RU2612027C1 - Kochetov seismic-resistant building - Google Patents

Kochetov seismic-resistant building Download PDF

Info

Publication number
RU2612027C1
RU2612027C1 RU2016101164A RU2016101164A RU2612027C1 RU 2612027 C1 RU2612027 C1 RU 2612027C1 RU 2016101164 A RU2016101164 A RU 2016101164A RU 2016101164 A RU2016101164 A RU 2016101164A RU 2612027 C1 RU2612027 C1 RU 2612027C1
Authority
RU
Russia
Prior art keywords
vibration
elastic
base
damping
mesh
Prior art date
Application number
RU2016101164A
Other languages
Russian (ru)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2016101164A priority Critical patent/RU2612027C1/en
Application granted granted Critical
Publication of RU2612027C1 publication Critical patent/RU2612027C1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/08Vibration-dampers; Shock-absorbers with friction surfaces rectilinearly movable along each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

FIELD: construction.
SUBSTANCE: in seismic-resistant building containing the vibration-isolated foundation, the horizontal and vertical bearing structures with the vibration isolation system, the internal partitions, the building roof, as well as the door and window openings with reinforcement; the base bearing floor slabs in the points of their attachment to the bearing building walls are equipped with the spatial vibration isolation system consisting of horizontally arranged vibration isolators perceiving vertical static and dynamic loads, as well as vertically arranged vibration isolators perceiving horizontal static and dynamic loads. The floor in the premises is made on an elastic foundation and includes a mounting plate made of concrete reinforced with vibration damping material, which is mounted on the base intermediate floor slab with cavities through the layers of the vibration damping material and the waterproofing material with the gap relative to the bearing walls of an industrial premise. The base slab cavities are filled with a vibration damping material, such as foamed polymer, and each of the vibration isolators consists of the rigidly interlinked rubber plates, the upper and the lower ones, in which through openings are made, arranged on the isolator surface in the staggered order; the vibration isolators are made of a square or a rectangular shape, and their side faces are made as curved surfaces of the n-th order, ensuring the equifrequency of the vibration isolation system in general. The openings in the cross-section have the shape ensuring the vibration isolator equifrequency. Each of the vibration isolators is provided with vibration-damping inserts placed in the openings of each vibration isolator configured as a cylindrical damping member, to the ends of which the planar resilient stops are rigidly connected, and the inner cavity is filled with a layer of vibration damping material, e.g. sand. The vibration damping layer density is less than the density of the outer cylindrical shell ring of the damping element.
EFFECT: strengthening the construction of buildings or structures, reducing their vulnerability when exposed to wind loads and earthquakes, improving their seismic safety, durability and residual life.
2 cl, 10 dwg

Description

Изобретение относится к области строительства, а именно к реконструкции, восстановлению или возведению сейсмостойких зданий и сооружений.The invention relates to the field of construction, namely to the reconstruction, restoration or construction of earthquake-resistant buildings and structures.

Наиболее близким техническим решением является сейсмостойкое здание, содержащее горизонтальные и вертикальные несущие конструкции, причем в по меньшей мере одной несущей вертикальной конструкции, выполнен по крайней мере один проем, а предпочтительно несколько проемов, в каждом из которых размещена демпферная многослойная виброизолирующая опора, состоящая из верхней и нижней опорных пластин и размещенных между ними чередующихся между собой металлических и эластомерных слоев, причем упомянутые пластины жестко связаны с вертикальной конструкцией посредством соединительных элементов или усиливающих поясов, расположенных в проемах [патент РФ №2568192 - прототип].The closest technical solution is an earthquake-resistant building containing horizontal and vertical load-bearing structures, and in at least one load-bearing vertical structure, at least one aperture is made, and preferably several apertures, in each of which there is a damper multilayer vibration-isolating support, consisting of the upper and the lower support plates and the alternating metal and elastomeric layers arranged between them, said plates being rigidly connected to the vertical by means of connecting elements or reinforcing belts located in the openings [RF patent No. 2568192 - prototype].

Недостатком прототипа является сравнительно невысокая нагрузочная способность виброизоляторов при высоких уровнях нагрузки на вертикальные конструкции (высотные здания) для реконструируемых, восстанавливаемых объектов, а также вновь возводимых опасных, технически сложных и уникальных зданий и сооружений.The disadvantage of the prototype is the relatively low load capacity of vibration isolators at high levels of load on vertical structures (high-rise buildings) for reconstructed, restored objects, as well as newly constructed dangerous, technically complex and unique buildings and structures.

Технически достижимый результат - повышение нагрузочной способности виброизоляторов для усиления сейсмостойкости конструкций зданий или сооружений, снижение их уязвимости при воздействии ветровых нагрузок и землетрясений, повышение их сейсмической безопасности, долговечности и остаточного ресурса.A technically achievable result is an increase in the load capacity of vibration isolators to enhance the seismic resistance of structures of buildings or structures, reduce their vulnerability to wind loads and earthquakes, increase their seismic safety, durability and residual life.

