RU2651559C1 - Low-noise production building - Google Patents

Low-noise production building Download PDF

Info

Publication number
RU2651559C1
RU2651559C1 RU2017120726A RU2017120726A RU2651559C1 RU 2651559 C1 RU2651559 C1 RU 2651559C1 RU 2017120726 A RU2017120726 A RU 2017120726A RU 2017120726 A RU2017120726 A RU 2017120726A RU 2651559 C1 RU2651559 C1 RU 2651559C1
Authority
RU
Russia
Prior art keywords
sound
vibration
damping
building
absorbing
Prior art date
Application number
RU2017120726A
Other languages
Russian (ru)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2017120726A priority Critical patent/RU2651559C1/en
Application granted granted Critical
Publication of RU2651559C1 publication Critical patent/RU2651559C1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/8209Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only sound absorbing devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/8404Sound-absorbing elements block-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/18Separately-laid insulating layers; Other additional insulating measures; Floating floors
    • E04F15/20Separately-laid insulating layers; Other additional insulating measures; Floating floors for sound insulation
    • E04F15/206Layered panels for sound insulation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/22Resiliently-mounted floors, e.g. sprung floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Building Environments (AREA)

Abstract

FIELD: acoustics.
SUBSTANCE: invention relates to industrial acoustics. Low-noise seismic resistant production building contains a frame of a building with a base, bearing walls with enclosures in the form of a floor and a ceiling, which are veneered with sound-absorbing structures, window and door openings, as well as single sound absorbers containing a frame, in which the sound-absorbing material is located, and being installed above the noisy equipment. Basic bearing ceiling slabs are equipped with a damping system at their attachment to the building bearing walls, consisting of horizontal vibration isolators, accepting vertical static and dynamic loads, as well as vertical vibration isolators receiving horizontal static and dynamic loads. Floor in rooms is made on elastic base and comprises a mounting plate made of reinforced vibration damping concrete material, which is installed on base plate of inter-floor slab with cavities through layers of vibration damping material and waterproofing material with a clearance relative to the production room bearing walls. Cavities of base plate are filled with vibration damping material, for example foamed polymer. Cavities of the base plate are filled with a vibration damping material made in the form of a screw insert made from an elastic polymer, for example polyurethane filled with a foamed polymer, for example polyethylene or polypropylene. Base of the building frame is made with vibration isolation of the reinforced concrete slab, which consists of interconnected reinforced concrete beams in the base of the building, which includes at least four vibration isolators installed between the metal plate and the concrete beam located at the base of the building integral with at least eight ribbon foundation blocks, which are particular "traps". Each of the metal plates is installed on at least three concrete pillars-stops. Between every strip foundation blocks and each of the reinforced-concrete beams sandy cushions are installed. Strain sensors are fixed under the vibration isolators, which control the draft of vibration isolators. Sand pads are installed in metal detachable clips. Each of the vibration isolators consists of rigidly interconnected rubber plates: the upper and lower, in which through holes are made, located on the surface of the vibration isolator in staggered order. Form of the vibration isolators is square or rectangular, and their lateral faces are made in the form of curved surfaces of the n-th order, providing an equal frequency of the vibration isolation system as a whole. Holes are cross-sectional in shape, which ensures equal frequency of the vibration isolator, and are filled with a vibration damping material made from an elastic polymer, for example polyurethane.
EFFECT: invention increases the efficiency of noise suppression and seismic resistance of a building.
1 cl, 5 dwg

Description

Изобретение относится к промышленной акустике.The invention relates to industrial acoustics.

Наиболее близким техническим решением по технической сущности и достигаемому результату является акустическая конструкция по патенту РФ №2425196, кл. F01N 1/04 (прототип), содержащая каркас на перекрытии здания и стены со звукопоглощающей облицовкой.The closest technical solution to the technical nature and the achieved result is the acoustic design according to the patent of the Russian Federation No. 2425196, class. F01N 1/04 (prototype) containing a frame on the ceiling of a building and a wall with sound-absorbing lining.

Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет сравнительно невысокого коэффициента вибродемпфирования межэтажного перекрытия, а также низкая сейсмостойкость здания.The disadvantage of the technical solution adopted as a prototype is the relatively low noise reduction due to the relatively low coefficient of vibration damping of the floor, as well as low seismic resistance of the building.

Технический результат - повышение эффективности шумоглушения и сейсмостойкости здания.The technical result is an increase in the efficiency of sound attenuation and earthquake resistance of the building.

Это достигается тем, что в малошумном производственном здании, содержащем каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен здания.This is achieved by the fact that in a low-noise industrial building containing a building frame with a base, supporting walls with fences in the form of a floor and a ceiling, which are lined with sound-absorbing structures, window and door openings, as well as piece sound absorbers containing a frame in which sound-absorbing material is located, and installed above the noisy equipment, the basic load-bearing floor slabs are equipped in the places of their attachment to the load-bearing walls of the building with a spatial vibration isolation system consisting of horizontally arranged wife vibration isolators, perceiving vertical static and dynamic loads, as well as vertically located vibration isolators, perceiving horizontal static and dynamic loads, while the floor in the rooms is made on an elastic base and contains a mounting plate made of concrete reinforced with vibration damping material, which is installed on the base plate of the interfloor overlapping cavities through layers of vibration damping material and waterproofing material with a gap relative to own who were building walls.

