RU2656205C1 - Система лазерной печати - Google Patents

Система лазерной печати Download PDF

Info

Publication number
RU2656205C1
RU2656205C1 RU2016128798A RU2016128798A RU2656205C1 RU 2656205 C1 RU2656205 C1 RU 2656205C1 RU 2016128798 A RU2016128798 A RU 2016128798A RU 2016128798 A RU2016128798 A RU 2016128798A RU 2656205 C1 RU2656205 C1 RU 2656205C1
Authority
RU
Russia
Prior art keywords
laser
arrays
printing system
working plane
array
Prior art date
Application number
RU2016128798A
Other languages
English (en)
Inventor
Ральф Гордон КОНРАДС
Стефан ГРОНЕНБОРН
Геро ХОЙСЛЕР
Хольгер МЕЭНХ
Original Assignee
Конинклейке Филипс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Н.В. filed Critical Конинклейке Филипс Н.В.
Application granted granted Critical
Publication of RU2656205C1 publication Critical patent/RU2656205C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/38Housings, e.g. machine housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • B22F12/42Light-emitting diodes [LED]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/46Radiation means with translatory movement
    • B22F12/47Radiation means with translatory movement parallel to the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/25Housings, e.g. machine housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • B29C64/282Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED] of the same type, e.g. using different energy levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • B41J2/451Special optical means therefor, e.g. lenses, mirrors, focusing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/455Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using laser arrays, the laser array being smaller than the medium to be recorded
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/225Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 using contact-printing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Laser Beam Processing (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение описывает систему (100) лазерной печати для освещения объекта, движущегося относительно лазерного модуля системы (100) лазерной печати в рабочей плоскости (180), и соответствующий способ лазерной печати. Лазерный модуль содержит, по меньшей мере, два лазерных массива (110) полупроводниковых лазеров (115) и, по меньшей мере, один оптический элемент (170). Оптический элемент (170) выполнен с возможностью формирования изображения лазерного света, излучаемого лазерными массивами (110), таким образом, что лазерный свет полупроводниковых лазеров (115) одного лазерного массива (110) отображается в один пиксель в рабочей плоскости (180) системы (100) лазерной печати, и элемент площади пикселя освещается посредством, по меньшей мере, двух полупроводниковых лазеров (115). Оптический элемент не проецирует или не фокусирует лазерный свет каждого одиночного полупроводникового лазера (115) на рабочую плоскость (180), но формирует изображения всех лазерных массивов в рабочей плоскости. Перекрытие лазерного света, излучаемого полупроводниковыми лазерами (115), может повышать однородность освещенности или подвода энергии и надежность в отношении отказов одиночных полупроводниковых лазеров (115). 2 н. и 13 з.п. ф-лы, 17 ил.

