RU2610013C1 - Kochetov low-noise manufacturing building - Google Patents

Kochetov low-noise manufacturing building Download PDF

Info

Publication number
RU2610013C1
RU2610013C1 RU2016101167A RU2016101167A RU2610013C1 RU 2610013 C1 RU2610013 C1 RU 2610013C1 RU 2016101167 A RU2016101167 A RU 2016101167A RU 2016101167 A RU2016101167 A RU 2016101167A RU 2610013 C1 RU2610013 C1 RU 2610013C1
Authority
RU
Russia
Prior art keywords
sound
absorbing
damping
vibration
perforated
Prior art date
Application number
RU2016101167A
Other languages
Russian (ru)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2016101167A priority Critical patent/RU2610013C1/en
Application granted granted Critical
Publication of RU2610013C1 publication Critical patent/RU2610013C1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/8218Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only soundproof enclosures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B2001/8254Soundproof supporting of building elements, e.g. stairs, floor slabs or beams, on a structure

Abstract

FIELD: physics, acoustics.
SUBSTANCE: invention relates to industrial acoustics. A low-noise manufacturing building comprises a building frame with a base, bearing walls with enclosures in the form of a floor and a ceiling, which are lined with sound-absorbing structures, window and door openings, as well as single-piece sound absorbers, comprising a frame in which sound-absorbing material is placed, and installed above noisy equipment, base bearing ceiling boards are provided at points of mounting thereof to the bearing walls of the building with a spatial vibration insulation system. The floor in rooms is made on an elastic base and comprises a mounting plate. The single-piece spherical sound absorber comprises active and reactive sound absorbers, arranged in a rigid frame, the frame being made of two parts. Parts of the sound absorber are connected by an elastic damping element, which enables to damp high-frequency vibrations, wherein an element, through which the frame is attached to the required object, is pivotally attached to the perforated cover of the a perforated cylindrical shell. The spherical resonance cavity of the reactive part of the frame is rigidly connected by at least one bushing with an axial opening, which performs the function of the neck of a Helmholtz resonator, with an external perforated spherical shell, and the space in between is filled with a sound absorber, wherein around the perforated cylindrical shell there is at least one helical sound-absorbing element, made in the form of a helical spring encircling the shell, wherein the helical sound-absorbing element is made in form of a hollow helical sound-absorbing element formed by external and internal helical surfaces forming a cavity, wherein the space formed by the external and internal helical surfaces is filled with sound-absorbing material. The material of the perforated surfaces used is in the form of structural materials whose surfaces are coated on one or two sides with a layer of soft vibration-damping material, for example VD-17 mastic compound, or Gerlen-D material or from stainless steel, or zinc-coated sheet with thickness of 0.7 mm with a polymer protective-decorative coating of the Pural type with thickness of 50 mcm, or Polyester with thickness of 25 mcm, or aluminium sheet with thickness of 1.0 mm and coating thickness of 25 mcm, or from solid, decorative vibration-damping materials, for example Agat, Antivibrit, Shvim plastic compound, the sound-absorbing material used are boards made of mineral wool on a basalt base of the Rockwool type, or mineral wool of URSA type, or basalt wool of the P-75 type, or glass wool with glass felt lining, wherein the sound-absorbing element on its entire surface is lined with an acoustically transparent material, for example, glass fabric of the EZ-100 type or "poviden" type polymer.
EFFECT: invention increases efficiency of soundproofing and seismic resistance of the building.
5 cl, 5 dwg

Description

Изобретение относится к промышленной акустике.The invention relates to industrial acoustics.

Наиболее близким техническим решением по технической сущности и достигаемому результату является акустическая конструкция по патенту РФ №2425196, кл. F01N 1/04, [прототип], содержащая каркас на перекрытии здания и стены со звукопоглощающей облицовкой.The closest technical solution to the technical nature and the achieved result is the acoustic design according to the patent of the Russian Federation No. 2425196, class. F01N 1/04, [prototype], comprising a frame on the ceiling of a building and a wall with sound-absorbing lining.

Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет сравнительно невысокого коэффициента вибродемпфирования межэтажного перекрытия, а также низкая сейсмостойкость здания.The disadvantage of the technical solution adopted as a prototype is the relatively low noise reduction due to the relatively low coefficient of vibration damping of the floor, as well as low seismic resistance of the building.

Технический результат - повышение эффективности шумоглушения и сейсмостойкости здания.The technical result is an increase in the efficiency of sound attenuation and earthquake resistance of the building.

Это достигается тем, что в малошумном производственном здании, содержащим каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен здания.This is achieved by the fact that in a low-noise industrial building containing a building frame with a base, load-bearing walls with fences in the form of floor and ceiling, which are lined with sound-absorbing structures, window and door openings, as well as piece sound absorbers containing a frame in which sound-absorbing material is located, and installed above the noisy equipment, the basic load-bearing floor slabs are equipped in the places of their attachment to the load-bearing walls of the building with a spatial vibration isolation system consisting of horizontally arranged wife vibration isolators, perceiving vertical static and dynamic loads, as well as vertically located vibration isolators, perceiving horizontal static and dynamic loads, while the floor in the rooms is made on an elastic base and contains a mounting plate made of concrete reinforced with vibration damping material, which is installed on the base plate of the interfloor overlapping cavities through layers of vibration damping material and waterproofing material with a gap relative to own who were building walls.

На фиг. 1 изображен общий вид малошумного сейсмостойкого производственного здания, на фиг. 2 - разрез междуэтажного перекрытия здания, на фиг. 3 - схема штучного сферического звукопоглотителя, на фиг. 4 - схема звукопоглощающей облицовки, на фиг. 5 - схема вибродемпфирующей вставки в полостях базовых плит.In FIG. 1 shows a general view of a low noise earthquake-resistant industrial building; FIG. 2 is a section through a floor of a building, in FIG. 3 is a diagram of a piece spherical sound absorber, FIG. 4 is a diagram of a sound-absorbing cladding; FIG. 5 is a diagram of a vibration damping insert in cavities of base plates.