Это достигается тем, что в сейсмостойком здании, содержащем виброизолированный фундамент, горизонтальные и вертикальные несущие конструкции с системой виброизоляции, внутренние перегородки, кровлю здания, а также дверные и оконные проемы с усилением, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером, а упругое основание пола выполнено из жесткого пористого вибропоглощающего материала, например эластомера, или полиуретана со степенью пористости, находящейся в диапазоне оптимальных величин 30÷45%.This is achieved by the fact that in an earthquake-resistant building containing a vibration-insulated foundation, horizontal and vertical load-bearing structures with a vibration isolation system, internal partitions, the roof of the building, as well as door and window openings with reinforcement, basic load-bearing floor slabs are provided in places of their attachment to the load-bearing walls of the building spatial vibration isolation system, consisting of horizontally located vibration isolators, perceiving vertical static and dynamic loads, as well as vertically located x vibration isolators that accept horizontal static and dynamic loads, while the floor in the rooms is made on an elastic base and contains a mounting plate made of concrete reinforced with vibration damping material, which is installed on the base plate of the floor with cavities through layers of vibration damping material and waterproofing material with a gap with respect to bearing walls of the production room, and the cavity of the base plate is filled with vibration damping material, for example polymer, and the elastic floor base is made of a rigid porous vibration-absorbing material, for example, elastomer, or polyurethane with a degree of porosity in the optimal range of 30–45%.

На фиг. 1 изображен общий вид сейсмостойкой конструкции здания, на фиг. 2 - разрез междуэтажного перекрытия здания, на фиг. 3 - схема виброизоляции цокольного этажа в основании здания, на фиг. 4 - схема виброизоляции железобетонной плиты в основании здания, на фиг. 5-6 - общий вид и фронтальный разрез виброизолятора, на фиг. 7 и 8 - схема варианта виброизоляторов, на фиг. 9 и 10 - схемы вариантов вибродемпфирующей вставки в полостях базовых плит.In FIG. 1 shows a general view of an earthquake-resistant building structure; FIG. 2 is a section through a floor of a building, in FIG. 3 is a diagram of the vibration isolation of the basement at the base of the building; FIG. 4 is a diagram of vibration isolation of a reinforced concrete slab at the base of a building; FIG. 5-6 are a general view and a frontal section of a vibration isolator, in FIG. 7 and 8 is a diagram of a variant of vibration isolators, in FIG. 9 and 10 are diagrams of variants of the vibration damping insert in the cavities of the base plates.

Сейсмостойкое здание (фиг. 1) содержит виброизолированный фундамент 1, горизонтальные 3 и вертикальные 2 несущие конструкции с системой виброизоляции, внутренние перегородки 4, кровлю здания 5, а также дверные 6 и оконные 7 проемы с усилением.An earthquake-resistant building (Fig. 1) contains a vibration-insulated foundation 1, horizontal 3 and vertical 2 load-bearing structures with a vibration isolation system, internal partitions 4, the roof of building 5, as well as door 6 and window 7 openings with reinforcement.

Упругое основание пола выполнено из жесткого пористого вибропоглощающего материала, например эластомера, или полиуретана со степенью пористости, находящейся в диапазоне оптимальных величин 30÷45%.The elastic base of the floor is made of a rigid porous vibration-absorbing material, for example, elastomer, or polyurethane with a degree of porosity in the optimal range of 30–45%.

Конструкция пола выполнена на упругом основании (фиг. 2) и содержит установочную плиту 8, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 9 межэтажного перекрытия с полостями 10 через слои вибродемпфирующего материала 11 и гидроизоляционного материала 12 с зазором 13 относительно несущих стен 2 здания. Чтобы обеспечить эффективную виброизоляцию установочной плиты 8 по всем направлениям слои вибродемпфирующего материала 11 и гидроизоляционного материала 12 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 2 и базовой несущей плите 9 перекрытия.The floor structure is made on an elastic foundation (Fig. 2) and contains a mounting plate 8 made of concrete reinforced with vibration damping material, which is installed on the base plate 9 of the floor with cavities 10 through layers of vibration damping material 11 and waterproofing material 12 with a gap 13 relative to the bearing walls 2 buildings. In order to ensure effective vibration isolation of the mounting plate 8 in all directions, the layers of the vibration damping material 11 and the waterproofing material 12 are made with a flange that is tightly adjacent to the supporting structures of the walls 2 and the base supporting plate 9 of the floor.

Для повышения эффективности виброизоляции и сейсмостойкости здания базовые несущие плиты 9 перекрытия (на фиг. 2 показана плита 9 перекрытия только для одного этажа здания и с одной стороны несущих стен 2) снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов 14 и 15, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов 16, воспринимающих горизонтальные статические и динамические нагрузки. Схема виброизоляторов, выполненных из эластомера представлена на фиг. 5-6. Каждый из виброизоляторов 14, 15, 16 состоит из жестко связанных между собой резиновых плит: верхней 32 и нижней 33 (фиг. 5 и 6), в которых выполнены сквозные отверстия 34, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-го порядка, обеспечивающие равночастотность системы виброизоляции в целом. Отверстия 34 имеют в сечении форму, обеспечивающую равночастотность виброизолятора.To increase the vibration isolation efficiency and earthquake resistance of the building, the basic floor slabs 9 (in Fig. 2 shows the floor slab 9 for only one floor of the building and on one side of the load-bearing walls 2) are equipped at the points of their attachment to the load-bearing walls of the building with a spatial vibration isolation system consisting of horizontally located vibration isolators 14 and 15, perceiving vertical static and dynamic loads, as well as vertically located vibration isolators 16, perceiving horizontal static and dynamically e load. A diagram of vibration isolators made of elastomer is shown in FIG. 5-6. Each of the vibration isolators 14, 15, 16 consists of rubber plates rigidly interconnected: upper 32 and lower 33 (Figs. 5 and 6), in which through holes 34 are made, located on the surface of the vibration isolator in a checkerboard pattern. The shape of the vibration isolators is made square or rectangular, and their side faces can be made in the form of curved surfaces of the n-th order, ensuring the uniform frequency of the vibration isolation system as a whole. The holes 34 have a cross-sectional shape that provides equal frequency vibration isolation.