Description

Изобретение относится к системе лазерной печати и способу лазерной печати. Лазерная печать относится к печати документов, а также 3D печати посредством лазеров для аддитивного производства, например, используемого для быстрого макетирования.
УРОВЕНЬ ТЕХНИКИ
Традиционные лазерные принтеры и аппараты избирательного лазерного плавления состоят из одиночного лазера высокой мощности и сканера для сканирования лазером по освещаемой области. Для увеличения скорости обработки, желательно иметь печатающую головку с несколькими независимыми каналами, т.е. адресуемый массив лазеров, покрывающий значительную часть области. Предпочтительно, печатающая головка покрывает полную ширину области печати с одним адресуемым лазерным источником на пиксель, благодаря чему, печатающая голова должна двигаться только в одном направлении. Надежность и затраты на обслуживание таких адресуемых массивов могут представлять собой проблему.
В US 2005/0151828 A1 раскрыто устройство для ксерографической лазерной печати. Система ксерографической печати имеет сборку блока формирования изображений с лазерной печатающей штангой, включающую в себя множество микрооптических светоизлучающих массивов. Микрооптический светоизлучающий массив включает в себя множество лазеров поверхностного излучения с вертикальным объемным резонатором, где каждый лазер поверхностного излучения с вертикальным объемным резонатором фокусируется с помощью микрооптического элемента.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Таким образом, задача настоящего изобретения состоит в обеспечении усовершенствованной системы лазерной печати и соответствующего способа лазерной печати.
Согласно первому аспекту, предусмотрена система лазерной печати для освещения объекта, движущегося относительно лазерного модуля системы лазерной печати в рабочей плоскости. Лазерный модуль содержит, по меньшей мере, два лазерных массива полупроводниковых лазеров и, по меньшей мере, один оптический элемент. Оптический элемент адаптирован для формирования изображения лазерного света, излучаемого лазерными массивами, таким образом, что лазерный свет полупроводниковых лазеров одного лазерного массива отображается в один пиксель в рабочей плоскости системы лазерной печати, и элемент площади пикселя освещается посредством, по меньшей мере, двух полупроводниковых лазеров.
В известных системах лазерной печати используются либо одиночные лазеры высокой мощности, либо массивы лазеров. В случае лазеров высокой мощности может использоваться, например, одиночный полупроводниковый лазер краевого излучения, тогда как в случае лазерных массивов предпочтительно использовать лазеры поверхностного излучения с вертикальным объемным резонатором (VCSEL). Массивы VCSEL легко изготавливать в процессах на основе пластины, но они обычно излучают меньшую мощность, чем полупроводниковые лазеры краевого излучения. Оптические системы этих известных систем лазерной печати проецируют или фокусируют светоизлучающий слой каждого полупроводникового лазера на рабочую плоскость.
В отличие от этого подхода, настоящее изобретение предлагает отображать, по меньшей мере, два лазерных массива в два пикселя в рабочей плоскости посредством оптического элемента. Изображение лазерных массивов не содержит резких изображений светоизлучающих слоев полупроводниковых лазеров. Свет, излучаемый посредством, по меньшей мере, двух лазеров одного из лазерных массивов, освещает каждый элемент площади пикселя таким образом, что не существует элемента площади, который освещается только посредством одного-единственного полупроводникового лазера. Предпочтительно, три, четыре или большое количество полупроводниковых лазеров одного лазерного массива одновременно освещают один элемент площади пикселя. Возможно даже, что два лазерных массива одновременно отображаются в один и тот же пиксель.
Таким образом, на рабочую плоскость можно подавать более высокую интенсивность путем использования большого количества полупроводниковых лазеров на элемент площади пикселя. Диффузное изображение большого количества полупроводниковых лазеров массивов образует пиксели в рабочей плоскости. Система лазерной печати может быть более надежной благодаря относительно низкому вкладу каждого одиночного полупроводникового лазера в освещение или подвод энергии к объекту в рабочей плоскости посредством оптической энергии. Следовательно, отказ одиночного полупроводникового лазера лазерного массива не приводит к отказу системы лазерной печати. Длина волны излучаемого лазерного света адаптирована к поглощению объекта в рабочей плоскости.
Лазерный модуль может перемещаться относительно системы лазерной печати (сканирование) и/или объект может перемещаться относительно системы лазерной печати. Объектом может быть лист бумаги, слой порошка, который можно спекать посредством системы лазерной печати, или любой другой объект, который можно обрабатывать посредством системы лазерной печати. Может быть предпочтительно, чтобы перемещался только объект. Система лазерной печати может быть приспособлена для освещения полной ширины объекта, движущегося перпендикулярно ширине объекта посредством одного, двух, трех, четырех или более лазерных модулей. Полупроводниковые лазеры могут быть полупроводниковые лазеры краевого излучения, но массивы VCSEL могут быть предпочтительны в силу более низкой стоимости.
Оптический элемент располагается таким образом, что предметная плоскость оптического элемента относительно рабочей плоскости не совпадает с плоскостью полупроводниковых лазеров благодаря чему, конусы лазерного света, излучаемого соседними полупроводниковыми лазерами, перекрываются в предметной плоскости. Плоскость полупроводниковых лазеров лазерных массивов задается посредством светоизлучающих слоев полупроводниковых лазеров. Светоизлучающие слои содержат оптический резонатор полупроводниковых лазеров, содержащий активный слой и соответствующие зеркала резонатора. Оптический элемент может представлять собой одиночную формирующую изображение линзу или более сложную формирующую изображение оптику, задающую предметную плоскость относительно рабочей плоскости. Расположение предметной плоскости относительно светоизлучающих слоев полупроводниковых лазеров лазерных массивов может приводить к диффузному перекрывающемуся изображению светоизлучающих слоев в рабочей плоскости. Распределение энергии в рабочей плоскости, таким образом, может быть более однородным по сравнению с проекцией каждого светоизлучающего слоя из полупроводниковых слоев на рабочую плоскость. Кроме того, оптический элемент может быть столь же простым, как одна проекционная линза на лазерный модуль, но могут использоваться более сложные комбинации линз для увеличения расстояния между рабочей плоскостью и лазерными модулями. Для обеспечения резкой проекции каждого светоизлучающего слоя может не требоваться никаких массивов микролинз.
Лазерный модуль или лазерные модули системы лазерной печати, предпочтительно, содержит три, четыре или большое количество лазерных массивов. Одиночный лазерный массив может отображаться в один пиксель в рабочей плоскости. Пиксели могут примыкать друг к другу, благодаря чему, часть излучаемой оптической мощности одного лазерного массива перекрывается с оптической мощностью, излучаемой другим лазерным массивом. Возможно даже, что два, три или более лазерных массивов могут отображаться в один и тот же пиксель в рабочей плоскости. Оптический элемент может содержать массив микрооптических элементов, которые могут отображать, например, лазерный свет двух, например, соседних массивов лазерного модуля в один пиксель в рабочей плоскости. Два или более массивов в этом случае могут отображаться в один пиксель. Альтернативно или дополнительно возможно, что лазерный свет, излучаемый разными лазерными массивами, может освещать одну и ту же часть поверхности объекта в разные моменты времени. Последнее означает, что свет первого массива может освещать заданную поверхность объекта в момент времени t1, и свет второго массива может освещать заданную поверхность объекта в момент времени t2, более поздний, чем t1, когда объект переместился относительно лазерного(ых) модуля(ей). Кроме того, система печати может содержать лазерные модули с разными рабочими плоскостями. Последнее может осуществляться путем размещения лазерных модулей на разных высотах относительно опорной поверхности и/или путем обеспечения разных оптических элементов. Разные рабочие плоскости могут иметь преимущество для трехмерной печати. Альтернативно или дополнительно возможно, что лазерный(е) модуль(и) могут перемещаться относительно опорной поверхности, параллельной рабочим плоскостям, всегда находящимся на заданном расстоянии относительно лазерных модулей.
Лазерные массивы лазерного модуля или лазерных модулей могут располагаться в столбцах, перпендикулярных направлению движения объекта в рабочей плоскости. Столбцы могут располагаться ступенчато или каскадно относительно друг друга, таким образом, что первый лазерный массив первого столбца лазерных массивов адаптирован для освещения первой области объекта, и второй лазерный массив второго столбца лазерных массивов адаптирован для освещения второй области объекта, причем первая область примыкает ко второй области, что позволяет непрерывно освещать объект. Изображения лазерных массивов могут частично перекрываться, как рассмотрено выше.
Лазерные массивы могут быть прямоугольными, причем длинная сторона прямоугольника располагается параллельно направлению движения объекта в рабочей плоскости. Эта компоновка допускает более высокие суммарные мощности на пикселе путем обеспечения большего количества полупроводниковых лазеров на пиксель, без снижения разрешения в поперечном направлении, перпендикулярном направлению движения объекта.
Система лазерной печати может содержать два, три, четыре или большое количество лазерных модулей. Использование большого количества лазерных модулей может обеспечивать увеличенную область печати. Кроме того, можно избежать сложных оптических элементов путем использования, например, одной формирующей изображение линзы на лазерный модуль.
Лазерные модули может располагаться в столбцах, перпендикулярных направлению движения объекта в рабочей плоскости. Столбцы могут располагаться ступенчато или каскадно относительно друг друга, таким образом, что первый лазерный модуль первого столбца лазерных модулей адаптирован для освещения первой области объекта, и второй лазерный модуль второго столбца лазерных модулей адаптирован для освещения второй области объекта, причем первая область примыкает ко второй области, что позволяет непрерывно освещать объект.