Малошумное сейсмостойкое производственное здание (фиг. 1) содержит каркас здания с основанием (фиг. 4), оконные 9 и дверные 10 проемы и несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол и потолок), которые облицованы звукопоглощающими конструкциями, а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием 11.Low noise earthquake-resistant industrial building (Fig. 1) contains the building frame with the base (Fig. 4), window 9 and door 10 openings and load-bearing walls 1, 2, 3, 4 with fences 5, 6 (floor and ceiling), which are lined with sound-absorbing designs, as well as piece sound absorbers 7 and 8, containing a frame in which sound-absorbing material is located, and installed above the noisy equipment 11.

Конструкция пола на упругом основании (фиг. 2) содержит установочную плиту 12, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 15 межэтажного перекрытия с полостями 16 через слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 с зазором 17 относительно несущих стен 1, 2, 3, 4 производственного здания. Чтобы обеспечить эффективную виброизоляцию установочной плиты 12 по всем направлениям слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 1, 2, 3, 4 и базовой несущей плите 15 перекрытия. Для повышения эффективности виброизоляции и сейсмостойкости здания базовые несущие плиты 15 перекрытия (на фиг. 2 показана плита 15 перекрытия только для одного этажа здания и с одной стороны несущих стен 1, 2, 3, 4) снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов 18 и 20, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов 19, воспринимающих горизонтальные статические и динамические нагрузки.The floor structure on an elastic base (Fig. 2) contains a mounting plate 12 made of concrete reinforced with vibration damping material, which is installed on the base plate 15 of the floor with cavities 16 through layers of vibration damping material 14 and waterproofing material 13 with a gap 17 relative to the bearing walls 1, 2, 3, 4 of the industrial building. In order to ensure effective vibration isolation of the mounting plate 12 in all directions, the layers of the vibration damping material 14 and the waterproofing material 13 are made with a flange that is tightly adjacent to the supporting structures of the walls 1, 2, 3, 4 and the base supporting plate 15 of the floor. To increase the vibration isolation and earthquake resistance of the building, the basic supporting slabs 15 of the floor (Fig. 2 shows the slab 15 of the floor for only one floor of the building and on one side of the supporting walls 1, 2, 3, 4) are equipped with a system in their places of attachment to the supporting walls of the building spatial vibration isolation, consisting of horizontally located vibration isolators 18 and 20, perceiving vertical static and dynamic loads, as well as vertically located vibration isolators 19, perceiving horizontal static and dynamo cal load.

Возможен вариант, когда полости 16 базовой плиты перекрытия заполнены вибродемпфирующим материалом, выполненным в виде шнековой вставки (на чертеже не показано) из упругого полимера, например полиуретана, заполненной вспененным полимером, например полиэтиленом или полипропиленом, или строительной пеной.It is possible that the cavities 16 of the base floor slab are filled with vibration damping material made in the form of a screw insert (not shown in the drawing) made of an elastic polymer, for example polyurethane, filled with a foamed polymer, for example polyethylene or polypropylene, or construction foam.

Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием полости 16 заполнены вибродемпфирующим материалом, например вспененным полимером, например полиэтиленом или полипропиленом, а стены 1, 2, 3, 4 облицованы звукопоглощающими конструкциями. В качестве звукопоглощающего материала звукопоглощающих конструкций используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом (на чертеже не показано), например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».To increase the efficiency of sound insulation and sound absorption in the workshops located under the floor, the cavities 16 are filled with vibration damping material, for example, foamed polymer, for example polyethylene or polypropylene, and walls 1, 2, 3, 4 are lined with sound-absorbing structures. As sound-absorbing material of sound-absorbing structures, slabs made of rockwool basalt-based mineral wool or URSA-type mineral wool or P-75 basalt wool or glass-wool lining are used, and the sound-absorbing element is acoustically lined over its entire surface transparent material (not shown in the drawing), for example, fiberglass type EZ-100 or polymer type "Poviden."

В качестве звукопоглощающего материала может быть использован также жесткий пористый материал, например пеноалюминий или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%. В качестве звукопоглощающего материала может быть использован материал в виде крошки из твердых вибродемпфирующих материалов, например эластомера, или полиуретана, или пластиката, причем размер фракций крошки лежит в оптимальном интервале величин: 0,3÷2,5 мм (на чертеже не показано).As a sound-absorbing material, a rigid porous material can also be used, for example, foam aluminum or cermets, or a shell rock with a degree of porosity in the range of optimal values: 30–45%. As a sound-absorbing material, a material in the form of crumbs from solid vibration-damping materials, for example, elastomer, or polyurethane, or plastic compound can be used, moreover, the size of the fractions of the crumb lies in the optimal range of values: 0.3 ÷ 2.5 mm (not shown in the drawing).

Штучный сферический звукопоглотитель (фиг. 3) содержит звукопоглотители активного и реактивного типов, размещенные на жестком каркасе. Каркас выполнен из двух частей, при этом нижняя, реактивная, часть 27 выполнена в виде конструкции сферической формы с внутренней конгруэнтной сферической резонансной полостью 28, образованной жесткой сплошной сферической оболочкой 26, эквидистантной внешней перфорированной сферической оболочке 24, соединенной с верхней, активной, частью 21, которая выполнена в виде жесткой перфорированной цилиндрической обечайки 22 с перфорированной крышкой и сплошным основанием, причем полость цилиндрической обечайки заполнена звукопоглощающим материалом, а соединение верхней 21 и нижней 27 частей звукопоглотителя выполнено посредством упругодемпфирующего элемента 25, позволяющего демпфировать высокочастотные колебания, при этом к перфорированной крышке перфорированной цилиндрической обечайки шарнирно закреплен элемент, при помощи которого каркас крепится к требуемому объекту, например потолку производственного помещения.Piece spherical sound absorber (Fig. 3) contains active and reactive sound absorbers located on a rigid frame. The frame is made of two parts, while the lower, reactive part 27 is made in the form of a spherical structure with an internal congruent spherical resonant cavity 28 formed by a rigid continuous spherical shell 26, an equidistant external perforated spherical shell 24 connected to the upper, active, part 21 , which is made in the form of a rigid perforated cylindrical shell 22 with a perforated lid and a solid base, and the cavity of the cylindrical shell is filled with sound-absorbing material ohm, and the compound of upper 21 and lower 27 parts of the absorber formed by elastic-damping element 25, allowing to dampen high frequency vibrations, in this case to cover the perforated perforated cylindrical shell element is hinged, by means of which the frame is attached to a desired object, such as a ceiling of industrial premises.