Система виброизоляции фундамента 17 с цокольным этажом 18 (фиг. 3) осуществляется путем установки поднимаемой части здания на виброизоляторы (фиг. 5-6) с одновременной отрезкой его швами типа антисейсмических (не показано) от соседних зданий и окружающего грунта. Для защиты от вибраций вертикального направления виброизоляторы устанавливаются в ниши стен цокольного этажа 18 на участки ленточного фундамента 19. Каждый комплект системы виброизоляции состоит из металлической плиты, 4-х виброизоляторов (фиг. 5 и 6), 2-х листов наждачной бумаги для исключения возможности скольжения элементов фундамента и 2-х опорных железобетонных блоков (не показано).The system of vibration isolation of the foundation 17 with the basement 18 (Fig. 3) is carried out by installing the elevated part of the building on the vibration isolators (Fig. 5-6) while cutting it with anti-seismic seams (not shown) from neighboring buildings and surrounding soil. To protect against vertical vibrations, vibration isolators are installed in the niches of the walls of basement floor 18 on sections of the strip foundation 19. Each set of vibration isolation systems consists of a metal plate, 4 vibration isolators (Figs. 5 and 6), 2 sheets of sandpaper to eliminate the possibility slip of the foundation elements and 2 supporting reinforced concrete blocks (not shown).

Для защиты здания от вибраций горизонтального направления, распространяющихся по грунту, устраивается система виброизоляции по вертикальным граням наружных стен 20 цокольного этажа 18 на уровне фундамента 17 и перекрытий 9 (фиг. 2). С этой целью вокруг всего здания устраивается подпорная стенка, контрфорсы 21 которой соединяются с торцами несущих стен через виброизоляторы (фиг. 5 и 6), которые устанавливаются в нишах 22 контрфорсов 21. Конструкция виброизолированного здания имеет повышенную жесткость.To protect the building from horizontal vibrations propagating through the ground, a vibration isolation system is arranged along the vertical faces of the outer walls 20 of the basement floor 18 at the level of the foundation 17 and floors 9 (Fig. 2). To this end, a retaining wall is arranged around the entire building, the buttresses 21 of which are connected to the ends of the bearing walls through vibration isolators (Figs. 5 and 6), which are installed in the niches 22 of the buttresses 21. The design of the vibration-insulated building has increased rigidity.

Цокольный этаж здания выполнен в виде пространственной рамной конструкции из монолитного железобетона с включенными в раму перекрытием и перегородками (не показано). Такая конструкция обеспечивает повышенную жесткость здания, компенсирующую ее снижение из-за опирания на виброизоляторы. С этой же целью усилены перемычки над дверными и иными проемами (не показано) так, чтобы жесткость перегородок не изменилась, а фундамент 17 выполнен в виде ленточной перекрестной конструкции высотой порядка 50 см, выступающей над фундаментной плитой-стяжкой.The basement of the building is made in the form of a spatial frame structure of monolithic reinforced concrete with overlapping and partitions (not shown) included in the frame. This design provides increased rigidity of the building, compensating for its decrease due to bearing on vibration isolators. For the same purpose, jumpers over door and other openings (not shown) are reinforced so that the stiffness of the partitions does not change, and the foundation 17 is made in the form of a tape cross structure with a height of about 50 cm, protruding above the foundation slab.

На фиг. 4 представлена схема виброизоляции железобетонной плиты, состоящей из связанных между собой железобетонных балок 23 в основании здания, которая является вариантом виброзащиты без домкратов и включает в себя по крайней мере четыре сетчатых виброизолятора 24 (фиг. 5 и 6), устанавливаемых между металлической плитой 25 и железобетонной балкой 23, расположенной в основании 26 здания, выполненного заодно целое с по крайней мере восемью ленточными фундаментными блоками 27 и 28, являющимися своеобразными "ловушками", а каждая из металлических плит 25 установлена на по крайней мере трех железобетонных столбах-упорах 29. Между каждыми ленточными фундаментными блоками 27 и 28 и каждой из железобетонных балок 23 устанавливаются песчаные подушки 30, а под резиновыми виброизоляторами 24 закреплены тензорезисторные датчики 31, контролирующие осадку виброизоляторов 24. Песчаные подушки 30 установлены в металлических разъемных обоймах.In FIG. 4 is a diagram of the vibration isolation of a reinforced concrete slab consisting of interconnected reinforced concrete beams 23 at the base of the building, which is a variant of vibration protection without jacks and includes at least four mesh vibration isolators 24 (Figs. 5 and 6) installed between the metal plate 25 and reinforced concrete beam 23, located at the base 26 of the building, made at the same time with at least eight strip foundation blocks 27 and 28, which are kind of "traps", and each of the metal plates 25 mouth updated on at least three reinforced concrete pillars-stops 29. Between each strip foundation blocks 27 and 28 and each of the reinforced concrete beams 23 sand cushions 30 are installed, and strain gages 31 are mounted under the rubber vibration isolators 24, which monitor the settlement of vibration isolators 24. Sand cushions 30 are installed in metal split clips.