Количество столбцов лазерных модулей может располагаться таким образом, что расстояние между лазерными модулями в одном столбце лазерных модулей минимизируется. Диаметр модуль и ширина изображения массивов могут определять количество столбцов, необходимое для обеспечения области, покрывающей освещение объекта посредством лазерных модулей. Чем больше диаметр модуля относительно ширины изображения компоновки массивов, тем больше может потребоваться столбцов.
Лазерные массивы каждого лазерного модуля могут располагаться в удлиненной компоновке, причем длинная сторона удлиненной компоновки располагается перпендикулярно направлению движения объекта в рабочей плоскости. Каждый лазерный модуль может содержать, например два, три или более столбцов лазерных массивов, перпендикулярных направлению движения объекта в рабочей плоскости. Количество массивов на столбец может превышать количество столбцов. Эта компоновка может обеспечивать однородное освещение объекта посредством относительно простой схемы возбуждения одиночных массивов, в особенности, если система лазерной печати содержит более одного лазерного модуля. Каждый элемент площади объекта в этом случае может освещаться только одним избранным лазерным массивом, причем соседние лазерные массивы освещают соседние пиксели. Скорость движения объекта в рабочей плоскости можно адаптировать для задания суммарной энергии на элемент площади объекта.
Система лазерной печати может содержать два, три, четыре или большое количество лазерных модулей, причем лазерные массивы каждого лазерного модуля располагаются в удлиненной компоновке для обеспечения широкого рабочего пространства (ширины печати, перпендикулярной направлению движения объекта) системы лазерной печати.
Лазерные массивы каждого лазерного модуля могут альтернативно располагаться в удлиненной компоновке, причем длинная сторона удлиненной компоновки располагается под наклоном или с поворотом относительно направления, перпендикулярного направлению движения объекта в рабочей плоскости. Заданный угол наклона или поворот удлиненной компоновки лазерных модулей вокруг их центров может обеспечивать профили интегральной интенсивности с плавными наклонами, которые также могут перекрываться с соседними пикселями, для повышения однородности распределения суммарной интенсивности, в особенности, если пиксели немного не выровнены относительно друг друга. Последнее сокращает усилия по выравниванию лазерных массивов и, таким образом, затраты на изготовление лазерных модулей и системы лазерной печати. Нарушение выравнивания может, в предельных случаях, компенсироваться посредством дополнительного калибровочного прогона системы лазерной печати, в котором скорость движения объекта относительно подвода энергии на единицу времени и элемент площади калибровочного объекта является определенной.
Альтернативно, два, три или более лазерных массивов одного и того же лазерного модуля или разных лазерных модулей могут быть выполнены с возможностью освещения одного и того же элемента площади объекта. Лазерные массивы могут быть выполнены с возможностью последовательного освещения элемента площади. Подвод энергии за единицу времени к элементу площади объекта в рабочей плоскости может увеличиваться. Это может обеспечивать более высокие скорости объекта и, таким образом, более высокую пропускную способность системы лазерной печати. Кроме того, может повышаться допуск в отношении нарушения выравнивания лазерных массивов и отказов одиночных полупроводниковых лазеров. Схемы возбуждения разных массивов можно адаптировать на основании калибровочных прогонов с вышеописанными калибровочными объектами.
Оптический элемент лазерных модулей может быть выполнен с возможностью уменьшения изображения лазерных массивов в рабочей плоскости. Уменьшение может обеспечивать меньший размер пикселя и более высокие плотности энергии. Каждый лазерный массив может дополнительно содержать массив микролинз как часть оптического элемента, причем массив микролинз может быть выполнен с возможностью снижения расхождения лазерного света, излучаемого полупроводниковыми лазерами. Уменьшение расхождения может использоваться для нахождения компромисса между перекрытием лазерного света, излучаемого полупроводниковыми лазерами в предметной плоскости, и размером одиночного пикселя. Кроме того, расстояние между лазерным массивом и рабочей плоскостью можно адаптировать посредством массива микролинз и/или можно упростить оптический элемент (формирующую изображение оптику).
Плотность лазерных массивов может изменяться в зависимости площади объекта, освещаемого посредством системы лазерной печати. Последняя может обеспечивать более высокие плотности мощности на заданных частях объекта. Альтернативно или дополнительно плотность полупроводниковых лазеров в массивах можно адаптировать таким образом, чтобы, например, можно было обеспечивать меньшую или большую интенсивность на краю пикселей. Кроме того, форму массивов можно адаптировать для повышения однородности и/или для создания заданного распределения интенсивности в рабочей плоскости. Массивы могут иметь, например, ромбическую, треугольную, круглую, эллиптическую, трапецеидальную или параллелограммическую форму.
Система лазерной печати может содержать, по меньшей мере, первый и вторые лазерные модули, расположенные рядом друг с другом. Каждый лазерный модуль содержит, по меньшей мере, два лазерных массива, причем, по меньшей мере, один из двух лазерных массивов первого или второго лазерного модуля выполнен в виде лазерного источника света с перекрытием таким образом, что, в ходе эксплуатации один и тот же элемент площади в рабочей плоскости может освещаться лазерным источником света с перекрытием и лазерным массивом лазерного модуля, расположенного рядом с лазерным модулем, содержащим лазерный источник света с перекрытием.
Лазерный источник света с перекрытием выполнен с возможностью компенсации потенциальных нарушений выравнивания лазерных модулей, которые могут приводить к непредусмотренным промежуткам освещения на объекте в рабочей плоскости. Поэтому перекрытие может быть частичным.
Лазерные массивы освещают каждый пиксель в рабочей плоскости. Лазерный массив, который выполнен в виде лазерного источника света с перекрытием, может быть выполнен с возможностью освещения одного и того же пикселя или части одного и того же пикселя, что и лазерный массив соседнего лазерного модуля. Это означает, что оба лазерных массива могут освещать один и тот же элемент площади в рабочей плоскости в один и тот же момент времени. Альтернативно, лазерный источник света с перекрытием может быть выполнен с возможностью освещения одного и того же элемента площади, что и лазерный массив соседнего лазерного модуля, но позже или раньше по времени. Свет лазерного источника света с перекрытием может, например, освещать один элемент площади объекта в рабочей плоскости в момент времени t1, и лазерный массив соседнего лазерного модуля может освещать один и тот же элемент площади в момент времени t2, более поздний, чем t1, ввиду движения объекта относительно лазерных модулей. Относительное движение может быть вызвано движением объекта, движением лазерных модулей или движением объекта и лазерных модулей. Суммарная интенсивность, обеспечиваемая на заданном элементе площади движущегося объекта или движущихся лазерных модулей должна адаптироваться таким образом, чтобы на элементе площади обеспечивалась, по существу, такая же энергия, как в случае полностью выровненных лазерных модулей, которым не требуется лазерный источник света с перекрытием. Энергия, которая обеспечивается на элементе площади, должна адаптироваться таким образом, чтобы избегать дефектов в объекте. При наличии полного совпадения между освещаемыми областями может использоваться только лазерный источник света с перекрытием или лазерный массив соседнего лазерного модуля. Альтернативно, оба могут использоваться с адаптированной интенсивностью (например, интенсивностью 50%), причем адаптированную интенсивность можно адаптировать к относительной скорости объекта относительно лазерного модуля. Адаптация обеспечиваемого лазерного света может быть важна в отсутствие полного совпадения между освещаемыми элементами площади (например, только перекрытие наполовину вследствие нарушения выравнивания) во избежание обеспечения слишком большой или слишком малой энергии.
Технические меры, описанные в зависимых пунктах формулы изобретения 2-13 и соответствующем описании, можно комбинировать с вышеописанным лазерным источником света с перекрытием.
Суммарная интенсивность, которая обеспечивается на, по меньшей мере, одному заданному элементу площади в рабочей плоскости, может быть такой, чтобы, по существу, одинаковая энергия обеспечивалась для каждого, по меньшей мере, одного заданного элемента площади, как в случае выровненных лазерных модулей без лазерного источника света с перекрытием.
Кроме того, суммарная интенсивность, которая обеспечивается на, по меньшей мере, одному заданному элементу площади в рабочей плоскости, может быть такой, чтобы, по существу, одинаковая энергия обеспечивалась для каждого, по меньшей мере, одного заданного элемента площади, как в случае без сдвига по времени t2-t1 между освещением, по меньшей мере, одного заданного элемента площади лазерным массивом и соответствующим лазерным источником света с перекрытием.
Адаптированная интенсивность лазерного массива и/или соответствующего лазерного источника света с перекрытием может быть такой, чтобы компенсировать потерю энергии заданного элемента площади в рабочей плоскости, который освещается лазерным массивом в момент времени t1 и лазерным источником света с перекрытием в момент времени t2.
Адаптированная интенсивность лазерного массива и/или соответствующего лазерного источника света с перекрытием можно выбирать в зависимости от строительного материала, используемого в 3D печати.
В лазерной системе, которая не заявлена, содержащей лазерный источник света с перекрытием, лазерные источники света в качестве одиночных лазеров можно использовать вместо вышеописанных лазерных массивов. Технические меры, описанные в зависимых пунктах формулы изобретения 2-13 и соответствующем описании, можно комбинировать с лазерным источником света с перекрытием в лазерной системе, содержащей одиночные лазеры (вместо лазерных массивов), если применимо.
Один пиксель может освещаться одновременно большим количеством полупроводниковых лазеров лазерного массива, и суммарное количество полупроводниковых лазеров может быть таким, чтобы отказ менее чем заранее определенного количества полупроводниковых лазеров снижал выходную мощность лазерного массива только в пределах заранее определенного значения допуска. Это позволят избегать ненужного повышения требования к сроку службы полупроводниковых лазеров.