Сферическая резонансная полость 28 реактивной части 27 каркаса жестко соединена по крайней мере одной втулкой 29 с осевым отверстием, выполняющим функцию горловины резонатора Гельмгольца, с внешней перфорированной сферической оболочкой 24, а пространство между ними заполнено звукопоглотителем. Вокруг перфорированной цилиндрической обечайки 22 расположен по крайней мере один винтовой звукопоглощающий элемент 23, выполненный по форме в виде цилиндрической винтовой пружины, охватывающей обечайку 22.The spherical resonant cavity 28 of the reactive part 27 of the frame is rigidly connected by at least one sleeve 29 with an axial hole that serves as the neck of the Helmholtz resonator, with an external perforated spherical shell 24, and the space between them is filled with a sound absorber. Around the perforated cylindrical shell 22 is located at least one screw sound-absorbing element 23, made in the form of a cylindrical helical spring, covering the shell 22.

Винтовой звукопоглощающий элемент 23 может быть выполнен в виде полого винтового звукопоглощающего элемента, образованного внешней и внутренней винтовыми поверхностями, образующими полость, при этом пространство, образованное внешней и внутренней винтовыми поверхностями, заполнено звукопоглощающим материалом с плотностью, меньшей чем у винтового звукопоглощающего элемента.The screw sound-absorbing element 23 can be made in the form of a hollow screw sound-absorbing element formed by the external and internal screw surfaces forming a cavity, while the space formed by the external and internal screw surfaces is filled with sound-absorbing material with a density lower than that of the screw sound-absorbing element.

Перфорированные поверхности имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10÷15%, а отверстия в перфорированных поверхностях могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве материала перфорированных поверхностей применены конструкционные материалы с нанесенным на их поверхности с одной или двух сторон слоем мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5...3,5), или из нержавеющей стали, или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм, или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм, или из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим».Perforated surfaces have the following perforation parameters: the diameter of the holes is 3–7 mm, the percentage of perforation is 10–15%, and the holes in the perforated surfaces can be made in the form of holes of a round, triangular, square, rectangular or diamond-shaped profile, while in the case of non-circular holes in the conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon, and structural materials applied to their surface are used as the material of perforated surfaces on one or two sides with a layer of soft vibration-damping material, for example, VD-17 mastic, or “Gerlen-D” type material, while the ratio between the thicknesses of the material and the vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3,5), or stainless steel, or galvanized sheet with a thickness of 0.7 mm with a protective and decorative polymer coating of the Pural type 50 μm thick, or Polyester with a thickness of 25 μm, or an aluminum sheet with a thickness of 1.0 mm and a thickness coatings of 25 microns, or from solid, decorative vibration damping materials, For example plastic such as "agate", "Antivibrit", "Shvim".

В качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден».As sound absorbing material, slabs made of rockwool basalt mineral wool or URSA mineral wool or P-75 basalt wool or glass wool lined with glass wool are used as sound absorbing material, and the sound-absorbing element is lined with acoustically transparent material over its entire surface , for example, fiberglass type EZ-100 or polymer type "poviden."

В качестве звукопоглощающего материала использован пористый шумопоглощающий материала, например пеноалюминий или металлокерамика или или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например, типа «Acutex Τ» или покрывается воздухопроницаемыми тканями или неткаными материалами, например «Лутрасилом».As a sound-absorbing material, a porous sound-absorbing material is used, for example, foam aluminum or cermets, or a shell rock with a porosity degree in the range of optimal values: 30–45%, or metal foam, or a material in the form of pressed chips from solid vibration damping materials, for example, an elastomer, polyurethane, or plastic compound such as "Agate", "Anti-Vibrate", "Shvim", moreover, the size of the fractions of the crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and porous mines can also be used piece materials such as pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, for example, such as Acutex покры or covered with breathable fabrics or non-woven materials, for example, Lutrasil.

Возможны варианты, когда в качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом;Variants are possible when a material based on a magnesian binder with a reinforcing fiberglass or fiberglass is used as a sound-reflecting material;

в качестве звукопоглощающего материала использован полиэстер;polyester is used as a sound-absorbing material;

в качестве звукопоглощающего материала использован пористый волокнистый или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочки из тонкой стеклоткани или алюминизированной лавсановой пленки;as a sound-absorbing material, a porous fibrous or foamy sound-absorbing material is used, which is made on the basis of basalt or glass fibers, or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass or aluminized lavsan film;

в качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷4000 кг/м3, и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов.as a sound-absorbing material, a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 4000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 mass parts of one or more sintering materials was used and 10 ÷ 20 mass parts of the binder materials.

Штучный сферический звукопоглотитель работает следующим образом.Piece spherical sound absorber works as follows.

Звуковые волны, распространяясь на промышленном или транспортном объектах взаимодействуют со звукопоглощающим материалом, расположенным в полости образованной жесткой сплошной сферической оболочкой 26, эквидистантной внешней перфорированной сферической оболочке 24, соединенной с верхней, активной, частью 21, а также в перфорированной цилиндрической обечайке 22 и винтовом звукопоглощающим элементе 23 верхней 21 части, подавляющим шумы на низких, средних и высоких частотах соответственно.Sound waves propagating at an industrial or transport facility interact with a sound-absorbing material located in the cavity formed by a rigid continuous spherical shell 26, an equidistant external perforated spherical shell 24 connected to the upper, active, part 21, as well as in the perforated cylindrical shell 22 and a sound-absorbing screw element 23 of the upper 21 parts, suppressing noise at low, medium and high frequencies, respectively.