На фиг. 1 изображен общий вид малошумного сейсмостойкого производственного здания, на фиг. 2 - разрез междуэтажного перекрытия здания, на фиг. 3 - схема штучного сферического звукопоглотителя, на фиг. 4 - схема звукопоглощающей облицовки, на фиг. 5 - схема вибродемпфирующей вставки в полостях базовых плит.In FIG. 1 shows a general view of a low noise earthquake-resistant industrial building; FIG. 2 is a section through a floor of a building, in FIG. 3 is a diagram of a piece spherical sound absorber, FIG. 4 is a diagram of a sound-absorbing cladding; FIG. 5 is a diagram of a vibration damping insert in cavities of base plates.

Малошумное сейсмостойкое производственное здание (фиг. 1) содержит каркас здания с основанием (фиг. 4), оконные 9 и дверные 10 проемы и несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол и потолок), которые облицованы звукопоглощающими конструкциями, а также штучные звукопоглотители 7 и 8, содержащие каркас в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием 11.Low noise earthquake-resistant industrial building (Fig. 1) contains the building frame with the base (Fig. 4), window 9 and door 10 openings and load-bearing walls 1, 2, 3, 4 with fences 5, 6 (floor and ceiling), which are lined with sound-absorbing designs, as well as piece sound absorbers 7 and 8, containing the frame in which the sound-absorbing material is located, and installed above the noisy equipment 11.

Конструкция пола на упругом основании (фиг. 2) содержит установочную плиту 12, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 15 межэтажного перекрытия с полостями 16 через слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 с зазором 17 относительно несущих стен 1, 2, 3, 4 производственного здания. Чтобы обеспечить эффективную виброизоляцию установочной плиты 12 по всем направлениям, слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 1, 2, 3, 4 и базовой несущей плите 15 перекрытия. Для повышения эффективности виброизоляции и сейсмостойкости здания базовые несущие плиты 15 перекрытия (на фиг. 2 показана плита 15 перекрытия только для одного этажа здания и с одной стороны несущих стен 1, 2, 3, 4) снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов 18 и 20, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов 19, воспринимающих горизонтальные статические и динамические нагрузки.The floor structure on an elastic base (Fig. 2) contains a mounting plate 12 made of concrete reinforced with vibration damping material, which is installed on the base plate 15 of the floor with cavities 16 through layers of vibration damping material 14 and waterproofing material 13 with a gap 17 relative to the bearing walls 1, 2, 3, 4 of the industrial building. In order to ensure effective vibration isolation of the mounting plate 12 in all directions, the layers of the vibration damping material 14 and the waterproofing material 13 are made with a flange that is tightly adjacent to the supporting structures of the walls 1, 2, 3, 4 and the base supporting plate 15 of the floor. To increase the vibration isolation and earthquake resistance of the building, the basic supporting slabs 15 of the floor (Fig. 2 shows the slab 15 of the floor for only one floor of the building and on one side of the supporting walls 1, 2, 3, 4) are equipped with a system in their places of attachment to the supporting walls of the building spatial vibration isolation, consisting of horizontally located vibration isolators 18 and 20, perceiving vertical static and dynamic loads, as well as vertically located vibration isolators 19, perceiving horizontal static and dynamo cal load.

Возможен вариант, когда полости 16 базовой плиты перекрытия заполнены вибродемпфирующим материалом, выполненным в виде шнековой вставки (на чертеже не показано) из упругого полимера, например полиуретана, заполненной вспененным полимером, например полиэтиленом или полипропиленом, или строительной пеной.It is possible that the cavities 16 of the base floor slab are filled with vibration damping material made in the form of a screw insert (not shown in the drawing) made of an elastic polymer, for example polyurethane, filled with a foamed polymer, for example polyethylene or polypropylene, or construction foam.

Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием, полости 16 заполнены вибродемпфирующим материалом, например вспененным полимером, например полиэтиленом или полипропиленом, а стены 1, 2, 3, 4 облицованы звукопоглощающими конструкциями. В качестве звукопоглощающего материала звукопоглощающих конструкций используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом (на чертеже не показано), например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».To increase the efficiency of sound insulation and sound absorption in workshops located under the floor, the cavities 16 are filled with vibration damping material, for example, foamed polymer, for example polyethylene or polypropylene, and walls 1, 2, 3, 4 are lined with sound-absorbing structures. As sound-absorbing material of sound-absorbing structures, slabs made of rockwool basalt-based mineral wool or URSA-type mineral wool or P-75 basalt wool or glass-wool lining are used, and the sound-absorbing element is acoustically lined over its entire surface transparent material (not shown in the drawing), for example, fiberglass type EZ-100 or polymer type "Poviden."