Каждый из виброизоляторов 24 (фиг. 5 и 6) выполнен шайбовым сетчатым и содержит основание 32 в виде пластины с крепежными отверстиями 33, сетчатый упругий элемент 38, нижней частью опирающийся на основание 32, и фиксируемый нижней шайбой 37, жестко соединенной с основанием, а верхней частью фиксируемый верхней нажимной шайбой 36, жестко соединенной с центрально расположенным поршнем 35, охватываемым с зазором соосно расположенной гильзой 34, жестко соединенной с основанием 32. Между нижним торцем поршня 35 и днищем гильзы 34 расположен эластомер, например из полиуретана.Each of the vibration isolators 24 (Fig. 5 and 6) is made of a washer mesh and contains a base 32 in the form of a plate with mounting holes 33, a mesh elastic element 38, the lower part resting on the base 32, and fixed by the lower washer 37, rigidly connected to the base, and the upper part is fixed by the upper thrust washer 36, rigidly connected to the centrally located piston 35, covered with a gap by a coaxially located sleeve 34, rigidly connected to the base 32. An elastomer is located between the lower end of the piston 35 and the bottom of the sleeve 34, for example EP made of polyurethane.

Плотность сетчатой структуры упругого сетчатого элемента находится в оптимальном интервале величин: 1,2…2,0 г/см3, причем материал проволоки упругих сетчатых элементов - сталь марки ЭИ-708, а диаметр ее находится в оптимальном интервале величин 0,09…0,15 мм. Плотность сетчатой структуры внешних слоев упругого сетчатого элемента в 1,5 раза больше плотности сетчатой структуры внутренних слоев упругого сетчатого элемента. Упругий сетчатый элемент 38 может быть выполнен комбинированным из сетчатого каркаса, залитого эластомером, например полиуретаном.The density of the mesh structure of the elastic mesh element is in the optimal range of values: 1.2 ... 2.0 g / cm 3 , and the material of the wire of the elastic mesh elements is steel EI-708, and its diameter is in the optimal range of 0.09 ... 0 , 15 mm. The density of the mesh structure of the outer layers of the elastic mesh element is 1.5 times higher than the density of the mesh structure of the inner layers of the elastic mesh element. The elastic mesh element 38 can be made combined of a mesh frame, filled with an elastomer, for example polyurethane.

При колебаниях виброизолируемого объекта (не показан), расположенного на верхней нажимной шайбе 36, упругий сетчатый элемент 38 воспринимает как вертикальные, так и горизонтальные нагрузки, ослабляя тем самым динамическое воздействие на виброизолируемый объект, т.е. обеспечивается пространственная виброзащита и защита от ударов.When vibrations of a vibroinsulated object (not shown) located on the upper pressure plate 36, the elastic mesh element 38 perceives both vertical and horizontal loads, thereby weakening the dynamic effect on the vibroisolated object, i.e. spatial vibration protection and shock protection are provided.

На фиг. 7 и 8 представлена схема варианта виброизолятора. Виброизолятор симметричный шайбовый сетчатый содержит основание 39, которое расположено в средней части виброизолятора и выполнено в виде пластины с крепежными отверстиями 40, а сетчатые упругие элементы, верхний 45 с верхней нажимной шайбой 43 и нижний 46, с нижней нажимной шайбой 48, жестко соединены с основанием 39 посредством опорных колец соответственно 44 и 47, при этом в верхнем сетчатом упругом элементе 45, в центре, осесимметрично расположен демпфер сухого трения, выполненный в виде верхней нажимной шайбы 43, жестко соединенной с центрально расположенным кольцом 42, охватываемым, соосно расположенным кольцом 41, который жестко соединен с основанием 39.In FIG. 7 and 8 show a diagram of a variant of a vibration isolator. The symmetric washer mesh vibration isolator contains a base 39, which is located in the middle part of the vibration isolator and is made in the form of a plate with mounting holes 40, and the elastic mesh elements, the upper 45 with the upper thrust washer 43 and the lower 46, with the lower thrust washer 48, are rigidly connected to the base 39 by means of support rings 44 and 47, respectively, while in the center of the upper mesh elastic element 45, a dry friction damper is arranged axisymmetrically, made in the form of an upper thrust washer 43, rigidly connected to the central located ring 42, covered, coaxially located ring 41, which is rigidly connected to the base 39.

Плотность сетчатой структуры упругого сетчатого элемента находится в оптимальном интервале величин: 1,2…2,0 г/см3, причем материал проволоки упругих сетчатых элементов - сталь марки ЭИ-708, а диаметр ее находится в оптимальном интервале величин 0,09…0,15 мм.The density of the mesh structure of the elastic mesh element is in the optimal range of values: 1.2 ... 2.0 g / cm 3 , and the material of the wire of the elastic mesh elements is steel EI-708, and its diameter is in the optimal range of 0.09 ... 0 , 15 mm.