Соединение верхней 21 и нижней 27 частей каркаса посредством упругодемпфирующего элемента 25. позволяет демпфировать высокочастотные колебания, которые могут излучаться жестким каркасом, что позволяет его использовать для снижения шума на транспортных объектах. Звукопоглощение на средних и высоких частотах происходит за счет акустического эффекта, построенного по принципу резонатора Гельмгольца, образованного воздушной сферической полостью 28 и горловиной резонатора 29, диаметр которой для гашения шума в заданной полосе частот подбирают в требуемом звуковом диапазоне частот, как правило так: большие объемы для подавления шума в низкочастотном диапазоне, а малые - в области средних и высоких частот. Взаимодействие звуковых волн с винтовым звукопоглощающим элементом 23 приводит к шумоглушению в высокочастотном диапазоне, а выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.The connection of the upper 21 and lower 27 parts of the frame by means of an elastic damping element 25. allows you to damp high-frequency vibrations that can be emitted by a rigid frame, which allows it to be used to reduce noise on transport objects. Sound absorption at medium and high frequencies occurs due to the acoustic effect, built on the principle of the Helmholtz resonator, formed by the air spherical cavity 28 and the neck of the resonator 29, the diameter of which is selected in the desired sound frequency range for damping noise in the required frequency range, as a rule: large volumes to suppress noise in the low frequency range, and small - in the medium and high frequencies. The interaction of sound waves with a screw sound-absorbing element 23 leads to noise attenuation in the high-frequency range, and the implementation of a sound absorber from non-combustible materials makes the design fireproof.

Звукопоглощающая облицовка (фиг. 4) выполнена в виде жесткой стенки 30 и перфорированной стенки 33, между которыми расположен двухслойный комбинированный звукопоглощающий элемент, причем слой 31, прилегающий к жесткой стенке 30, выполнен звукопоглощающим, а прилегающий к перфорированной стенке слой 32 выполнен из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны. Перфорированная стенка 33 имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности. При этом звукопоглощающий слой 31 помещен в акустически прозрачный материал, например стеклоткань типа ЭЗ-100, или полимер типа «повиден». или нетканый материал, например «лутрасил».The sound-absorbing cladding (Fig. 4) is made in the form of a rigid wall 30 and a perforated wall 33, between which there is a two-layer combined sound-absorbing element, the layer 31 adjacent to the rigid wall 30 is made sound-absorbing, and the layer 32 adjacent to the perforated wall is made of sound-reflecting material complex profile, consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions. The perforated wall 33 has the following perforation parameters: diameter of the holes is 3 ÷ 7 mm, the percentage of perforation is 10% ÷ 15%, and the shape of the holes can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes as the conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon. At the same time, the sound-absorbing layer 31 is placed in an acoustically transparent material, for example, fiberglass type EZ-100, or a polymer of the “visible” type. or non-woven material, for example "lutrasil."

Каждая из стенок 30 и 33 может быть выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоем мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).Each of the walls 30 and 33 can be made of structural materials, with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material applied on one or both sides of the surface, and the ratio between the thicknesses of the material and vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).

Каждая из стенок 30 и 33 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.Each of the walls 30 and 33 can be made of stainless steel or a galvanized sheet with a thickness of 0.7 mm with a protective and decorative polymer coating of 50 μm thick or Polyester 25 μm thick or aluminum sheet 1.0 mm thick and coating thickness 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

Каждая из стенок 30 и 33 может быть выполнена из твердых, декоративных вибро-демпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим».Each of the walls 30 and 33 can be made of solid, decorative vibration-damping materials, such as plastic compounds such as "Agate", "Anti-vibration", "Shvim".

В качестве материала звукоотражающего слоя 32 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия, или применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As the material of the sound-reflecting layer 32, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example foam aluminum, or soundproof boards based on glass staple fiber of the Shumostop type with a material density of 60 ÷ 80 kg / m 3 were used .

В качестве звукопоглощающего материала слоя 31 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Причем звукопоглощающий материал по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Τ) или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.As sound-absorbing material of layer 31, rockwool-type mineral wool or URSA-type mineral wool, or P-75-type basalt wool or glass wool lined with glass wool, or foamed polymer, such as polyethylene or polypropylene can be used. Moreover, the sound-absorbing material over its entire surface is lined with an acoustically transparent material, for example, EZ-100 fiberglass or a “visible” polymer, or the surface of the fibrous sound absorbers is treated with special porous paints that allow air to pass through (for example, Acutex Τ) or coated with breathable fabrics or non-woven materials, e.g. Lutrasil.

Кроме того, в качестве звукопоглощающего материала слоя 31 может быть использован пористый шумопоглощающий материала, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например, типа Acutex Τ или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.In addition, as the sound-absorbing material of the layer 31, a porous sound-absorbing material, for example, foam aluminum, or cermets, or a shell rock with a degree of porosity in the range of optimal values: 30–45%, or metal foam, or material in the form of crushed chips can be used from solid vibration-damping materials, for example, elastomer, polyurethane, or plastic compound such as “Agate”, “Anti-Vibrate”, “Shvim”, moreover, the size of the fractions of the crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and there may also be porous mineral piece materials, such as pumice, vermiculite, kaolin, slag with cement or another binder, or synthetic fibers, or the surface of the fibrous sound absorbers are treated with special porous airborne paints such as Acutex Τ or coated with breathable fabrics or non-woven materials, e.g. Lutrasil.

Для снижения или коррекции времени реверберации помещений в его отделке применяют звукопоглощающие материалы и конструкции (звукопоглотители).To reduce or correct the reverberation time of premises, sound-absorbing materials and structures (sound absorbers) are used in its decoration.

Пористые звукопоглотители изготавливают в виде плит, которые крепятся к ограждающим поверхностям непосредственно или на относе, из легких и пористых минеральных штучных материалов - пемзы, вермикулита, каолина, шлаков и т.п. с цементом или другим вяжущим. Такие материалы достаточно прочны и могут быть использованы для снижения шума в коридорах, фойе, лестничных маршах общественных и промышленных зданий.Porous sound absorbers are made in the form of plates that are attached to the enclosing surfaces directly or on the basis of light and porous mineral piece materials - pumice, vermiculite, kaolin, slag, etc. with cement or other binder. Such materials are strong enough and can be used to reduce noise in corridors, foyers, staircases of public and industrial buildings.