В качестве звукопоглощающего материала может быть использован также жесткий пористый материал, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%. В качестве звукопоглощающего материала может быть использован материал в виде крошки из твердых вибродемпфирующих материалов, например эластомера, или полиуретана, или пластиката, причем размер фракций крошки лежит в оптимальном интервале величин: 0,3÷2,5 мм (на чертеже не показано).As a sound-absorbing material, a rigid porous material, for example, foam aluminum, or cermet, or a shell rock with a degree of porosity in the range of optimal values: 30–45%, can also be used. As a sound-absorbing material, a material in the form of crumbs from solid vibration-damping materials, for example, elastomer, or polyurethane, or plastic compound can be used, moreover, the size of the fractions of the crumb lies in the optimal range of values: 0.3 ÷ 2.5 mm (not shown in the drawing).

Штучный сферический звукопоглотитель (фиг. 3) содержит звукопоглотители активного и реактивного типов, размещенные на жестком каркасе. Каркас выполнен из двух частей, при этом нижняя, реактивная, часть 27 выполнена в виде конструкции сферической формы с внутренней конгруэнтной сферической резонансной полостью 28, образованной жесткой сплошной сферической оболочкой 26, эквидистантной внешней перфорированной сферической оболочке 24, соединенной с верхней, активной, частью 21, которая выполнена в виде жесткой перфорированной цилиндрической обечайки 22 с перфорированной крышкой и сплошным основанием, причем полость цилиндрической обечайки заполнена звукопоглощающим материалом, а соединение верхней 21 и нижней 27 частей звукопоглотителя выполнено посредством упругодемпфирующего элемента 25, позволяющего демпфировать высокочастотные колебания, при этом к перфорированной крышке перфорированной цилиндрической обечайки шарнирно закреплен элемент, при помощи которого каркас крепится к требуемому объекту, например потолку производственного помещения.Piece spherical sound absorber (Fig. 3) contains active and reactive sound absorbers located on a rigid frame. The frame is made of two parts, while the lower, reactive part 27 is made in the form of a spherical structure with an internal congruent spherical resonant cavity 28 formed by a rigid continuous spherical shell 26, an equidistant external perforated spherical shell 24 connected to the upper, active, part 21 , which is made in the form of a rigid perforated cylindrical shell 22 with a perforated lid and a solid base, and the cavity of the cylindrical shell is filled with sound-absorbing material ohm, and the compound of upper 21 and lower 27 parts of the absorber formed by elastic-damping element 25, allowing to dampen high frequency vibrations, in this case to cover the perforated perforated cylindrical shell element is hinged, by means of which the frame is attached to a desired object, such as a ceiling of industrial premises.

Сферическая резонансная полость 28 реактивной части 27 каркаса жестко соединена по крайней мере одной втулкой 29 с осевым отверстием, выполняющим функцию горловины резонатора Гельмгольца, с внешней перфорированной сферической оболочкой 24, а пространство между ними заполнено звукопоглотителем. Вокруг перфорированной цилиндрической обечайки 22 расположен по крайней мере один винтовой звукопоглощающий элемент 23, выполненный по форме в виде цилиндрической винтовой пружины, охватывающей обечайку 22.The spherical resonant cavity 28 of the reactive part 27 of the frame is rigidly connected by at least one sleeve 29 with an axial hole that serves as the neck of the Helmholtz resonator, with an external perforated spherical shell 24, and the space between them is filled with a sound absorber. Around the perforated cylindrical shell 22 is located at least one screw sound-absorbing element 23, made in the form of a cylindrical helical spring, covering the shell 22.

Винтовой звукопоглощающий элемент 23 может быть выполнен в виде полого винтового звукопоглощающего элемента, образованного внешней и внутренней винтовыми поверхностями, образующими полость, при этом пространство, образованное внешней и внутренней винтовыми поверхностями, заполнено звукопоглощающим материалом с плотностью, меньшей, чем у винтового звукопоглощающего элемента.The screw sound-absorbing element 23 can be made in the form of a hollow screw sound-absorbing element formed by the external and internal screw surfaces forming a cavity, while the space formed by the external and internal screw surfaces is filled with sound-absorbing material with a density lower than that of the screw sound-absorbing element.

Перфорированные поверхности имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, а отверстия в перфорированных поверхностях могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве материала перфорированных поверхностей применены конструкционные материалы с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5), или из нержавеющей стали, или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм, или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм, или из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим».Perforated surfaces have the following perforation parameters: the diameter of the holes is 3 ÷ 7 mm, the percentage of perforation is 10% ÷ 15%, and the holes in the perforated surfaces can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes, the maximum diameter of a circle inscribed in a polygon should be considered as a conditional diameter, and structural materials applied to their surface are used as the material of perforated surfaces on one or two sides of a layer of soft vibration-damping material, for example, VD-17 mastic, or “Gerlen-D” type material, while the ratio between the thicknesses of the material and the vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3, 5) either stainless steel or a galvanized sheet with a thickness of 0.7 mm with a polymer protective and decorative coating of the Pural type with a thickness of 50 μm, or Polyester with a thickness of 25 μm, or an aluminum sheet with a thickness of 1.0 mm and a coating thickness of 25 microns, or from solid, decorative vibration damping materials, for example, plastic compounds such as "Agate", "Anti-Vibrate", "Shvim".

В качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден».As sound absorbing material, slabs made of rockwool basalt mineral wool or URSA mineral wool or P-75 basalt wool or glass wool lined with glass wool are used as sound absorbing material, and the sound-absorbing element is lined with acoustically transparent material over its entire surface , for example, fiberglass type EZ-100 or polymer type "poviden."

В качестве звукопоглощающего материала использован пористый шумопоглощающий материала, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например, типа «Acutex Т» или покрывается воздухопроницаемыми тканями или неткаными материалами, например лутрасилом.As a sound-absorbing material, a porous sound-absorbing material is used, for example, foam aluminum, or cermets, or a shell rock with a degree of porosity in the range of optimal values: 30–45%, or metal foam, or a material in the form of pressed crumbs from solid vibration-damping materials, for example, elastomer , polyurethane, or plastic compound such as "Agate", "Anti-Vibrate", "Shvim", and the size of the fractions of the crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and porous minerals can also be used piece materials, such as pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, for example, such as Acutex T or coated with breathable fabrics or non-woven materials, for example lutrasilom.

Возможны варианты, когда в качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом;Variants are possible when a material based on a magnesian binder with a reinforcing fiberglass or fiberglass is used as a sound-reflecting material;

в качестве звукопоглощающего материала использован полиэстер;polyester is used as a sound-absorbing material;

в качестве звукопоглощающего материала использован пористый волокнистый или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочки из тонкой стеклоткани или алюминизированной лавсановой пленки;as a sound-absorbing material, a porous fibrous or foamy sound-absorbing material is used, which is made on the basis of basalt or glass fibers or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass or aluminized lavsan film;

в качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов.as a sound-absorbing material, a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 mass parts of one or more sintering materials and 10 ÷ 20 mass parts of binder materials.

Штучный сферический звукопоглотитель работает следующим образом.Piece spherical sound absorber works as follows.

Звуковые волны, распространяясь на промышленном или транспортном объектах, взаимодействуют со звукопоглощающим материалом, расположенным в полости, образованной жесткой сплошной сферической оболочкой 26, эквидистантной внешней перфорированной сферической оболочке 24, соединенной с верхней, активной, частью 21, а также в перфорированной цилиндрической обечайке 22 и винтовом звукопоглощающим элементе 23 верхней 21 части, подавляющим шумы на низких, средних и высоких частотах соответственно.Sound waves propagating on an industrial or transport facility interact with a sound-absorbing material located in a cavity formed by a rigid continuous spherical shell 26, an equidistant external perforated spherical shell 24 connected to the upper, active, part 21, as well as in the perforated cylindrical shell 22 and a screw sound-absorbing element 23 of the upper 21 part, suppressing noise at low, medium and high frequencies, respectively.

Соединение верхней 21 и нижней 27 частей каркаса посредством упругодемпфирующего элемента 25 позволяет демпфировать высокочастотные колебания, которые могут излучаться жестким каркасом, что позволяет его использовать для снижения шума на транспортных объектах. Звукопоглощение на средних и высоких частотах происходит за счет акустического эффекта, построенного по принципу резонатора Гельмгольца, образованного воздушной сферической полостью 28 и горловиной резонатора 29, диаметр которой для гашения шума в заданной полосе частот, подбирают в требуемом звуковом диапазоне частот, как правило так: большие объемы для подавления шума в низкочастотном диапазоне, а малые - в области средних и высоких частот. Взаимодействие звуковых волн с винтовым звукопоглощающим элементом 23 приводит к шумоглушению в высокочастотном диапазоне, а выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.The connection of the upper 21 and lower 27 parts of the frame by means of an elastic damping element 25 allows you to damp high-frequency vibrations that can be emitted by a rigid frame, which allows it to be used to reduce noise on transport objects. Sound absorption at medium and high frequencies occurs due to the acoustic effect built on the principle of the Helmholtz resonator, formed by the air spherical cavity 28 and the neck of the resonator 29, the diameter of which is used to suppress noise in a given frequency band, as a rule: large volumes for noise suppression in the low-frequency range, and small - in the medium and high frequencies. The interaction of sound waves with a screw sound-absorbing element 23 leads to noise attenuation in the high-frequency range, and the implementation of a sound absorber from non-combustible materials makes the design fireproof.