Лазерный модуль может быть выполнен с возможностью освещения, по меньшей мере, 2, более предпочтительно 4, 16, 32, 64 или более пикселей с использованием одиночного оптического элемента, связанного с лазерным модулем.
Оптический элемент, связанный с лазерным модулем, может иметь внешний контур, полученный из круглого или вращательно симметричным контуром, который является усеченным с двух противоположных сторон, и где противоположные стороны выровнены относительно друг друга по оси, которая, предпочтительно, ориентирована в направлении, перпендикулярном направлению движения. Благодаря этому, можно добиться компактной конструкции блока освещения, содержащего множество модулей, которые располагаются ступенчато в направлении движения.
Можно обеспечить устройство управления, которое управляет полупроводниковыми лазерами по отдельности или лазерным массивом таким образом, что полупроводниковый лазер или лазерный массив, который не используется для освещения, используется для подачи тепла на рабочую плоскость.
Полупроводниковый лазер или лазерный массив, который не используется для освещения, может работать с более низкой мощностью, чем полупроводниковый лазер или лазерный массив, который используется для освещения.
По меньшей мере, два полупроводниковых лазера одного лазерного массива или, по меньшей мере, две подгруппы полупроводниковых лазеров одного лазерного массива могут по отдельности адресоваться таким образом, что выходная мощность лазерного массива имеет возможность управления путем отключения одного или более полупроводниковых лазеров или одной или более подгрупп полупроводниковых лазеров. Это позволяет осуществлять различные функции с соответствующим лазерным массивом, например, использовать лазерный массив для нагрева без плавления или спекания строительного материала или для обеспечения необходимой интенсивности в случае лазерных источников света с перекрытием.
Множество полупроводниковых лазеров, образующее массив, может располагаться таким образом, чтобы внешний контур массива имел, по существу, многоугольную, предпочтительно, по существу, шестиугольную форму. Благодаря такой конструкции, распределение интенсивности массива, по существу, не имеет резких краев.
Согласно еще одному аспекту, предусмотрена система лазерной печати, где один или более лазерных модулей, предпочтительно, содержат защитное устройство.
Защитное устройство может быть сформировано из пластины, прозрачной для лазерного света, предпочтительно, стеклянной пластины. Защитное устройство защищает оптические элементы и источники света и предохраняет лазерные модули от паров и конденсатов.
Можно обеспечивать устройство управления температурой, которое управляет температурой защитного устройства.
Устройство управления температурой может быть выполнено с возможностью нагрева защитного устройства, чтобы, по существу, препятствовать тепловому излучению из материала в рабочей плоскости к защитному устройству.
Лазерные модули образуют блок освещения, и блок освещения может быть выполнен с возможностью перемещения по рабочей плоскости.
Один лазерный массив может включать в себя, по меньшей мере, два полупроводниковых лазера.
Полупроводниковые лазеры могут представлять собой VCSEL (лазеры поверхностного излучения с вертикальным объемным резонатором) и/или VECSEL (лазер поверхностного излучения с вертикальным внешним объемным резонатором).
Согласно дополнительному аспекту настоящего изобретения предусмотрен способ лазерной печати. Способ содержит следующие этапы:
- перемещение объекта в рабочей плоскости относительно лазерного модуля;
- излучение лазерного света посредством лазерного модуля, содержащий, по меньшей мере, два лазерных массива полупроводниковых лазеров и, по меньшей мере, один оптический элемент; и
- формирование изображения лазерного света, излучаемого лазерными массивами посредством оптического элемента, таким образом, что лазерный свет полупроводниковых лазеров одного лазерного массива отображается в один пиксель в рабочей плоскости, и элемент площади пикселя освещается посредством, по меньшей мере, двух полупроводниковых лазеров, в которой оптический элемент располагается таким образом, что предметная плоскость оптического элемента относительно рабочей плоскости не совпадает с плоскостью полупроводниковых лазеров, благодаря чему конусы лазерного света, излучаемого соседними полупроводниковыми лазерами, перекрываются в предметной плоскости.
Способ может обеспечивать более однородное распределение интенсивности в рабочей плоскости.
Способ может содержать дополнительный этап перемещения лазерного(ых) модуля(ей) перпендикулярно опорной плоскости, параллельной рабочей плоскости. Движение перпендикулярно опорной плоскости позволяет разным рабочим плоскостям располагаться параллельно друг другу.
Следует понимать, что система лазерной печати по п. 1 и способ по п. 15 имеют аналогичные и/или идентичные варианты осуществления, в частности, заданные в зависимых пунктах формулы изобретения.
Следует понимать, что предпочтительный вариант осуществления изобретения также может быть любой комбинацией зависимых пунктов формулы изобретения с соответствующим независимый пунктом.
Дополнительные преимущественные варианты осуществления заданы ниже.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Эти и другие аспекты изобретения явствуют из и поясняются со ссылкой на описанные далее варианты осуществления.
Изобретение будет описано ниже, в порядке примера, на основании варианты осуществления со ссылкой на прилагаемые чертежи.
В чертежах:
Фиг. 1 демонстрирует схему первой системы лазерной печати.
Фиг. 2 демонстрирует секцию первой системы лазерной печати.
Фиг. 3 демонстрирует схему секции второй системы лазерной печати.
Фиг. 4 демонстрирует схему компоновки лазерных массивов в лазерном модуле системы лазерной печати.
Фиг. 5 демонстрирует схему первой компоновки лазерных модулей системы лазерной печати.
Фиг. 6 демонстрирует схему второй компоновки лазерных модулей системы лазерной печати.
Фиг. 7 демонстрирует профиль интегральной интенсивности, где каждый второй пиксель отключен в компоновке лазерных модулей, показанной на фиг. 6.
Фиг. 8 демонстрирует профиль интегральной интенсивности с произвольной картиной включенных/отключенных пикселей в компоновке лазерных модулей, показанной на фиг. 6.
Фиг. 9 демонстрирует схему этапов способа для способа лазерной печати.
Фиг. 10 демонстрирует схему третьей компоновки лазерных модулей системы лазерной печати.
Фиг. 11 демонстрирует схему первой компоновки лазерных модулей и соответственно соответствующих областей печати в рабочей плоскости.
Фиг. 12 демонстрирует схему варианта осуществления оптического элемента связанный с лазерным модулем.
Фиг. 13 демонстрирует схему альтернативной компоновки лазерных источников света в массиве лазерных источников света.
Фиг. 14 демонстрирует схему компоновки лазерных источников света в массиве и соответствующего профиля интегральной интенсивности массива.
Фиг. 15 демонстрирует компоновку лазерных массивов согласно фиг. 14 в лазерном модуле, изображенном на фиг. 4 с картиной включенных/отключенных пикселей и соответствующего профиля интегральной интенсивности.
Фиг. 16 демонстрирует схему компоновки лазерных источников света в массиве, аналогичном на фиг. 13, и соответствующего профиля интегральной интенсивности массива.
Фиг. 17 демонстрирует компоновку лазерных массивов согласно фиг. 16 в лазерном модуле, изображенном на фиг. 4 с картиной включенных/отключенных пикселей и соответствующего профиля интегральной интенсивности.
На протяжении чертежей, сходные числа относятся к сходным объектам. Объекты на чертежах не обязательно изображены в масштабе.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Различные варианты осуществления изобретения будет описано ниже со ссылкой на чертежи.
Фиг. 1 демонстрирует схему первой системы 100 лазерной печати. Система 100 лазерной печати содержит два лазерных массива 110 с полупроводниковыми лазерами 115 и оптическим элементом 170. Полупроводниковые лазеры 115 являются VCSEL, которые обеспечены на полупроводниковом кристалле. В этом случае все VCSEL 115 одного массива 110 обеспечены на одном кристалле. Оптическим элементом 170 является формирующая изображение линза с фокусным расстоянием f. Массивы 110 имеют ширину D, перпендикулярную плоскости чертежей, которая диффузно отображается в рабочей плоскости 180 посредством формирующей изображение линзы. Ширина d диффузного изображения каждого массива 110 с шириной D в рабочей плоскости 180 задает ширину пикселя в рабочей плоскости 180. Ширина пикселей d меньше ширины D соответствующего массива. Таким образом, изображения массивов уменьшаются. Расстояние b между рабочей плоскостью 180 и формирующей изображение линзой или оптическим элементом 170 больше фокусного расстояния f формирующей изображение линзы. Оптический элемент 170 или формирующая изображение линза задает, совместно с рабочей плоскостью 180, предметную плоскость 150 на расстоянии g, превышающем фокусное расстояние формирующей изображение линзы. Светоизлучающие поверхности VCSEL 115 располагаются не в предметной плоскости, а за предметной плоскостью на таком расстоянии, что резкой проекции светоизлучающих поверхностей VCSEL 115 не обеспечивается. Расстояние a между светоизлучающими слоями VCSEL 115 и предметной плоскостью выбирается таким образом, чтобы лазерный свет, по меньшей мере, двух VCSEL 115 одного лазерного массива 110 одновременно освещал элемент площади пикселя. Фиг. 2 более подробно демонстрирует расположение угла расхождения лазерного света, излучаемого одним VCSEL 115 относительно предметной плоскости 150. Угол расхождения VCSEL 115 определяется углом α как показано на фиг. 2, и задает конус лазерного света, излучаемого одиночным VCSEL 115. VCSEL 115 в лазерном массиве 110 имеют расстояние p относительно друг друга (шаг). Соотношение между шагом p и расстоянием a должно удовлетворять условию:
Figure 00000001
.
Лазерный свет, излучаемый VCSEL 115 лазерного массива 110, перекрывается в предметной плоскости 150 таким образом, что каждая область такого же размера, как лазерный массив 110 в предметной плоскости 150 освещается посредством, по меньшей мере, двух VCSEL 115. Следовательно, каждый элемент площади пикселя, заданный размером пикселя d, также освещается через формирующую изображение линзу посредством, по меньшей мере, двух VCSEL 115 соответствующего лазерного массива 110. VCSEL каждого лазерного массива возбуждаются параллельно и, таким образом, одновременно излучают лазерный свет. Размер пикселя определяется выражением