Плотность сетчатой структуры внешних слоев упругого сетчатого элемента в 1,5 раза больше плотности сетчатой структуры внутренних слоев упругого сетчатого элемента.The density of the mesh structure of the outer layers of the elastic mesh element is 1.5 times higher than the density of the mesh structure of the inner layers of the elastic mesh element.

Упругие сетчатые элементы 45 и 46 могут быть выполнены комбинированными из сетчатого каркаса, залитого эластомером, например полиуретаном.Elastic mesh elements 45 and 46 can be made combined of a mesh frame, filled with an elastomer, for example polyurethane.

В нижнем сетчатом упругом элементе в центре осесимметрично расположен демпфер сухого трения, выполненный в виде нижней нажимной шайбы 48, жестко соединенной с центрально расположенным кольцом 49, охватываемым, соосно расположенным кольцом 40, жестко соединенным с основанием 39.In the lower mesh elastic element in the center there is an axisymmetrically located dry friction damper, made in the form of a lower pressure washer 48, rigidly connected to a centrally located ring 49, covered by a coaxially located ring 40, rigidly connected to the base 39.

Виброизолятор симметричный шайбовый сетчатый работает следующим образом.The vibration isolator symmetrical washer mesh works as follows.

При колебаниях виброизолируемого объекта (не показан), расположенного на верхней нажимной шайбе 43, упругие сетчатые элементы 45 и 46 воспринимают как вертикальные, так и горизонтальные нагрузки, ослабляя тем самым динамическое воздействие на виброизолируемый объект, т.е. обеспечивается пространственная виброзащита и защита от ударов.During vibrations of a vibroinsulated object (not shown) located on the upper pressure plate 43, the elastic mesh elements 45 and 46 perceive both vertical and horizontal loads, thereby weakening the dynamic effect on the vibroisolated object, i.e. spatial vibration protection and shock protection are provided.

Сейсмостойкая конструкция здания работает следующим образом. В процессе возведения сейсмостойкого здания опалубка железобетонной монолитной стены опирается на песчаные подушки 30, заключенные в разборную металлическую обойму.Earthquake-resistant building construction works as follows. In the process of erecting an earthquake-resistant building, the formwork of a reinforced concrete monolithic wall is supported by sand cushions 30 enclosed in a collapsible metal cage.

После отвердения бетона и снятия опалубки между выступами "ловушками" 27 и 28 устанавливается виброизолятор 24 в сборе. После того как бетон в балке 23 наберет достаточную прочность, металлическая обойма размыкается и песок из "подушки" извлекается, а балка 23 опирается на виброизолятор 24. В дальнейшем, по мере воздвижения здания виброизолятор 24 сжимается. Демонтаж и замена вибройзолятора 24 производятся с помощью домкратов (не показано).After hardening the concrete and removing the formwork between the protrusions of the "traps" 27 and 28, a vibration isolator 24 is assembled. After the concrete in the beam 23 has gained sufficient strength, the metal cage is opened and the sand is removed from the "cushion", and the beam 23 is supported by the vibration isolator 24. In the future, as the building moves, the vibration isolator 24 is compressed. The dismantling and replacement of the vibration isolator 24 is carried out using jacks (not shown).

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a non-combustible sound absorber leads to sound attenuation in the high-frequency range, and due to the presence of cavities, the sound absorption surface increases and, as a result, the sound absorption coefficient increases.

При установке виброактивного оборудования на плиту 8 происходит двухкаскадная виброзащита за счет вибродемпфирующих вкраплений в саму массу плиты 8, а также за счет слоя вибродемпфирующего материала 11, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.When installing vibroactive equipment on plate 8, two-stage vibration protection occurs due to vibration damping inclusions in the very mass of plate 8, as well as due to a layer of vibration damping material 11, which can be used as: Vibrosil needle-punched mats based on silica or aluminoborosilicate fiber, material from solid vibration-damping materials, for example plastic compound, from soundproof plates based on glass staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 .

На фиг. 9 и 10 представлены схемы вариантов вибродемпфирующей вставки в полостях базовых плит.In FIG. 9 and 10 are diagrams of options for vibration damping inserts in the cavities of the base plates.

В полостях 10 базовых плит 9 межэтажного перекрытия расположены вибродемпфирующие вставки (фиг. 9), выполненные в виде цилиндра 51 из жесткого вибродемпфирующего материала, например пластиката типа «Агат», «Антивибрит», «Швим», внутри которого осесимметрично и коаксиально расположен упругий сердечник 52, вдоль оси которого жестко закреплены по всей длине полости, демпфирующие диски 53, при этом крайние диски закреплены «заподлицо» с цилиндром 51 из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовых плит 9.In the cavities 10 of the base plates 9 of the interfloor overlap, vibration damping inserts are located (Fig. 9), made in the form of a cylinder 51 of rigid vibration damping material, for example, plastic compound such as Agate, Anti-Vibrate, Shvim, inside which an elastic core is axisymmetrically and coaxially located 52, along the axis of which the damping disks 53 are rigidly fixed along the entire length of the cavity, while the extreme disks are fixed “flush” with a cylinder 51 made of vibration damping material, the ends of which, in turn, are “flush” on the side and the surfaces of the base plate 9.