Звукопоглощающая облицовка (фиг. 4) выполнена в виде жесткой стенки 30 и перфорированной стенки 33, между которыми расположен двухслойный комбинированный звукопоглощающий элемент, причем слой 31, прилегающий к жесткой стенке 30, выполнен звукопоглощающим, а прилегающий к перфорированной стенке слой 32, выполнен из звукоотражающего материала сложного профиля с перфорацией (на чертеже не показано), состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны. Перфорированная стенка 33 имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности. При этом звукопоглощающий слой 31 помещен в акустически прозрачный материал, например стеклоткань типа ЭЗ-100, или полимер типа «повиден», или нетканый материал, например лутрасил.The sound-absorbing lining (Fig. 4) is made in the form of a rigid wall 30 and a perforated wall 33, between which there is a two-layer combined sound-absorbing element, the layer 31 adjacent to the rigid wall 30 is made sound-absorbing, and the layer 32 adjacent to the perforated wall is made of sound-reflecting a material of a complex profile with perforation (not shown in the drawing), consisting of uniformly distributed hollow tetrahedra, allowing reflecting sound waves incident in all directions. The perforated wall 33 has the following perforation parameters: diameter of the holes 3 ÷ 7 mm, the percentage of perforation 10% ÷ 15%, and the shape of the holes can be made in the form of holes of a round, triangular, square, rectangular or diamond-shaped profile, while in the case of non-circular holes as the conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon. At the same time, the sound-absorbing layer 31 is placed in an acoustically transparent material, for example, fiberglass type EZ-100, or a “visible” polymer, or non-woven material, for example lutrasil.

Каждая из стенок 30 и 33 может быть выполнена из конструкционных материалов с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).Each of the walls 30 and 33 can be made of structural materials with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material applied to one or two sides of the material, and the ratio between the thicknesses of the material and vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).

Каждая из стенок 30 и 33 может быть выполнена из нержавеющей стали, или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.Each of the walls 30 and 33 can be made of stainless steel, or a galvanized sheet 0.7 mm thick with a polymer protective and decorative coating of the Pural type 50 microns thick or Polyester 25 microns thick, or an aluminum sheet 1.0 mm thick and a coating thickness of 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

Каждая из стенок 30 и 33 может быть выполнена из твердых декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим».Each of the walls 30 and 33 can be made of solid decorative vibration damping materials, such as plastic compounds such as "Agate", "Anti-Vibrate", "Shvim".

В качестве материала звукоотражающего слоя 32 может быть применен материал на основе алюминийсодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия, или применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As the material of the sound-reflecting layer 32, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, the flexural strength in the range of 10 ... 20 MPa, for example aluminum foam, or applied on the base plate soundproof glass staple fibers "Shumostop" type material with a density of 60 ÷ 80 kg / m 3.

В качестве звукопоглощающего материала слоя 31 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Причем звукопоглощающий материал по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т) или покрывается воздухопроницаемыми тканями или неткаными материалами, например лутрасилом.As sound-absorbing material of layer 31, rockwool-type mineral wool or URSA-type mineral wool, or P-75-type basalt wool or glass wool lined with glass wool, or foamed polymer, such as polyethylene or polypropylene can be used. Moreover, the sound-absorbing material is lined with an acoustically transparent material over its entire surface, for example, EZ-100 fiberglass or a “visible” polymer, or the surface of the fibrous sound absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T) or coated with breathable fabrics or non-woven materials, for example lutrasilom.

Кроме того, в качестве звукопоглощающего материала слоя 31 может быть использован пористый шумопоглощающий материала, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например типа Acutex Т, или покрывается воздухопроницаемыми тканями или неткаными материалами, например лутрасилом.In addition, as the sound-absorbing material of the layer 31, a porous sound-absorbing material, for example, foam aluminum, or cermets, or a shell rock with a degree of porosity in the range of optimal values: 30–45%, or metal foam, or material in the form of crushed chips can be used from solid vibration-damping materials, for example, elastomer, polyurethane, or plastic compound such as “Agate”, “Anti-Vibrate”, “Shvim”, moreover, the size of the fractions of the crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and there may also be Porous mineral piece materials are used, for example pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, such as Acutex T, or covered with breathable fabrics or non-woven materials, for example lutrasilom.

Для снижения или коррекции времени реверберации помещений в его отделке применяют звукопоглощающие материалы и конструкции (звукопоглотители).To reduce or correct the reverberation time of premises, sound-absorbing materials and structures (sound absorbers) are used in its decoration.

Пористые звукопоглотители изготавливают в виде плит, которые крепятся к ограждающим поверхностям непосредственно или на относе, из легких и пористых минеральных штучных материалов - пемзы, вермикулита, каолина, шлаков и т.п.с цементом или другим вяжущим. Такие материалы достаточно прочны и могут быть использованы для снижения шума в коридорах, фойе, лестничных маршах общественных и промышленных зданий.Porous sound absorbers are made in the form of plates that are attached to the enclosing surfaces directly or on the basis of light and porous mineral piece materials - pumice, vermiculite, kaolin, slag, etc. with cement or other binder. Such materials are strong enough and can be used to reduce noise in corridors, foyers, staircases of public and industrial buildings.