Figure 00000002
где увеличение M определяется выражением
Figure 00000003
Изображение лазерного массива 110 в рабочей плоскости 180 является диффузным для повышения однородности подвода энергии к объекту в рабочей плоскости 180 и повышения устойчивости к отказам одиночного VCSEL.
Суммарное расстояние между лазерными массивами 110 лазерного модуля и рабочей плоскостью 180 может увеличиваться посредством массива 175 микролинз, который можно комбинировать с лазерным массивом 110, как показано на фиг. 3. Массив 175 микролинз может располагаться между лазерным массивом 110 и предметной плоскостью 150 для уменьшения угла α расхождения каждого VCSEL 115. Расстояние a и, таким образом, суммарное расстояние до рабочей плоскости 150 должно увеличиваться, чтобы удовлетворять условию
Figure 00000001
, если шаг VCSEL 115 остается неизменным.
В усовершенствовании, условие, рассмотренное со ссылкой на фиг. 2, может достигаться с учетом активного диаметра v VCSEL 115 в случае VCSEL 115 с круглой апертурой. Активный диаметр v соответствует диаметру светоизлучающей области активного слоя. Соотношение между активным диаметром v, шагом p и расстоянием a в этом усовершенствованном варианте осуществления должно удовлетворять условию:
Figure 00000004
Фиг. 4 демонстрирует схему компоновки лазерных массивов 110 в лазерном модуле системы 100 лазерной печати. Лазер или массивы 110 VCSEL являются не квадратными, но прямоугольными, причем длинная сторона прямоугольника располагается в направлении движения объекта (см. фиг. 5). Это допускает более высокие суммарные мощности на пикселе, без снижения разрешения в поперечном направлении. Массивы 110 VCSEL дополнительно располагаются в двух столбцах, которые немного сдвинуты относительно друг друга (каскадная или ступенчатая компоновка). Это допускает заданное перекрытие относительно освещения элементов площади объекта, если объект движется перпендикулярный направлению столбцов VCSEL.
Фиг. 5 демонстрирует схему первой компоновки лазерных модулей системы 100 лазерной печати. Лазерные модули содержат ступенчатые или каскадные компоновки лазерных массивов 110, как показано на фиг. 4 и оптический элемент 170. Оптический элемент 170 формирует изображение всех лазерных массивов 110 соответствующих лазерных модулей в рабочей плоскости 180 системы 100 лазерной печати. Оптический элемент 170 задает суммарный размер Y лазерного модуля, где ширина компоновки лазерных массивов 110 соответствующего лазерного модуля задает ширину y печати одного лазерного модуля. Лазерные модули располагаются в столбцах, параллельных друг другу, причем каждый столбец сдвинут таким образом, что непрерывная область может освещаться в рабочей плоскости 180, если объект движется в направлении 250 относительно лазерных модулей. Область печати, таким образом, может адаптироваться к размеру объекта в рабочей плоскости независимо от размера Y и ширины y печати одиночного лазерного модуля. Количество столбцов, необходимое для непрерывного освещения объекта, движущегося в рабочей плоскости 180, зависит от размера Y и ширины y печати лазерных модулей. Лазерные модули в одном столбце разделены, по меньшей мере, расстоянием Y, таким образом, что, требуется, по меньшей мере, N=Y/y столбцов. Каскадные оптические элементы 170 могут быть изготовлены как единое целое, например, путем формовки стекла. Альтернативно, массив линз может быть собран из отдельных линз путем активного или пассивного выравнивания.
Фиг. 6 демонстрирует схему второй компоновки лазерных модулей системы лазерной печати. Компоновка весьма аналогична компоновке, рассмотренной со ссылкой на фиг. 5. Лазерные массивы 110 лазерных модулей наклонены (повернуты вокруг их центра) относительно направления, перпендикулярного направлению 250 движения объекта относительно лазерных модулей. Это допускает профили интегральной интенсивности с плавными наклонами, как показано на фиг. 7 и 8, которые также могут перекрываться с соседними пикселями, для повышения однородности распределения суммарной интенсивности, в особенности, если пиксели немного не выровнены относительно друг друга.
Фиг. 7 демонстрирует профиль интегральной интенсивности в направлении 610, перпендикулярном направлению 250 движения объекта относительно лазерных модулей, где каждый второй пиксель отключен, в компоновке лазерных модулей, показанной на фиг. 6. Профиль пикселей является почти треугольным, с большими наклонами, которые перекрываются с соседними пикселями. Фиг. 8 демонстрирует профиль интегральной интенсивности с произвольной картиной включенного/отключенного пикселя в компоновке лазерных модулей, показанной на фиг. 6. Числа ʺ1ʺ и ʺ0ʺ указывают, какие из соседних лазерных массивов 110 включены или отключены. Профиль интегральной интенсивности демонстрирует перекрытие двух или более соседних пикселей в рабочей плоскости 180.
Фиг. 9 демонстрирует схему этапов способа для способа лазерной печати. Показанная последовательность этапов не обязательно предусматривает одну и ту же последовательность в ходе выполнения способа. Этапы способа могут выполняться в другом порядке или параллельно. На этапе 910 объект, например, лист бумаги, перемещается в рабочей плоскости системы лазерной печати относительно лазерного модуля. На этапе 920 лазерный свет излучается посредством лазерного модуля, содержащего, по меньшей мере, два лазерных массива полупроводниковых лазеров и, по меньшей мере, один оптический элемент. На этапе 930 изображение лазерного света, излучаемого лазерными массивами, формируется таким образом, что лазерный свет полупроводниковых лазеров одного лазерного массива отображается в один пиксель в рабочей плоскости, и элемент площади пикселя освещается посредством, по меньшей мере, двух полупроводниковых лазеров. Объект может перемещаться, и одновременно лазерный свет лазерных массивов может излучаться и отображается в рабочей плоскости.
При использовании индивидуально адресуемых лазеров или лазерных массивов, максимальную скорость при печати, в особенности, процессе 3D печати можно получить, когда вдоль линии все отдельные пиксели могут записываться одновременно, т.е. отдельным лазером или лазерным массивом для каждого пикселя. Типичные значения ширины линии в системе или устройстве лазерной печати составляют порядка 30 см или более. С другой стороны, размер или ширина печати лазерного модуля индивидуально адресуемых лазеров или лазерных массивов ограничены несколькими см. Эти лазерные модули обычно соответствуют одному микроканальному охладителю, на котором располагаются лазерные модули.
Поэтому необходимо использовать несколько лазерных модулей и соответствующие микроканальные охладители и укладывать их вместе в полный модуль лазерной печати или печатающую головку. Допуски на выравнивание между соседними микроканальными охладителями с лазерными модулями может приводить к промежутку в рабочей плоскости 180, куда может не обеспечиваться или недостаточно обеспечивается лазерный свет. В худшем случае такой промежуток приводит к дефектам относительно обработки объекта в виде отпечатанных листов худшего качества или в частях, вырабатываемых посредством 3D принтера/аппарата быстрого макетирования.
Ввиду типичного размера лазерного источника 116 света 100 мкм и того факта, что несколько допусков на выравнивание суммируется друг с другом, проблема промежутка является серьезной.
Даже с небольшими допусками на каждом отдельном этапе сборки системы лазерной печати, полная цепочка допусков может приводить к значительным отклонениям 30 мкм или быть выгодно не только обеспечивать перекрывающиеся распределения интенсивности, но и использовать дополнительные лазерные источники 116 света на краю каждого лазерного модуля. Упомянутые лазерные источники 116 света являются так называемые лазерные источники 117 света с перекрытием, которые располагаются таким образом, что свет этих лазерных источников 117 света с перекрытием перекрывается со светом лазерных источников 116 света соседнего лазерного модуля. Это означает, что шаг между соседними лазерными модулями, по меньшей мере, на ширину одного лазерного источника 116 света (например, 100 мкм) меньше суммарной ширины печати лазерного модуля.
Если максимальный допуск механического/оптического выравнивания соседних лазерных модулей меньше ширины одного лазерного источника 116 света, достаточно иметь - посредством конструкции - перекрытие одного лазерного источника 116 света во избежание промежутков в рабочей плоскости, куда не может обеспечиваться лазерный свет. Как бы то ни было, альтернативно существует возможность обеспечения более чем одного лазерного источника 117 света с перекрытием, если максимальный допуск механического/оптического выравнивания соседних лазерных модулей больше ширины одного лазерного источника 116 света. В этом случае существует возможность использовать лазерные источники 117 света с перекрытием в соответствии с шириной промежутка между соседними лазерными модулями. В этом случае система лазерной печати можно калибровать таким образом, что лазерные источники 117 света с перекрытием заполняют непредусмотренный промежуток между лазерными модулями. В зависимости от промежутков и ширины одного лазерного источника 116 света, возможно, что один, два, три или даже больше лазерных источников 117 света с перекрытием используются для обеспечения непрерывного освещения рабочей плоскости.
Фиг. 10 демонстрирует вариант осуществления такой компоновки с лазерными источниками 117 света с перекрытием, которые являются лазерным источником 116 света, которые располагаются в компоновке с перекрытием соседних лазерных модулей, которые являются лазерными подмодулями 120, для компенсации потенциального нарушения выравнивания лазерных подмодулей 120 относительно друг друга. Лазерные источники 117 света с перекрытием указаны картиной линий.
Ширина печати соседних лазерных подмодулей 120 перекрываются полным лазерным источником 116 света или более явным лазерным источником 117 света с перекрытием. Лазерный источник 116 света, в отличие от предыдущих вариантов осуществления, может быть только одиночным лазером или, в соответствии с предыдущими вариантами осуществления, лазерным массивом, например, лазерными массивами 110. Одиночные лазеры могут содержать оптические элементы наподобие микролинз. В случае лазерных массивов могут содержаться массивы микролинз. Компоновка лазерных подмодулей 120 аналогична компоновке, показанной на фиг. 5. Лазерные модули, показанные на фиг. 5, располагаются таким образом, что каждый лазерный массив 110 освещает избранный пиксель или элемент площади в рабочей плоскости 180. Лазерные подмодули 120, как показано на фиг. 10, располагаются таким образом, что в случае отсутствия ошибок выравнивания в ходе сборки, лазерные источники 117 света с перекрытием адаптируются таким образом, что они могут освещать тот же элемент площади в рабочей плоскости 180, что и лазерный источник 116 света соседнего лазерного подмодуля 120.