Сырьем для их производства служат древесные волокна, минеральная вата, стеклянная вата, синтетические волокна. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Τ), или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.The raw materials for their production are wood fibers, mineral wool, glass wool, synthetic fibers. The surface of the fibrous absorbers is treated with special porous air-permeable paints (e.g. Acutex Τ), or coated with breathable fabrics or non-woven materials, such as Lutrasil.

В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике. Они не только оказались наиболее эффективными с акустической точки зрения в широком частотном диапазоне, но и отвечают возросшим требованиям, предъявляемым к дизайну помещений.Currently, fibrous sound absorbers are the most common in construction practice. They not only proved to be the most effective from an acoustic point of view in a wide frequency range, but also meet the increased requirements for room design.

В качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.As a sound-reflecting material, a material based on a magnesian binder with a reinforcing fiberglass or fiberglass was used.

В качестве звукопоглощающего материала использован полиэстер.Polyester is used as a sound-absorbing material.

В качестве звукопоглощающего материала использован пористый волокнистый или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочки из тонкой стеклоткани, или алюминизированной лавсановой пленки.As a sound-absorbing material, a porous fibrous or foamy sound-absorbing material is used, which is made on the basis of basalt or glass fibers, or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass, or aluminized lavsan film.

В качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов. В процессе спекания частицы перлита в точках соприкосновения образуют смежные поры. Этот материал обладает хорошей звукопоглощающей способностью в широком диапазоне частот, но имеет высокую плотность, связанную с содержанием большого количества спекающих материалов.As a sound-absorbing material, a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 mass parts of one or more sintering materials and 10 ÷ 20 mass parts of binder materials. During sintering, perlite particles at adjacent points form adjacent pores. This material has good sound absorption in a wide frequency range, but has a high density associated with the content of a large number of sintering materials.

Звукопоглощающая облицовка работает следующим образом.Sound-absorbing lining works as follows.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированную стенку 33 попадает на слой 32 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а часть звуковой энергии проходит через слой 32 из звукоотражающего материала и взаимодействует со слоем 31 из звукопоглощающего материала, где происходит окончательное рассеивание звуковой энергии. В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.Sound energy from equipment located in the room, or another object that emits intense noise, passing through the perforated wall 33 enters the layer 32 of sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedrons, which allow reflecting sound waves incident in all directions, and part of the sound energy passes through the layer 32 of sound-reflecting material and interacts with the layer 31 of sound-absorbing material, where the final dissipation of sound energy occurs rgii. In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of the sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the excitation frequency against the wall of the neck itself, which has the form branched network of pore sound absorbers. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0.

Малошумное сейсмостойкое производственное здание работает следующим образом.Low noise earthquake-resistant industrial building operates as follows.

Звуковая энергия от оборудования 11, находящегося в помещении, попадает на слои звукопоглощающего материала звукопоглощающих конструкций, которыми облицованы несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол 6 и потолок 5), а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал, и которые установлены над шумным оборудованием 11. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Коэффициент перфорации перфорированной стенки принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрена стеклоткань, например типа ЭЗ-100, расположенная между звукопоглотителем и перфорированной стенкой.Sound energy from the equipment 11 located in the room falls on the layers of sound-absorbing material of sound-absorbing structures, which are lined with load-bearing walls 1, 2, 3, 4 with fences 5, 6 (floor 6 and ceiling 5), as well as piece sound absorbers 7 and 8, containing a frame in which sound-absorbing material is located, and which are installed above noisy equipment 11. The transition of sound energy into heat (dissipation, energy dissipation) occurs in the pores of the sound absorber, which are a model of Helmholtz resonators, where and energies occur due to friction oscillating with the frequency of excitation of the mass of air located in the neck of the resonator against the walls of the neck itself, which has the form of a branched network of pores of a sound absorber. The perforation coefficient of the perforated wall is taken to be equal to or more than 0.25. To prevent the eruption of a soft sound absorber, a fiberglass fabric, for example, type EZ-100, is located between the sound absorber and the perforated wall.

Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.Sound waves propagating in the production room interact with cavities filled with sound absorber.

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения, и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a non-combustible sound absorber leads to sound attenuation in the high-frequency range, and due to the presence of cavities, the sound absorption surface increases, and, as a result, the sound absorption coefficient increases.

При установке виброактивного оборудования на плиту 12 происходит двухкаскадная виброзащита за счет вибродемпфирующих вкраплений в саму массу плиты 12, а также за счет слоя вибродемпфирующего материала 14, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.When installing vibroactive equipment on plate 12, two-stage vibration protection occurs due to vibration damping inclusions in the mass of plate 12 itself, as well as due to a layer of vibration damping material 14, which can be used as: Vibrosil needle-punched mats based on silica or aluminoborosilicate fiber, material from solid vibration-damping materials, for example plastic compound, from soundproof plates based on glass staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 .

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a non-combustible sound absorber leads to sound attenuation in the high-frequency range, and due to the presence of cavities, the sound absorption surface increases and, as a result, the sound absorption coefficient increases.