Сырьем для их производства служат древесные волокна, минеральная вата, стеклянная вата, синтетические волокна. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т), или покрывается воздухопроницаемыми тканями или неткаными материалами, например лутрасилом.The raw materials for their production are wood fibers, mineral wool, glass wool, synthetic fibers. The surface of the fibrous absorbers is treated with special porous air-permeable paints (for example, Acutex T), or covered with breathable fabrics or non-woven materials, such as lutrasil.

В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике. Они не только оказались наиболее эффективными с акустической точки зрения в широком частотном диапазоне, но и отвечают возросшим требованиям, предъявляемым к дизайну помещений.Currently, fibrous sound absorbers are the most common in construction practice. They not only proved to be the most effective from an acoustic point of view in a wide frequency range, but also meet the increased requirements for room design.

В качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.As a sound-reflecting material, a material based on a magnesian binder with a reinforcing fiberglass or fiberglass was used.

В качестве звукопоглощающего материала использован полиэстер.Polyester is used as a sound-absorbing material.

В качестве звукопоглощающего материала использован пористый волокнистый или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочкой из тонкой стеклоткани или алюминизированной лавсановой пленки.As a sound-absorbing material, a porous fibrous or foamy sound-absorbing material is used, which is made on the basis of basalt or glass fibers, or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass or aluminized lavsan film.

В качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов. В процессе спекания частицы перлита в точках соприкосновения образуют смежные поры. Этот материал обладает хорошей звукопоглощающей способностью в широком диапазоне частот, но имеет высокую плотность, связанную с содержанием большого количества спекающих материалов.As a sound-absorbing material, a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 mass parts of one or more sintering materials and 10 ÷ 20 mass parts of binder materials. During sintering, perlite particles at adjacent points form adjacent pores. This material has good sound absorption in a wide frequency range, but has a high density associated with the content of a large number of sintering materials.

Звукопоглощающая облицовка работает следующим образом.Sound-absorbing lining works as follows.

Звуковая энергия от оборудования, находящегося в помещении, или другого излучающего интенсивный шум объекта, пройдя через перфорированную стенку 33, попадает на слой 32 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а часть звуковой энергии проходит через слой 32 из звукоотражающего материала и взаимодействует со слоем 31 из звукопоглощающего материала, где происходит окончательное рассеивание звуковой энергии. В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0. Выполнение перфорации на звукоотражающим слое 32 способствует более эффективному шумоглушению на средних частотах, так как часть звуковых волн будет проходить через перфорацию 33 и рассеиваться на слое 31 из звукопоглощающего материала.Sound energy from equipment located in the room, or other object emitting intense noise, passing through the perforated wall 33, enters the layer 32 of the sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedrons, allowing reflecting sound waves incident in all directions, and part sound energy passes through a layer 32 of sound-reflecting material and interacts with a layer 31 of sound-absorbing material, where the final dissipation of sound energy occurs gies. In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of the sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the excitation frequency against the wall of the neck itself, which has the form branched network of pore sound absorbers. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0. Performing perforation on the sound-reflecting layer 32 contributes to a more efficient sound attenuation at medium frequencies, as part of the sound waves will pass through the perforation 33 and scatter on the layer 31 of sound-absorbing material.

Малошумное сейсмостойкое производственное здание работает следующим образом.Low noise earthquake-resistant industrial building operates as follows.

Звуковая энергия от оборудования 11, находящегося в помещении, попадает на слои звукопоглощающего материала звукопоглощающих конструкций, которыми облицованы несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол 6 и потолок 5), а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал, и которые установлены над шумным оборудованием 11. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Коэффициент перфорации перфорированной стенки принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрена стеклоткань, например, типа ЭЗ-100, расположенная между звукопоглотителем и перфорированной стенкой.Sound energy from the equipment 11 located in the room falls on the layers of sound-absorbing material of sound-absorbing structures, which are lined with load-bearing walls 1, 2, 3, 4 with fences 5, 6 (floor 6 and ceiling 5), as well as piece sound absorbers 7 and 8, containing a frame in which sound-absorbing material is located, and which are installed above noisy equipment 11. The transition of sound energy into heat (dissipation, energy dissipation) occurs in the pores of the sound absorber, which are a model of Helmholtz resonators, where and energies occur due to friction oscillating with the frequency of excitation of the mass of air located in the neck of the resonator against the walls of the neck itself, which has the form of a branched network of pores of a sound absorber. The perforation coefficient of the perforated wall is taken to be equal to or more than 0.25. To prevent the eruption of a soft sound absorber, a fiberglass fabric, for example, of the EZ-100 type, is located between the sound absorber and the perforated wall.

Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.Sound waves propagating in the production room interact with cavities filled with sound absorber.

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a non-combustible sound absorber leads to sound attenuation in the high-frequency range, and due to the presence of cavities, the sound absorption surface increases and, as a result, the sound absorption coefficient increases.