Фиг. 11 демонстрирует компоновку лазерных модулей, аналогичную показанной на фиг. 5, с тем отличием, что показано больше двух столбцов и уменьшенное изображение, создаваемое лазерными модулями с оптическими элементами в рабочей плоскости 180. Как схематически изображено на фиг. 11, компоновка лазерных модулей включает в себя множество лазерных модулей 200, расположенных в столбцах, перпендикулярных направлению 250 движения. Аналогично фиг. 5 и 6, столбцы лазерных модулей располагаются ступенчато относительно друг друга, таким образом, что первый лазерный модуль 2001 первого столбца c1 лазерных модулей адаптирован для освещения первой области y1 в рабочей плоскости 180. Второй модуль 2002 второго столбца c2 лазерных модулей адаптирован для освещения второй области y2 в рабочей плоскости 180, причем первая область y1 примыкает ко второй области y2, что позволяет непрерывно освещать объект. Благодаря этому, освещаемые области y1, y2 в рабочей плоскости 180 образуют непрерывную область в направлении, перпендикулярном направлению движения. Как дополнительно изображено на фиг. 11, лазерные модули, которые располагаются ступенчато в направлении 250 движения, образуют каскады. Первый каскад k1 образован первыми лазерными модулями 2001, 2002, 200n столбцов. Второй каскад k2 образован вторыми лазерными модулями 2011, 2012, 201n столбцов и т.д. Количество каскадов таково, что сумма отдельных значений ширины y печати в направлении, перпендикулярном направлению 250 движения покрывает всю освещаемую область в рабочей плоскости.
Предпочтительно, лазерные массивы 110 модулей 200 располагаются, как изображено на фиг. 4. В дополнительном предпочтительном варианте осуществления, оптический элемент 175, связанный с такой компоновкой лазерных массивов 110, имеет контур, полученный из круглого или вращательно симметричным контуром, который усечен к противоположным сторонам, и где противоположные стороны 1 оптического элемента 175 выровнены относительно друг друга по оси, которая, предпочтительно, ориентирована в направлении, перпендикулярном направлению 250 движения. Точнее говоря, в случае компоновки лазерных массивов, показанной на фиг. 4, оптический элемент 175 имеет контур видоизмененного прямоугольника с двумя противоположными дугообразными короткими сторонами s, которые соединяют параллельные длинные стороны l. При этом учитывается, что круглый оптический элемент не будет полностью освещаться прямоугольной компоновкой лазерных массивов, как изображено на фиг. 4. Поэтому, участки круглого оптического элемента, которые не полностью освещены, можно исключить. Форма оптического элемента 175 позволяет уменьшить размер модуля в направлении 250 движения. В результате, можно уменьшить размер компоновки лазерных модулей в направлении 250 движения. Это имеет преимущество в том, что линия, ориентированная в направлении движения, может освещаться в течение меньшего времени, что повышает производительность всей системы 3D-печати. Также, соседние пиксели на границе между одним модулем 2001 и соседним модулем 2002 одного каскада k1 и/или одним модулем 200n одного каскада k1 и соседним модулем 2011 соседнего каскада k2 может освещаться с уменьшенным сдвигом по времени. Это также повышает качество трехмерного изделия.
Компоновка VCSEL в лазерном массиве 110 задает профиль интенсивности. Если компоновка является, по существу, прямоугольной, т.е. VCSEL располагаются в массиве в строках и столбцах, профиль 600 интегральной интенсивности массива является, по существу, прямоугольным, т.е. профиль интегральной интенсивности имеет так называемый профиль "с плоской вершиной", как изображено на фиг. 14. В модуле согласно фиг. 4, где несколько массивов 110 включено, и несколько массивов отключено, интегральная интенсивность модуля в направлении 610, перпендикулярном направлению 250 движения выглядит, как показано на фиг. 15, т.е. имеет резкие края.
Может быть желательно иметь профиль интегральной интенсивности без резких краев. Этого можно добиться посредством компоновки согласно фиг. 13, в которой VCSEL в одном массиве 110 располагаются в строках и столбцах, и в которой внешний контур массива является, по существу, многоугольным, в частности, по существу, шестиугольным. Отдельные VCSEL располагаются в точках сетки, которые располагаются ступенчато от одного столбца к следующему столбцу, причем столбцы ориентированы перпендикулярно направлению 250 движения. Предпочтительно, внешний контур массива имеет шестиугольную форму с двумя противоположными параллельными сторонами p, проходящими перпендикулярно направлению 250 движения.
Как изображено на фиг. 16, профиль 600 интегральной интенсивности лазерного массива, по существу, шестиугольной формы, как показано на фиг. 13, имеет закругленные края и аналогичен гауссову распределению интенсивности. Для лазерного модуля с включаемыми/отключаемыми массивами, профиль 600 интегральной интенсивности в направлении 610 содержит закругленные переходы, как изображено на фиг. 17. Поэтому отклонения от среднего значения интенсивности меньше.
Благодаря компоновка лазерных модулей, один пиксель в рабочей области одновременно освещается большим количеством полупроводниковых лазеров лазерного массива 110. Суммарное количество полупроводниковых лазеров можно выбирать таким образом, чтобы отказ менее заранее определенного количества полупроводниковых лазеров снижает выходную мощность лазерного массива 110 только в пределах заранее определенного значения допуска. В результате, требования к сроку службы отдельных VCSEL оказываются не слишком высокими.
Отдельные VCSEL лазерного массива можно группировать в подгруппы в отношении их адресуемости сигналами управления. Подгруппа может включать в себя, по меньшей мере, два VCSEL. По меньшей мере, две подгруппы VCSEL одной лазерного массива может по отдельности адресоваться таким образом, что выходная мощность лазерного массива 110 имеет возможность управления путем отключения одного или более подгруппы VCSEL. Также можно обеспечить вариант осуществления, где по отдельности адресуются полупроводниковые лазеры одной лазерного массива, благодаря чему выходной мощностью лазерного массива можно управлять, включая/отключая отдельные полупроводниковые лазеры.
В дополнительном варианте осуществления, полупроводниковыми лазерами или лазерными массивами компоновки лазерных модулей можно дополнительно управлять, благодаря чему, полупроводниковый лазер или лазерный массив, который не используется для освещения, можно в необязательном порядке использовать для подачи тепла к материалу в рабочей плоскости 180. С этой целью, предусмотрено устройство управления, которое управляет полупроводниковыми лазерами или лазерными массивами по отдельности. Этот нагрев можно использовать помимо вышеописанного отдельного нагревательного устройства или как исключительную нагревательную систему, которая предварительно нагревает объект до рабочей температуры.
Компоновка лазерных модулей может включать в себя источники 117 света с перекрытием, как объяснено со ссылкой на фиг. 10. Источники 117 света с перекрытием предпочтительно обеспечивать на границе между одним модулем одного столбца и соседним модулем соседнего столбца, например, модулем 2001 столбца c1 и модулем 2002 столбца c2 на фиг. 13 и/или между одним модулем в одном каскаде и соседним модулем в соседнем каскаде, например, модулем 200n в каскаде k1 и модулем 2011 в каскаде k2 на фиг. 11. Источник 117 света с перекрытием выравнивает потерю энергии, обусловленную сдвигом по времени соседних пикселей перпендикулярно направлению 250 движения вследствие ступенчатой компоновки модуля и/или вследствие каскадной компоновки модулей.
Источниками 117 света с перекрытием можно управлять таким образом, чтобы можно было компенсировать потери энергии вследствие сдвига по времени и/или потерь энергии или избытков энергии вследствие нарушения выравнивания VCSEL или массивов. Поэтому суммарную энергию, направляемую на рабочую область источниками 117 света с перекрытием, можно регулировать до энергии, необходимой для освещения в случае нулевого сдвига по времени и/или полностью выровненных VCSEL или массивов. Энергию, обеспечиваемую перекрывающимися VCSEL или массивами, можно выбирать в зависимости от типа строительного материала. Фактором влияния может быть теплопроводность объекта.
В дополнительной модификации, полупроводниковые лазеры блока освещения реализованы посредством VECSEL (лазера поверхностного излучения с вертикальным внешним объемным резонатором).
Хотя изобретение проиллюстрировано и подробно описано в чертежах и вышеприведенном описании, такие иллюстрацию и описание следует рассматривать как иллюстративные или примерные, но не ограничительные.
На основе настоящего изобретения, специалисты в данной области техники могут вывести другие модификации. Такие модификации могут предусматривать другие признаки, которые уже известны в технике, и могут использоваться вместо или помимо описанных здесь признаков.
Специалисты в данной области техники могут вносить изменения в раскрытые вариантов осуществления на основании чертежей, раскрытия и нижеследующей формулы изобретения. В формуле изобретения, слово "содержащий" не исключает наличия других элементов или этапов, и их упоминание в единственном числе не исключает наличия множества таких элементов или этапов. Лишь тот факт, что определенные меры упомянуты во взаимно различных зависимых пунктах, не говорит о том, что нельзя выгодно использовать комбинацию этих мер.
Никакие ссылочные позиции в нижеследующей формуле изобретения не следует рассматривать в порядке ограничения ее объема.
ПЕРЕЧЕНЬ ССЫЛОЧНЫХ ПОЗИЦИЙ
100 система лазерной печати
110 лазерный массив
115 полупроводниковый лазер
116 лазерный источник света
117 лазерный источник света с перекрытием 120 лазерный подмодуль
150 предметная плоскость
170 оптический элемент
175 массив микролинз
180 рабочая плоскость
200, 2001, 2002, 200n
2011, 2012, 201n лазерные модули
250 направление движения
600 интегральная интенсивность
610 направление, перпендикулярное направлению движения
750 защитное устройство
800 блок управления
910 этап способа объекта
920 этап способа излучения лазерного света
930 этап способа формирования изображения лазерного света.

