. M .: MSTU im. A.N. Kosygina, 2001 .-- 319 p. (Fig. II. III. 10, p. 263).
2. Кочетов О.С. Текстильная виброакустика. Учебное пособие для вузов. М.: МГТУ им. А.Н. Косыгина, группа «Совьяж Бево» 2003. - 191 с. (рис.II.2, стр.176).2. Kochetov OS Textile vibroacoustics. Textbook for universities. M .: MSTU im. A.N. Kosygina, the group "Sauvage Bevo" 2003. - 191 p. (Fig. II.2, p. 176).
3. Кочетов О.С. Лабораторный практикум по производственной санитарии. Учебное пособие для вузов. М.: МГТУ им. А.Н. Косыгина, группа «Совьяж Бево» 2004. - 168 с. (рис.6.6, стр.120).3. Kochetov OS Laboratory workshop on industrial sanitation. Textbook for universities. M .: MSTU im. A.N. Kosygina, the group "Sovezh Bevo" 2004. - 168 p. (Fig.6.6, p. 120).
4. Кочетов О.С. Звукопоглощающие конструкции для снижения шума на рабочих местах производственных помещений. Журнал «Безопасность труда в промышленности», №11, 2010, стр.46-50 (рис.1; стр.48 и рис.2; стр.48).4. Kochetov O.S. Sound-absorbing structures to reduce noise in the workplace of industrial premises. The journal "Labor safety in industry", No. 11, 2010, pp. 46-50 (Fig. 1; p. 48 and Fig. 2; p. 48).
5. Кочетов О.С. Звукопоглощающая конструкция цеха // Патент на изобретение №2414565. Опубликовано 20.03.2011. Бюллетень изобретений №8.5. Kochetov O.S. Sound-absorbing construction of the workshop // Patent for invention No. 2414565. Published 03/20/2011. Bulletin of inventions No. 8.
6. Кочетов О.С. Способ акустической защиты оператора // Патент на изобретение №2431022. Опубликовано 10.10.2011. Бюллетень изобретений №28.6. Kochetov O.S. The method of acoustic protection of the operator // Patent for invention No. 2431022. Published on October 10, 2011. Bulletin of inventions No. 28.
7. Кочетов О.С., Стареева М.О. Производственное помещение с низким уровнем шума // Патент на изобретение №2425931. Опубликовано 10.08.2011. Бюллетень изобретений №22.7. Kochetov OS, Stareeva M.O. Production room with low noise // Patent for invention No. 2425931. Published on August 10th, 2011. Bulletin of inventions No. 22.
8. Дурнев Р.А., Кочетов О.С., Иванова О.Ю. Сейсмостойкое здание // Патент на полезную модель №120447. Опубликовано 20.09.2012. Бюллетень изобретений №26.8. Durnev R.A., Kochetov O.S., Ivanova O.Yu. Earthquake-resistant building // Utility Model Patent No. 120447. Published on September 20, 2012. Bulletin of inventions No. 26.
9. Дурнев Р.А., Кочетов О.С., Иванова О.Ю., Авгуцевичс А.Х. Сейсмостойкое сооружение // Патент на полезную модель №123433. Опубликовано 27.12.2012. Бюллетень изобретений №36.9. Durnev R.A., Kochetov O.S., Ivanova O.Yu., Avgutsevichs A.Kh. Earthquake-resistant construction // Utility Model Patent No. 123433. Published on December 27th, 2012. Bulletin of inventions No. 36.
10. Дурнев Р.А., Кочетов О.С., Иванова О.Ю., Авгуцевичс А.Х. Сейсмостойкая кирпичная стеновая панель // Патент на полезную модель №118331. Опубликовано 20.07.2012. Бюллетень изобретений №20.10. Durnev R.A., Kochetov O.S., Ivanova O.Yu., Avgutsevichs A.Kh. Earthquake-resistant brick wall panel // Utility Model Patent No. 118331. Published on July 20, 2012. Bulletin of inventions No. 20.