При установке виброактивного оборудования на плиту 12 происходит двухкаскадная виброзащита за счет вибродемпфирующих вкраплений в саму массу плиты 12, а также за счет слоя вибродемпфирующего материала 14, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.When installing vibroactive equipment on plate 12, two-stage vibration protection occurs due to vibration damping inclusions in the mass of plate 12 itself, as well as due to a layer of vibration damping material 14, which can be used as: Vibrosil needle-punched mats based on silica or aluminoborosilicate fiber, material from solid vibration-damping materials, for example plastic compound, from soundproof plates based on glass staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 .

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a non-combustible sound absorber leads to sound attenuation in the high-frequency range, and due to the presence of cavities, the sound absorption surface increases and, as a result, the sound absorption coefficient increases.

Вибродемпфирующие вставки (фиг. 5), расположенные в полостях базовых плит межэтажного перекрытия, выполнены в виде цилиндра 34 из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник 35, вдоль оси которого жестко закреплены по всей длине полости демпфирующие диски 36, 37, 39, при этом крайние диски 36 и 37 закреплены заподлицо с цилиндром из вибродемпфирующего материала, торцы которого, в свою очередь, расположены заподлицо с боковыми поверхностями базовой плиты, а промежуточные демпфирующие диски расположены равномерно с шагом, не превышающим внутренний диаметр цилиндра. Упругий сердечник 35, осесимметрично и коаксиально расположенный внутри цилиндра вибродемпфирующей вставки, выполнен комбинированным и состоящим из упругой части в виде стержня 40, и демпфирующей части, выполненной в виде внешней коаксиальной оболочки из вибродемпфирующего материала, например полиуретана. Демпфирующие диски, жестко закрепленные по всей длине упругого сердечника 35 вибродемпфирующей вставки, выполнены комбинированными и состоящими из упругой части в виде оппозитно закрепленных на упругом сердечнике дисков 38 из жесткого вибродемпфирующего материала, и демпфирующей части, выполненной в виде диска 41 из вибродемпфирующего материала, например полиуретана.Vibration damping inserts (Fig. 5) located in the cavities of the base floor slabs are made in the form of a cylinder 34 of rigid vibration damping material, inside of which an elastic core 35 is axisymmetrically and coaxially located, along the axis of which damping disks 36, 37 are rigidly fixed along the entire length of the cavity 39, while the extreme disks 36 and 37 are fixed flush with the cylinder of vibration damping material, the ends of which, in turn, are flush with the side surfaces of the base plate, and the intermediate dampers The rims are evenly spaced in increments not exceeding the inner diameter of the cylinder. The elastic core 35, axisymmetrically and coaxially located inside the cylinder of the vibration damping insert, is made combined and consisting of an elastic part in the form of a rod 40, and a damping part made in the form of an external coaxial shell of a vibration damping material, for example polyurethane. Damping disks, rigidly fixed along the entire length of the elastic core 35 of the vibration damping insert, are made combined and consisting of the elastic part in the form of disks oppositely mounted on the elastic core 38 of the hard vibration damping material, and a damping part made in the form of a disk 41 of a vibration damping material, for example polyurethane .

Claims (1)

Малошумное производственное здание, содержащее каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, конструкция пола выполнена на упругом основании и содержит вибродемпфирующие вставки, расположенные в полостях базовых плит межэтажного перекрытия, выполнены в виде цилиндра из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник, вдоль оси которого жестко закреплены по всей длине полости цилиндра демпфирующие диски, при этом крайние диски закреплены заподлицо с цилиндром, а промежуточные демпфирующие диски расположены равномерно с шагом, не превышающим внутренний диаметр цилиндра, при этом упругий сердечник, осесимметрично и коаксиально расположенный внутри цилиндра вибродемпфирующей вставки, выполнен комбинированным и состоящим из упругой части в виде стержня и демпфирующей части, выполненной в виде внешней коаксиальной оболочки из вибродемпфирующего материала, например полиуретана, а демпфирующие диски, жестко закрепленные по всей длине упругого сердечника вибродемпфирующей вставки, выполнены комбинированными и состоящими из упругой части в виде оппозитно закрепленных на упругом сердечнике дисков из жесткого вибродемпфирующего материала и демпфирующей части, выполненной в виде диска из вибродемпфирующего материала, например полиуретана, отличающееся тем, что звукопоглощающая облицовка несущих стен выполнена в виде жесткой и перфорированной стенок, между которыми расположен многослойный звукопоглощающий элемент в виде двух слоев, один из которых, прилегающий к жесткой стенке, является звукопоглощающим, а другой, прилегающий к перфорированной стенке, выполнен из звукоотражающего материала сложного профиля с перфорацией, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, в качестве звукоотражающего материала применен материал на основе алюминийсодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3, или применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.A low-noise industrial building containing a building frame with a base, bearing walls with fences in the form of floor and ceiling, which are lined with sound-absorbing structures, window and door openings, as well as piece sound absorbers containing a frame in which sound-absorbing material is located and installed above noisy equipment, the floor structure is made on an elastic base and contains vibration damping inserts located in the cavities of the base plates of the floor, made in the form of a cylinder of hard vib damping material, inside of which an elastic core is axisymmetrically and coaxially located, along the axis of which damping disks are rigidly fixed along the entire length of the cylinder cavity, while the extreme disks are fixed flush with the cylinder, and the intermediate damping disks are evenly spaced with a step not exceeding the inner diameter of the cylinder, this elastic core, axisymmetrically and coaxially located inside the cylinder of the vibration-damping insert, is made combined and consisting of an elastic part in the form of the reaper and the damping part, made in the form of an external coaxial shell of vibro-damping material, for example polyurethane, and the damping disks, rigidly fixed along the entire length of the elastic core of the vibro-damping insert, are made combined and consisting of the elastic part in the form of disks opposite from the hard vibro-damping, opposite to the elastic core material and damping part, made in the form of a disk of vibration damping material, such as polyurethane, characterized in that the sound-absorbing The bearing walls are made in the form of rigid and perforated walls, between which there is a multilayer sound-absorbing element in the form of two layers, one of which adjacent to the rigid wall is sound-absorbing, and the other adjacent to the perforated wall is made of a sound-reflecting material of a complex profile with perforation consisting of uniformly distributed hollow tetrahedra, which allow reflecting sound waves incident in all directions, the material based on new aluminum-containing alloys, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa for example, foam aluminum, or soundproofing boards based on Shumostop glass staple fiber with a material density of 60 ÷ 80 kg / m 3 , or a material based on a magnesian binder with reinforcing fiberglass or fiberglass was used.
RU2017120726A 2017-06-14 2017-06-14 Low-noise production building RU2651559C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017120726A RU2651559C1 (en) 2017-06-14 2017-06-14 Low-noise production building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017120726A RU2651559C1 (en) 2017-06-14 2017-06-14 Low-noise production building