Claims (18)

1. Система (100) лазерной печати для освещения объекта, движущегося относительно лазерного модуля системы (100) лазерной печати в рабочей плоскости (180), причем лазерный модуль содержит, по меньшей мере, два лазерных массива (110) полупроводниковых лазеров (115) и, по меньшей мере, один оптический элемент (170), причем оптический элемент (170) выполнен с возможностью формирования изображения лазерного света, излучаемого лазерными массивами (110), таким образом, что лазерный свет полупроводниковых лазеров (115) одного лазерного массива (110) отображается в один пиксель в рабочей плоскости (180) системы (100) лазерной печати, и элемент площади пикселя освещается посредством, по меньшей мере, двух полупроводниковых лазеров (115), причем оптический элемент (170) расположен таким образом, что предметная плоскость (150) оптического элемента (170) относительно рабочей плоскости (180) не совпадает с плоскостью полупроводниковых лазеров (115), благодаря чему конусы лазерного света, излучаемого соседними полупроводниковыми лазерами (115), перекрываются в предметной плоскости (150).
2. Система (100) лазерной печати по п. 1, в которой лазерный модуль содержит три, четыре или большее количество лазерных массивов (110).
3. Система (100) лазерной печати по п. 1, в которой оптический элемент (170) содержит одну линзу, выполненную с возможностью формирования изображения лазерного света лазерных массивов (110) в рабочей плоскости (180).
4. Система (100) лазерной печати по п. 1, в которой оптический элемент (170) выполнен таким образом, что изображения лазерных массивов (110) перекрываются в рабочей плоскости (180).
5. Система (100) лазерной печати по п. 1, в которой лазерные массивы (110) лазерного модуля расположены в столбцах, перпендикулярных направлению движения (250) объекта в рабочей плоскости (180), столбцы расположены ступенчато относительно друг друга таким образом, что первый лазерный массив (110) первого столбца лазерных массивов (110) выполнен с возможностью освещения первой области объекта, и второй лазерный массив (110) второго столбца лазерных массивов (110) выполнен с возможностью освещения второй области объекта, причем первая область примыкает ко второй области, что позволяет непрерывно освещать объект.
6. Система (100) лазерной печати по п. 1, в которой лазерные массивы (110) являются прямоугольными, причем длинная сторона прямоугольника расположена параллельно направлению движения (250) объекта в рабочей плоскости (180).
7. Система (100) лазерной печати по п. 1, содержащая два, три, четыре или большее количество лазерных модулей.
8. Система (100) лазерной печати по п. 7, в которой лазерные модули расположены в столбцах, перпендикулярных направлению движения (250) объекта в рабочей плоскости (180), столбцы расположены ступенчато относительно друг друга таким образом, что первый лазерный модуль первого столбца лазерных модулей выполнен с возможностью освещения первой области объекта, и второй лазерный модуль второго столбца лазерных модулей выполнен с возможностью освещения второй области объекта, причем первая область примыкает ко второй области, что позволяет непрерывно освещать объект.
9. Система (100) лазерной печати по п. 8, в которой ряд столбцов лазерных модулей расположен таким образом, что расстояние между лазерными модулями в одном столбце лазерных модулей минимизировано.
10. Система (100) лазерной печати по п. 8, в которой лазерные массивы (110) каждого лазерного модуля расположены в удлиненной компоновке, причем длинная сторона удлиненной компоновки расположена перпендикулярно направлению движения (250) объекта в предметной плоскости (180).
11. Система (100) лазерной печати по п. 8, в которой лазерные массивы (110) каждого лазерного модуля расположены в удлиненной компоновке, причем длинная сторона удлиненной компоновки расположена под наклоном к направлению, перпендикулярному направлению движения (250) объекта в рабочей плоскости (180).
12. Система (100) лазерной печати по п. 1, в которой оптический элемент (170) выполнен с возможностью уменьшения изображения лазерных массивов (110) в рабочей плоскости (180).
13. Система (100) лазерной печати по п. 1, в которой каждый лазерный массив (110) содержит массив (175) микролинз, причем массив микролинз выполнен с возможностью снижения расхождения лазерного света, излучаемого полупроводниковыми лазерами (115).
14. Система лазерной печати по п. 1, содержащая, по меньшей мере, первый и второй лазерные модули, расположенные рядом друг с другом, причем каждый лазерный модуль содержит, по меньшей мере, два лазерных массива (110), причем, по меньшей мере, один из двух лазерных массивов (110) первого или второго лазерного модуля выполнен в виде лазерного источника (117) света с перекрытием таким образом, что в ходе эксплуатации, по меньшей мере, один заданный элемент площади в рабочей плоскости (180) может освещаться лазерным источником (117) света с перекрытием и лазерным массивом (110) лазерного модуля, расположенного рядом с лазерным модулем, содержащим лазерный источник (117) света с перекрытием.
15. Способ лазерной печати, причем способ содержит этапы, на которых
перемещают объект в рабочей плоскости (180) относительно лазерного модуля;
излучают лазерный свет посредством лазерного модуля, содержащего, по меньшей мере, два лазерных массива (110) полупроводниковых лазеров (115) и, по меньшей мере, один оптический элемент (170); и
формируют изображение лазерного света, излучаемого лазерными массивами (110) посредством оптического элемента (170), таким образом, что лазерный свет полупроводниковых лазеров (115) одного лазерного массива (110) отображается в один пиксель в рабочей плоскости (180), и элемент площади пикселя освещается посредством, по меньшей мере, двух полупроводниковых лазеров (115), причем оптический элемент (170) расположен таким образом, что предметная плоскость (150) оптического элемента (170) относительно рабочей плоскости (180) не совпадает с плоскостью полупроводниковых лазеров (115), благодаря чему конусы лазерного света, излучаемого соседними полупроводниковыми лазерами (115), перекрываются в предметной плоскости (150).
RU2016128798A 2013-12-17 2014-12-16 Система лазерной печати RU2656205C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13197751 2013-12-17
EP13197751.4 2013-12-17
PCT/EP2014/077931 WO2015091459A1 (en) 2013-12-17 2014-12-16 Laser printing system