11. Дурнев Р.А., Иванова О.Ю., Кочетов О.С. Малошумное сейсмостойкое производственное здание // Патент на полезную модель №129125. Опубликовано 20.06.2013. Бюллетень изобретений №17.11. Durnev R.A., Ivanova O.Yu., Kochetov O.S. Low noise earthquake-resistant industrial building // Utility Model Patent No. 129125. Published 06/20/2013. Bulletin of inventions No. 17.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014113616A RU2641335C2 (en) | 2014-04-08 | 2014-04-08 | Kochetov's seismic-resistant building |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014113616A RU2641335C2 (en) | 2014-04-08 | 2014-04-08 | Kochetov's seismic-resistant building |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014113616A RU2014113616A (en) | 2015-10-20 |
RU2641335C2 true RU2641335C2 (en) | 2018-01-17 |
Family
ID=54326764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014113616A RU2641335C2 (en) | 2014-04-08 | 2014-04-08 | Kochetov's seismic-resistant building |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2641335C2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2639212C1 (en) * | 2017-04-03 | 2017-12-20 | Олег Савельевич Кочетов | Explosive protection device |
RU2637669C1 (en) * | 2017-04-03 | 2017-12-06 | Олег Савельевич Кочетов | Method of explosion protection of explosive objects |
RU2639214C1 (en) * | 2017-04-03 | 2017-12-20 | Олег Савельевич Кочетов | Explosive protection device for explosive objects |
RU2646117C1 (en) * | 2017-04-03 | 2018-03-01 | Олег Савельевич Кочетов | Earthquake-resistant building structure |
RU2656421C1 (en) * | 2017-04-03 | 2018-06-05 | Олег Савельевич Кочетов | Protective device for explosive objects |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5653099A (en) * | 1993-05-19 | 1997-08-05 | Heriot-Watt University | Wall panelling and floor construction (buildings) |
RU2383700C1 (en) * | 2009-01-15 | 2010-03-10 | Олег Савельевич Кочетов | Structure of floor on elastic foundation |
RU129125U1 (en) * | 2012-08-21 | 2013-06-20 | Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) | LOW SEISMIC-RESISTANT PRODUCTION BUILDING |
RU131036U1 (en) * | 2013-03-15 | 2013-08-10 | Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) | SEISMIC RESISTANCE |
-
2014
- 2014-04-08 RU RU2014113616A patent/RU2641335C2/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5653099A (en) * | 1993-05-19 | 1997-08-05 | Heriot-Watt University | Wall panelling and floor construction (buildings) |
RU2383700C1 (en) * | 2009-01-15 | 2010-03-10 | Олег Савельевич Кочетов | Structure of floor on elastic foundation |
RU129125U1 (en) * | 2012-08-21 | 2013-06-20 | Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) | LOW SEISMIC-RESISTANT PRODUCTION BUILDING |
RU131036U1 (en) * | 2013-03-15 | 2013-08-10 | Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) | SEISMIC RESISTANCE |
Also Published As
Publication number | Publication date |
---|---|
RU2014113616A (en) | 2015-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU123433U1 (en) | SEISMIC RESISTANCE | |
RU120447U1 (en) | SEISMIC RESISTANT BUILDING | |
RU131037U1 (en) | SEISMIC RESISTANCE | |
RU2641335C2 (en) | Kochetov's seismic-resistant building | |
RU2602550C1 (en) | Aseismic building | |
RU2585768C1 (en) | Earthquake-resistant building | |
RU133171U1 (en) | SEISMIC RESISTANCE | |
RU2544182C2 (en) | Earthquake-resistant building structure | |
RU2526940C1 (en) | Quakeproof building | |
RU2615183C1 (en) | Kochetov's seismic-resistant construction | |
RU2606884C1 (en) | Aseismic building | |
RU2568192C1 (en) | Earthquake resistance building | |
RU2663979C1 (en) | Seismic-resistant structure | |
RU2641334C2 (en) | Kochetov's seismic-resistant building | |
RU2658940C2 (en) | Earthquake-resistant low noise building | |
RU131038U1 (en) | SEISMIC RESISTANT BUILDING | |
RU148123U1 (en) | SEISMIC RESISTANT QUIET PRODUCTION BUILDING | |
RU2612027C1 (en) | Kochetov seismic-resistant building | |
RU131036U1 (en) | SEISMIC RESISTANCE | |
RU2651975C1 (en) | Aseismic building | |
RU2624842C2 (en) | Seismic-resistant building with brick wall panel | |
RU2656425C2 (en) | Low-noise earthquake-resistant industrial building | |
RU2606887C1 (en) | Kochetov low-noise aseismic production building | |
RU2639206C1 (en) | Seismic-resistant building | |
RU2611647C1 (en) | Seismic-resistant low noise building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HE9A | Changing address for correspondence with an applicant |