Возможен вариант, когда вибродемпфирующие вставки (фиг. 5), расположенные в полостях базовых плит межэтажного перекрытия, выполнены в виде цилиндра 34 из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник 35, вдоль оси которого жестко закреплены по всей длине полости, демпфирующие диски 36, 37, 39, при этом крайние диски 36 и 37 закреплены «заподлицо» с цилиндром из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовой плиты, а промежуточные демпфирующие диски расположены равномерно с шагом, не превышающим внутренний диаметр цилиндра. Упругий сердечник 35, осесимметрично и коаксиально расположенный внутри цилиндра вибродемпфирующей вставки, выполнен комбинированным и состоящим из упругой части в виде стержня 40 и демпфирующей части, выполненной в виде внешней коаксиальной оболочки из вибродемпфирующего материала, например полиуретана. Демпфирующие диски, жестко закрепленные по всей длине упругого сердечника 35 вибродемпфирующей вставки, выполнены комбинированными и состоящими из упругой части в виде оппозитно закрепленных на упругом сердечнике дисков 38 из жесткого вибродемпфирующего материала, и демпфирующей части, выполненной в виде диска 41 из вибродемпфирующего материала, например полиуретана.It is possible that the vibration damping inserts (Fig. 5) located in the cavities of the base floor slabs are made in the form of a cylinder 34 of rigid vibration damping material, inside of which an elastic core 35 is axisymmetrically and coaxially located, along the axis of which are rigidly fixed along the entire length of the cavity, damping disks 36, 37, 39, while the extreme disks 36 and 37 are fixed “flush” with a cylinder of vibration-damping material, the ends of which, in turn, are “flush” with the side surfaces of the base lites, and the intermediate damper discs are arranged uniformly in increments not exceeding the inner diameter of the cylinder. The elastic core 35, axisymmetrically and coaxially located inside the cylinder of the vibration damping insert, is made combined and consisting of an elastic part in the form of a rod 40 and a damping part made in the form of an external coaxial shell of a vibration damping material, for example polyurethane. The damping disks, rigidly fixed along the entire length of the elastic core 35 of the vibration damping insert, are made combined and consisting of the elastic part in the form of disks oppositely mounted on the elastic core 38 of the hard vibration damping material, and the damping part made in the form of a disk 41 of vibration damping material, for example polyurethane .

Claims (5)