Возможен вариант, когда вибродемпфирующие вставки (фиг. 10), расположенные в полостях базовых плит межэтажного перекрытия, выполнены в виде цилиндра 51 из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник 52, вдоль оси которого жестко закреплены по всей длине полости, демпфирующие диски 53, 54, 56, при этом крайние диски 53 и 54 закреплены «заподлицо» с цилиндром из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовой плиты 9, а промежуточные демпфирующие диски расположены равномерно с шагом, не превышающим внутренний диаметр цилиндра. Упругий сердечник 52, осесимметрично и коаксиально расположенный внутри цилиндра 51 вибродемпфирующей вставки, выполнен комбинированным и состоящим из упругой части в виде стержня 57, и демпфирующей части, выполненной в виде внешней коаксиальной оболочки из вибродемпфирующего материала, например полиуретана. Демпфирующие диски, жестко закрепленные по всей длине упругого стержня 57 вибродемпфирующей вставки, выполнены комбинированными и состоящими из упругой части в виде оппозитно закрепленных на упругом сердечнике дисков 55 из жесткого вибродемпфирующего материала, и демпфирующей части, выполненной в виде диска 58 из вибродемпфирующего материала, например полиуретана.It is possible that the vibration damping inserts (Fig. 10) located in the cavities of the base floor slabs are made in the form of a cylinder 51 of rigid vibration damping material, inside of which an elastic core 52 is axisymmetrically and coaxially located, along the axis of which are rigidly fixed along the entire length of the cavity, damping disks 53, 54, 56, while the extreme disks 53 and 54 are fixed “flush” with a cylinder of vibration-damping material, the ends of which, in turn, are “flush” with the side surfaces of the base plates 9, and intermediate damping disks are evenly spaced with a step not exceeding the inner diameter of the cylinder. The elastic core 52, axisymmetrically and coaxially located inside the cylinder 51 of the vibration damping insert, is made combined and consisting of an elastic part in the form of a rod 57, and a damping part made in the form of an external coaxial shell of a vibration damping material, for example polyurethane. Damping disks, rigidly fixed along the entire length of the elastic rod 57 of the vibration damping insert, are made combined and consisting of the elastic part in the form of disks opposite 55 mounted on the elastic core of the hard vibration damping material, and a damping part made in the form of a disk 58 of vibration damping material, for example polyurethane .

Вибродемпфирующие вставки способствуют поглощению виброакустической энергии межэтажного перекрытия на средних и высоких частотах, а следовательно, снижению уровней шума в самом здании.Vibration-damping inserts contribute to the absorption of vibroacoustic energy of the floor at medium and high frequencies, and therefore, reduce noise levels in the building itself.

Claims (2)