Publications (1)

Publication Number Publication Date
RU2651559C1 true RU2651559C1 (en) 2018-04-20

Family

ID=61976815

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017120726A RU2651559C1 (en) 2017-06-14 2017-06-14 Low-noise production building

Country Status (1)

Country Link
RU (1) RU2651559C1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319661A (en) * 1978-09-20 1982-03-16 The Proudfoot Company, Inc. Acoustic space absorber unit
US20120247867A1 (en) * 2010-01-08 2012-10-04 Jun Yang Composite sound-absorbing device with built in resonant cavity
RU129125U1 (en) * 2012-08-21 2013-06-20 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU138068U1 (en) * 2013-05-30 2014-02-27 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU2541669C1 (en) * 2014-02-26 2015-02-20 Олег Савельевич Кочетов Kochetov's spherical acoustic absorber
RU2541701C1 (en) * 2014-02-12 2015-02-20 Олег Савельевич Кочетов Kochetov's sound-absorbing structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319661A (en) * 1978-09-20 1982-03-16 The Proudfoot Company, Inc. Acoustic space absorber unit
US20120247867A1 (en) * 2010-01-08 2012-10-04 Jun Yang Composite sound-absorbing device with built in resonant cavity
RU129125U1 (en) * 2012-08-21 2013-06-20 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU138068U1 (en) * 2013-05-30 2014-02-27 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU2541701C1 (en) * 2014-02-12 2015-02-20 Олег Савельевич Кочетов Kochetov's sound-absorbing structure
RU2541669C1 (en) * 2014-02-26 2015-02-20 Олег Савельевич Кочетов Kochetov's spherical acoustic absorber

Similar Documents

Publication Publication Date Title
RU2561389C1 (en) Sound-absorbing structure
RU2561393C1 (en) Kochetov(s sound absorber for lining manufacturing facilities
RU138068U1 (en) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU2530437C1 (en) Kochetov's acoustic workshop structure
RU2611650C1 (en) Low noise seismic resistance industrial building
RU2610013C1 (en) Kochetov low-noise manufacturing building
RU2579021C1 (en) Acoustic panel
RU2671278C1 (en) Workshop acoustic structure
RU2648102C1 (en) Acoustically comfortable room
RU2665720C1 (en) Low noise design for earth-quake proof industrial buildings
RU2651559C1 (en) Low-noise production building
RU2651565C1 (en) Acoustic construction for industrial premises
RU2600236C1 (en) Kochetov low-noise structure for earthquake-resistant industrial buildings
RU2425931C1 (en) Production room with low noise level
RU2583436C1 (en) Low-noise earthquake-resistant manufacturing building
RU2655639C2 (en) Soundproofing enclosure
RU2644792C1 (en) Low-noise earthquake-resistant industrial building
RU2655667C2 (en) Low-noise earthquake-resistant industrial building
RU2655710C2 (en) Low-noise earthquake-resistant industrial building
RU2565281C1 (en) Kochetov's shop acoustic structure
RU2663534C1 (en) Acoustic construction of building
RU2611768C1 (en) Low noise industrial building
RU2579025C1 (en) Earthquake-resistant building structure
RU2530434C1 (en) Kochetov's acoustic panel
RU2015134959A (en) LOW SEISMIC-RESISTANT PRODUCTION BUILDING