1. Малошумное производственное здание, содержащее каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером, штучный сферический звукопоглотитель содержит звукопоглотители активного и реактивного типов, размещенные на жестком каркасе, каркас выполнен из двух частей, при этом нижняя, реактивная, часть выполнена в виде конструкции сферической формы с внутренней конгруэнтной сферической резонансной полостью, образованной жесткой сплошной сферической оболочкой, эквидистантной внешней перфорированной сферической оболочке, соединенной с верхней, активной, частью, которая выполнена в виде жесткой перфорированной цилиндрической обечайки с перфорированной крышкой и сплошным основанием, причем полость цилиндрической обечайки заполнена звукопоглощающим материалом, а соединение верхней и нижней частей звукопоглотителя выполнено посредством упругодемпфирующего элемента, позволяющего демпфировать высокочастотные колебания, при этом к перфорированной крышке перфорированной цилиндрической обечайки шарнирно закреплен элемент, при помощи которого каркас крепится к требуемому объекту, например потолку производственного помещения, а сферическая резонансная полость реактивной части каркаса жестко соединена по крайней мере одной втулкой с осевым отверстием, выполняющим функцию горловины резонатора Гельмгольца, с внешней перфорированной сферической оболочкой, а пространство между ними заполнено звукопоглотителем, при этом вокруг перфорированной цилиндрической обечайки расположен по крайней мере один винтовой звукопоглощающий элемент, выполненный по форме в виде цилиндрической винтовой пружины, охватывающей обечайку, причем винтовой звукопоглощающий элемент выполнен в виде полого винтового звукопоглощающего элемента, образованного внешней и внутренней винтовыми поверхностями, образующими полость, при этом пространство, образованное внешней и внутренней винтовыми поверхностями, заполнено звукопоглощающим материалом с плотностью, меньшей чем у винтового звукопоглощающего элемента, а перфорированные поверхности имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10%÷15%, а отверстия в перфорированных поверхностях могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве материала перфорированных поверхностей применены конструкционные материалы с нанесенным на их поверхности с одной или двух сторон слоем мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5), или из нержавеющей стали, или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм, или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм, или из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден».1. A low-noise industrial building containing a building frame with a base, load-bearing walls with fences in the form of floor and ceiling, which are lined with sound-absorbing structures, window and door openings, as well as piece sound absorbers containing a frame in which sound-absorbing material is located and installed above a noisy one equipment, the basic bearing slabs are equipped in places of their attachment to the bearing walls of the building with a system of spatial vibration isolation, consisting of horizontally located vibration isolators, perceiving vertical static and dynamic loads, as well as vertically located vibration isolators, perceiving horizontal static and dynamic loads, while the floor in the rooms is made on an elastic base and contains a mounting plate made of concrete reinforced with vibration damping material, which is installed on the base plate of the floor with cavities through layers of vibration damping material and waterproofing material with a gap relative to the bearing walls of the production of the room, and the cavities of the base plate are filled with vibration damping material, for example, foamed polymer, a piece spherical sound absorber contains active and reactive sound absorbers placed on a rigid frame, the frame is made of two parts, while the lower, reactive part is made in the form of a spherical shape with an internal congruent spherical resonant cavity formed by a rigid continuous spherical shell, an equidistant external perforated spherical shell, soy lined with the upper active part, which is made in the form of a rigid perforated cylindrical shell with a perforated lid and a solid base, the cavity of the cylindrical shell is filled with sound-absorbing material, and the connection of the upper and lower parts of the sound absorber is made by means of an elastic damping element that allows damping high-frequency vibrations, while an element is secured to the perforated cover of the perforated cylindrical shell by means of which the frame is fixed to the desired object, for example, the ceiling of the production room, and the spherical resonant cavity of the reactive part of the frame is rigidly connected by at least one sleeve with an axial hole that acts as the neck of the Helmholtz resonator, with an external perforated spherical shell, and the space between them is filled with a sound absorber, while around at least one screw sound-absorbing element is arranged in the form of a cylindrical helical rod others covering the shell, and the screw sound-absorbing element is made in the form of a hollow screw sound-absorbing element formed by the external and internal screw surfaces forming a cavity, while the space formed by the external and internal screw surfaces is filled with sound-absorbing material with a density lower than that of the screw sound-absorbing element and the perforated surface has the following perforation parameters: hole diameter 3 ÷ 7 mm, perforation percentage 10% ÷ 15%, and holes in the perforation surfaces can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes, the maximum diameter of a circle inscribed in a polygon should be considered as a conditional diameter, and structural materials applied to the perforated surfaces are used their surfaces on one or both sides with a layer of soft vibration-damping material, for example, VD-17 mastic, or “Gerlen-D” type material, while the wear between the thicknesses of the material and the vibration damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5), or stainless steel, or a galvanized sheet with a thickness of 0.7 mm with a polymer protective and decorative coating of the Pural type with a thickness of 50 microns, or "Polyester" with a thickness of 25 microns, or an aluminum sheet with a thickness of 1.0 mm and a coating thickness of 25 microns, or from solid, decorative vibration damping materials, such as plastic compounds such as "Agate", "Anti-Vibrate", "Shvim", and as sound absorbing material mineral wool slabs are used and rockwool type basalt base, or URSA type mineral wool, or P-75 type basalt wool, or glass wool lined with glass wool, and the sound-absorbing element is lined with an acoustically transparent material over its entire surface, such as EZ-100 fiberglass or polymer like "povidin". 2. Малошумное производственное здание по п. 1, отличающееся тем, что в качестве звукопоглощающего материала штучного сферического звукопоглотителя использован пористый шумопоглощающий материала, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин - 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например, типа «Acutex Т», или покрывается воздухопроницаемыми тканями или неткаными материалами, например «Лутрасилом», или в качестве звукопоглощающего материала использован полиэстер, или пористый волокнистый, или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочки из тонкой стеклоткани или алюминизированной лавсановой пленки, или пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 мас.ч. перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 мас.ч. одного или нескольких спекающих материалов и 10÷20 мас.ч. связующих материалов.2. The low-noise industrial building according to claim 1, characterized in that a porous sound-absorbing material, for example foam aluminum, or cermet, or a shell rock with a degree of porosity in the optimal range of 30 ÷ 45% is used as the sound-absorbing material of a piece spherical sound absorber. or metal roll, or material in the form of pressed crumbs from solid vibration-damping materials, for example elastomer, polyurethane, or plastic compound such as “Agate”, “Anti-vibration”, “Shvim”, the size of the fra crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and porous mineral piece materials, such as pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of fibrous absorbers can be used treated with special porous paints that allow air to pass through, such as Acutex T, or coated with breathable fabrics or non-woven materials, such as Lutrasil, or polyester is used as sound-absorbing material, and and a porous fibrous or foam absorbent material, which is formed on the basis of basalt or glass fibers or open-cell polyurethane foam with a protective sound transmission casing of a thin fiberglass or aluminized mylar film, or a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 parts by weight perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 wt.h. one or more sintering materials and 10 ÷ 20 wt.h. binding materials. 3. Малошумное производственное здание по п. 1, отличающееся тем, что, полости базовой плиты перекрытия заполнены вибродемпфирующим материалом, выполненным в виде шнековой вставки из упругого полимера, например полиуретана, заполненной вспененным полимером, например полиэтиленом или полипропиленом.3. The low-noise production building according to claim 1, characterized in that the cavities of the base floor slab are filled with vibration damping material made in the form of a screw insert made of an elastic polymer, for example polyurethane, filled with a foamed polymer, for example polyethylene or polypropylene. 4. Малошумное производственное здание по п. 1, отличающееся тем, что звукопоглощающая облицовка несущих стен выполнена в виде жесткой и перфорированной стенок, между которыми расположен многослойный звукопоглощающий элемент в виде двух слоев, один из которых, прилегающий к жесткой стенке, является звукопоглощающим, а другой, прилегающий к перфорированной стенке, выполнен из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, причем каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», в качестве звукопоглощающего материала использован пористый шумопоглощающий материала, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин - 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например, типа «Acutex Т», или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом, а в качестве звукоотражающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3, а в качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом, или в качестве звукопоглощающего материала использован полиэстер, или пористый волокнистый, или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочки из тонкой стеклоткани или алюминизированной лавсановой пленки, или пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 мас.ч. перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 мас.ч. одного или нескольких спекающих материалов и 10÷20 мас.ч. связующих материалов.4. The low-noise production building according to claim 1, characterized in that the sound-absorbing lining of the bearing walls is made in the form of rigid and perforated walls, between which there is a multilayer sound-absorbing element in the form of two layers, one of which adjacent to the rigid wall is sound-absorbing, and the other, adjacent to the perforated wall, is made of a sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedra, which allow reflecting sound falling in all directions new waves, each of the perforated walls having the following perforation parameters: hole diameter 3 ÷ 7 mm, perforation percentage 10 ÷ 15%, and the shape of the hole can be made in the form of holes of a round, triangular, square, rectangular or diamond shape, while in the case of non-circular holes, the maximum diameter of the circle inscribed in the polygon should be considered as the conditional diameter, and rockwo basalt-based mineral wool slabs are used as sound-absorbing material ol ", or mineral wool of the URSA type, or basalt wool of the P-75 type, or glass wool with a glass-fiber lining, the sound-absorbing element over its entire surface lined with an acoustically transparent material, such as fiberglass type EZ-100 or a polymer of the type" seen ", as a sound-absorbing material, a porous sound-absorbing material is used, for example, foam aluminum, or cermets, or a shell rock with a degree of porosity in the range of optimal values - 30–45%, or metal foam, or material in in the form of compressed crumbs from solid vibration-damping materials, for example elastomer, polyurethane, or plastic compound such as Agate, Anti-Vibrate, Shvim, and the size of the fractions of the crumb lies in the optimal range of values: 0.3 ... 2.5 mm, and can also porous mineral piece materials, for example pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, or the surface of the fibrous sound absorbers are treated with special porous airborne paints such as Acut ex T ", or covered with breathable fabrics or nonwoven materials, for example Lutrasil, and material based on aluminum-containing alloys was used as a sound-reflecting material, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example foamed aluminum, or soundproof boards based on glass staple fiber of the “Shumostop” type with a density of material equal to 60–80 kg / m 3 , and a material based on a magnesia binder with reinforcing fiberglass or fiberglass was used as a sound-reflecting material, or polyester, or porous fibrous, or foamy sound-absorbing material, which is based on basalt or glass, is used as a sound-absorbing material. fibers, or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass or aluminized lavsan film, or a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 parts by weight perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 wt.h. one or more sintering materials and 10 ÷ 20 wt.h. binding materials. 5. Малошумное производственное здание по п. 1, отличающееся тем, что конструкция пола выполнена на упругом основании и содержит вибродемпфирующие вставки, расположенные в полостях базовых плит межэтажного перекрытия, выполненные в виде цилиндра из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник, вдоль оси которого жестко закреплены по всей длине полости цилиндра демпфирующие диски, при этом крайние диски закреплены «заподлицо» с цилиндром, а промежуточные демпфирующие диски расположены равномерно с шагом, не превышающим внутренний диаметр цилиндра, при этом упругий сердечник, осесимметрично и коаксиально расположенный внутри цилиндра вибродемпфирующей вставки, выполнен комбинированным и состоящим из упругой части в виде стержня и демпфирующей части, выполненной в виде внешней коаксиальной оболочки из вибродемпфирующего материала, например полиуретана, а демпфирующие диски, жестко закрепленные по всей длине упругого сердечника вибродемпфирующей вставки, выполнены комбинированными и состоящими из упругой части в виде оппозитно закрепленных на упругом сердечнике дисков из жесткого вибродемпфирующего материала, и демпфирующей части, выполненной в виде диска из вибродемпфирующего материала, например полиуретана.5. Low-noise industrial building according to claim 1, characterized in that the floor structure is made on an elastic base and contains vibration damping inserts located in the cavities of the base floor slabs, made in the form of a cylinder of rigid vibration-damping material, inside of which an elastic core is axisymmetrically and coaxially located along the axis of which damping disks are rigidly fixed along the entire length of the cylinder cavity, while the extreme disks are fixed “flush” with the cylinder, and the intermediate damping disks the suits are arranged uniformly with a step not exceeding the inner diameter of the cylinder, while the elastic core, axisymmetrically and coaxially located inside the cylinder of the vibration damping insert, is made combined and consisting of an elastic part in the form of a rod and a damping part made in the form of an external coaxial shell made of vibration damping material, for example polyurethane, and damping disks rigidly fixed along the entire length of the elastic core of the vibration damping insert are combined and consisting of the elastic part in the form of disks made of hard vibration-damping material opposite to that mounted on the elastic core, and the damping part made in the form of a disk of vibration-damping material, for example polyurethane.
RU2016101167A 2016-01-18 2016-01-18 Kochetov low-noise manufacturing building RU2610013C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016101167A RU2610013C1 (en) 2016-01-18 2016-01-18 Kochetov low-noise manufacturing building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016101167A RU2610013C1 (en) 2016-01-18 2016-01-18 Kochetov low-noise manufacturing building