1. Сейсмостойкое здание, содержащее виброизолированный фундамент, горизонтальные и вертикальные несущие конструкции с системой виброизоляции, внутренние перегородки, кровлю здания, а также дверные и оконные проемы с усилением, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером, упругое основание пола выполнено из жесткого пористого вибропоглощающего материала, например эластомера, или полиуретана со степенью пористости, находящейся в диапазоне оптимальных величин 30÷45%, при этом система виброизоляции фундамента с цокольным этажом выполнена с одновременной отрезкой его швами типа антисейсмических от соседних зданий и окружающего грунта, а для защиты от вибраций вертикального направления виброизоляторы устанавливаются в ниши стен цокольного этажа на участки ленточного фундамента, а каждый комплект системы виброизоляции состоит из металлической плиты, четырех виброизоляторов, двух листов наждачной бумаги для исключения возможности скольжения элементов фундамента и двух опорных железобетонных блоков, а для защиты здания от вибраций горизонтального направления, распространяющихся по грунту, устроена система виброизоляции по вертикальным граням наружных стен цокольного этажа на уровне фундамента и перекрытия, при этом вокруг всего здания устроена подпорная стенка, контрфорсы которой соединяются с торцами несущих стен через виброизоляторы, которые устанавливаются в нишах контрфорсов, причем цокольный этаж здания выполнен в виде пространственной рамной конструкции из монолитного железобетона с включенными в раму перекрытием и перегородками, а также усиленными перемычками над дверными и иными проемами при неизменной жесткости перегородок, а фундамент выполнен в виде ленточной перекрестной конструкции высотой порядка 50 см, выступающей над фундаментной плитой-стяжкой, отличающееся тем, что каждый из виброизоляторов выполнен в виде шайбового сетчатого, содержащего основание, упругие сетчатые элементы, взаимодействующие с основанием, основание расположено в средней части виброизолятора и выполнено в виде пластины с крепежными отверстиями, а сетчатые упругие элементы, верхний с верхней нажимной шайбой и нижний, с нижней нажимной шайбой, жестко соединены с основанием посредством опорных колец, при этом в верхнем сетчатом упругом элементе в центре осесимметрично расположен демпфер сухого трения, выполненный в виде верхней нажимной шайбы, жестко соединенной с центрально расположенным кольцом, охватываемым, соосно расположенным кольцом, жестко соединенным с основанием, плотность сетчатой структуры упругого сетчатого элемента находится в оптимальном интервале величин: 1,2÷2,0 г/см3, причем материал проволоки упругих сетчатых элементов - сталь марки ЭИ-708, а диаметр ее находится в оптимальном интервале величин 0,09÷0,15 мм, плотность сетчатой структуры внешних слоев упругого сетчатого элемента в 1,5 раза больше плотности сетчатой структуры внутренних слоев упругого сетчатого элемента, упругие сетчатые элементы выполнены комбинированными из сетчатого каркаса, залитого эластомером, например полиуретаном, в нижнем сетчатом упругом элементе в центре осесимметрично расположен демпфер сухого трения, выполненный в виде нижней нажимной шайбы, жестко соединенной с центрально расположенным кольцом, охватываемым соосно расположенным кольцом, жестко соединенным с основанием, при этом в полостях базовых плит межэтажного перекрытия расположены вибродемпфирующие вставки, выполненные в виде цилиндра из жесткого вибродемпфирующего материала, например пластиката типа «Агат», «Антивибрит», «Швим», внутри которого осесимметрично и коаксиально расположен упругий сердечник, вдоль оси которого жестко закреплены по всей длине полости, демпфирующие диски, при этом крайние диски закреплены «заподлицо» с цилиндром из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовых плит.1. An earthquake-resistant building containing a vibration-insulated foundation, horizontal and vertical load-bearing structures with a vibration isolation system, internal partitions, the roof of the building, as well as door and window openings with reinforcement, basic load-bearing floor slabs equipped with a spatial vibration isolation system in the places of their attachment to the load-bearing walls of the building, consisting of horizontally located vibration isolators, perceiving vertical static and dynamic loads, as well as vertically located vibration isolators, absorbing horizontal static and dynamic loads, while the floor in the rooms is made on an elastic base and contains a mounting plate made of concrete reinforced with vibration damping material, which is installed on the base floor slab with cavities through layers of vibration damping material and waterproofing material with a gap relative to the bearing walls of the production rooms, and the cavity of the base plate is filled with vibration damping material, such as foamed polymer, elastic The floor base is made of a rigid porous vibration-absorbing material, for example, elastomer, or polyurethane with a porosity degree in the range of optimal values of 30–45%, while the basement vibration isolation system with the basement is made with its seams being cut antiseismic from neighboring buildings and surrounding soil, and to protect against vertical vibrations, vibration isolators are installed in the niches of the walls of the basement on the sections of the strip foundation, and each set of vibration system The insulation consists of a metal plate, four vibration isolators, two sheets of sandpaper to exclude the possibility of sliding of the foundation elements and two supporting reinforced concrete blocks, and to protect the building from horizontal vibrations propagating along the ground, a vibration isolation system is arranged along the vertical faces of the outer walls of the basement floor at the level foundation and floors, while around the entire building a retaining wall is arranged, the buttresses of which are connected to the ends of the bearing walls through vibration isolators, a cat The others are installed in the buttresses of the buttresses, and the basement of the building is made in the form of a spatial frame structure made of monolithic reinforced concrete with overlapping and partitions included in the frame, as well as reinforced jumpers over door and other openings with constant stiffness of the partitions, and the foundation is made in the form of a tape cross structure with a height about 50 cm protruding above the base plate-screed, characterized in that each of the vibration isolators is made in the form of a mesh washer containing a base, elastic mesh elements interacting with the base, the base is located in the middle of the vibration isolator and is made in the form of a plate with mounting holes, and the elastic mesh elements, the upper with the upper thrust washer and the lower with the lower thrust washer, are rigidly connected to the base by means of support rings, when this in the upper mesh elastic element in the center of the axisymmetrically located dry friction damper, made in the form of an upper thrust washer, rigidly connected to a centrally located ring, covered clearly located ring rigidly connected to the base, the density of the mesh structure of the elastic mesh element is in the optimal range of values: 1.2 ÷ 2.0 g / cm 3 , and the material of the wire of the elastic mesh elements is steel EI-708, and its diameter is in the optimal range of values 0.09 ÷ 0.15 mm, the density of the mesh structure of the outer layers of the elastic mesh element is 1.5 times higher than the density of the mesh structure of the inner layers of the elastic mesh element, the elastic mesh elements are made of combined mesh the frame, filled with an elastomer, for example polyurethane, in the lower mesh elastic element in the center of the axisymmetrically located dry friction damper, made in the form of a lower pressure washer, rigidly connected to a centrally located ring, covered by a coaxially located ring, rigidly connected to the base, while in the cavities of the base floor slabs are vibration-damping inserts made in the form of a cylinder of hard vibration-damping material, such as plastic compound such as "Agate", "Anti-vibration", "Shv m ”, inside of which an elastic core is axisymmetrically and coaxially located, along the axis of which the cavities are rigidly fixed along the entire length of the cavity, damping disks, while the extreme disks are fixed“ flush ”with a cylinder of vibration-damping material, the ends of which, in turn, are“ flush ” with side surfaces of base plates. 2. Сейсмостойкое здание по п. 1, отличающееся тем, что вибродемпфирующие вставки, расположенные в полостях базовых плит межэтажного перекрытия, выполнены в виде цилиндра из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник, вдоль оси которого жестко закреплены по всей длине полости, демпфирующие диски, при этом крайние диски закреплены «заподлицо» с цилиндром из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовой плиты, а промежуточные демпфирующие диски расположены равномерно с шагом, не превышающим внутренний диаметр цилиндра, при этом упругий сердечник, осесимметрично и коаксиально расположенный внутри цилиндра вибродемпфирующей вставки, выполнен комбинированным и состоящим из упругой части в виде стержня и демпфирующей части, выполненной в виде внешней коаксиальной оболочки из вибродемпфирующего материала, например полиуретана, а демпфирующие диски, жестко закрепленные по всей длине упругого стержня вибродемпфирующей вставки, выполнены комбинированными и состоящими из упругой части в виде оппозитно закрепленных на упругом сердечнике дисков из жесткого вибродемпфирующего материала и демпфирующей части, выполненной в виде диска из вибродемпфирующего материала, например полиуретана.2. An earthquake-resistant building according to claim 1, characterized in that the vibration damping inserts located in the cavities of the base floor slabs are made in the form of a cylinder of rigid vibration-damping material, inside of which an elastic core is axisymmetrically and coaxially located along the axis of which are rigidly fixed along the entire length cavities, damping disks, while the extreme disks are fixed “flush” with a cylinder of vibration-damping material, the ends of which, in turn, are “flush” with the side surfaces b plate, and intermediate damping disks are evenly spaced, not exceeding the inner diameter of the cylinder, while the elastic core, axisymmetrically and coaxially located inside the cylinder of the vibration damping insert, is made combined and consisting of an elastic part in the form of a rod and a damping part made in the form of an external a coaxial shell made of vibration damping material, for example polyurethane, and damping disks rigidly fixed along the entire length of the elastic rod of the vibration damping insert, are filled with a combination of and consisting of an elastic part in the form of disks made of a hard vibration-damping material opposite to the elastic core and a damping part made in the form of a disk of a vibration-damping material, for example polyurethane.
RU2016101164A 2016-01-18 2016-01-18 Kochetov seismic-resistant building RU2612027C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016101164A RU2612027C1 (en) 2016-01-18 2016-01-18 Kochetov seismic-resistant building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016101164A RU2612027C1 (en) 2016-01-18 2016-01-18 Kochetov seismic-resistant building

Publications (1)

Publication Number Publication Date
RU2612027C1 true RU2612027C1 (en) 2017-03-01

Family

ID=58459106

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016101164A RU2612027C1 (en) 2016-01-18 2016-01-18 Kochetov seismic-resistant building

Country Status (1)

Country Link
RU (1) RU2612027C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2667925C1 (en) * 2017-10-03 2018-09-25 Олег Савельевич Кочетов Vibration damping insert for cavities of inter-floor slabs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2680585A (en) * 1950-11-03 1954-06-08 Barry Corp Vibration isolator
SU1594326A1 (en) * 1988-10-28 1990-09-23 О. С. Кочетов Low-frequency vibration insulator for looms
RU120447U1 (en) * 2012-01-27 2012-09-20 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России (Федеральный центр науки и высоких технологий) ФГБУ ВНИИ ГОЧС (ФЦ) SEISMIC RESISTANT BUILDING
RU2537941C1 (en) * 2013-09-09 2015-01-10 Олег Савельевич Кочетов Kochetov's symmetric beaded mesh vibration isolator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2680585A (en) * 1950-11-03 1954-06-08 Barry Corp Vibration isolator
SU1594326A1 (en) * 1988-10-28 1990-09-23 О. С. Кочетов Low-frequency vibration insulator for looms
RU120447U1 (en) * 2012-01-27 2012-09-20 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России (Федеральный центр науки и высоких технологий) ФГБУ ВНИИ ГОЧС (ФЦ) SEISMIC RESISTANT BUILDING
RU2537941C1 (en) * 2013-09-09 2015-01-10 Олег Савельевич Кочетов Kochetov's symmetric beaded mesh vibration isolator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2667925C1 (en) * 2017-10-03 2018-09-25 Олег Савельевич Кочетов Vibration damping insert for cavities of inter-floor slabs

Similar Documents

Publication Publication Date Title
RU120447U1 (en) SEISMIC RESISTANT BUILDING
RU123433U1 (en) SEISMIC RESISTANCE
RU131037U1 (en) SEISMIC RESISTANCE
RU2602550C1 (en) Aseismic building
RU2585768C1 (en) Earthquake-resistant building
RU2641335C2 (en) Kochetov's seismic-resistant building
RU2606884C1 (en) Aseismic building
RU2526940C1 (en) Quakeproof building
RU133171U1 (en) SEISMIC RESISTANCE
RU2615183C1 (en) Kochetov's seismic-resistant construction
RU2568192C1 (en) Earthquake resistance building
RU2663979C1 (en) Seismic-resistant structure
RU2658940C2 (en) Earthquake-resistant low noise building
RU2612027C1 (en) Kochetov seismic-resistant building
RU2641334C2 (en) Kochetov's seismic-resistant building
RU131038U1 (en) SEISMIC RESISTANT BUILDING
RU2651975C1 (en) Aseismic building
RU2624842C2 (en) Seismic-resistant building with brick wall panel
RU148123U1 (en) SEISMIC RESISTANT QUIET PRODUCTION BUILDING
RU2639206C1 (en) Seismic-resistant building
RU2649698C2 (en) Industrial aseismic building
RU2611647C1 (en) Seismic-resistant low noise building
RU2624070C2 (en) Kochetov's seismic-resistant building
RU2611646C1 (en) Kochetov seismic-resistant building
RU2606887C1 (en) Kochetov low-noise aseismic production building