Publications (1)

Publication Number Publication Date
RU2610013C1 true RU2610013C1 (en) 2017-02-07

Family

ID=58457697

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016101167A RU2610013C1 (en) 2016-01-18 2016-01-18 Kochetov low-noise manufacturing building

Country Status (1)

Country Link
RU (1) RU2610013C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644792C1 (en) * 2017-06-14 2018-02-14 Олег Савельевич Кочетов Low-noise earthquake-resistant industrial building
RU2665720C1 (en) * 2017-10-03 2018-09-04 Олег Савельевич Кочетов Low noise design for earth-quake proof industrial buildings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319661A (en) * 1978-09-20 1982-03-16 The Proudfoot Company, Inc. Acoustic space absorber unit
US20120247867A1 (en) * 2010-01-08 2012-10-04 Jun Yang Composite sound-absorbing device with built in resonant cavity
RU129125U1 (en) * 2012-08-21 2013-06-20 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU138068U1 (en) * 2013-05-30 2014-02-27 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU2541701C1 (en) * 2014-02-12 2015-02-20 Олег Савельевич Кочетов Kochetov's sound-absorbing structure
RU2541669C1 (en) * 2014-02-26 2015-02-20 Олег Савельевич Кочетов Kochetov's spherical acoustic absorber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319661A (en) * 1978-09-20 1982-03-16 The Proudfoot Company, Inc. Acoustic space absorber unit
US20120247867A1 (en) * 2010-01-08 2012-10-04 Jun Yang Composite sound-absorbing device with built in resonant cavity
RU129125U1 (en) * 2012-08-21 2013-06-20 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU138068U1 (en) * 2013-05-30 2014-02-27 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU2541701C1 (en) * 2014-02-12 2015-02-20 Олег Савельевич Кочетов Kochetov's sound-absorbing structure
RU2541669C1 (en) * 2014-02-26 2015-02-20 Олег Савельевич Кочетов Kochetov's spherical acoustic absorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644792C1 (en) * 2017-06-14 2018-02-14 Олег Савельевич Кочетов Low-noise earthquake-resistant industrial building
RU2665720C1 (en) * 2017-10-03 2018-09-04 Олег Савельевич Кочетов Low noise design for earth-quake proof industrial buildings

Similar Documents

Publication Publication Date Title
RU2561389C1 (en) Sound-absorbing structure
RU2561393C1 (en) Kochetov(s sound absorber for lining manufacturing facilities
RU2439253C1 (en) Acoustically comfortable room with noise protective equipment
RU2583434C1 (en) Kochetov sound absorber of circular type
RU2649681C2 (en) Kochetov sound-absorbing lining
RU2530437C1 (en) Kochetov's acoustic workshop structure
RU2610013C1 (en) Kochetov low-noise manufacturing building
RU2611650C1 (en) Low noise seismic resistance industrial building
RU2648102C1 (en) Acoustically comfortable room
RU2579021C1 (en) Acoustic panel
RU2651565C1 (en) Acoustic construction for industrial premises
RU2665720C1 (en) Low noise design for earth-quake proof industrial buildings
RU2651559C1 (en) Low-noise production building
RU2646252C1 (en) Sound-absorbing lining
RU2646238C1 (en) Acoustic device
RU2655639C2 (en) Soundproofing enclosure
RU2644792C1 (en) Low-noise earthquake-resistant industrial building
RU2565281C1 (en) Kochetov's shop acoustic structure
RU2600236C1 (en) Kochetov low-noise structure for earthquake-resistant industrial buildings
RU2663534C1 (en) Acoustic construction of building
RU2611768C1 (en) Low noise industrial building
RU2587515C1 (en) Kochetov element for compressor stations silencer
RU2530434C1 (en) Kochetov's acoustic panel
RU2671278C1 (en) Workshop acoustic structure
RU2655667C2 (en) Low-noise earthquake-resistant industrial building