Publications (1)

Publication Number Publication Date
RU2656205C1 true RU2656205C1 (ru) 2018-05-31

Family

ID=49886642

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2016123826A RU2674511C1 (ru) 2013-12-17 2014-12-16 Система лазерной печати
RU2016128798A RU2656205C1 (ru) 2013-12-17 2014-12-16 Система лазерной печати

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2016123826A RU2674511C1 (ru) 2013-12-17 2014-12-16 Система лазерной печати

Country Status (10)

Country Link
US (5) US10723139B2 (ru)
EP (3) EP3079912B1 (ru)
JP (3) JP6585597B2 (ru)
KR (1) KR102283851B1 (ru)
CN (3) CN105980159B (ru)
BR (1) BR112016013879A2 (ru)
ES (1) ES2799123T3 (ru)
MX (1) MX2016007805A (ru)
RU (2) RU2674511C1 (ru)
WO (2) WO2015091485A1 (ru)

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0816308D0 (en) 2008-09-05 2008-10-15 Mtt Technologies Ltd Optical module
EP3079912B1 (en) * 2013-12-17 2020-03-25 EOS GmbH Electro Optical Systems Laser printing system
US10029421B2 (en) * 2014-09-18 2018-07-24 3Dm Digital Manufacturing Ltd Device and a method for 3D printing and manufacturing of materials using quantum cascade lasers
DE102015200134A1 (de) * 2015-01-08 2016-07-14 Trumpf Laser- Und Systemtechnik Gmbh Modular aufgebaute SLM- oder SLS-Bearbeitungsmaschine
US20180056585A1 (en) * 2015-05-12 2018-03-01 Gizmo 3D Printers Improvements in 3d printing
ES2842209T3 (es) * 2015-05-27 2021-07-13 Landa Labs 2012 Ltd Dispositivo de generación de imágenes
JP6505517B2 (ja) * 2015-06-18 2019-04-24 ローランドディー.ジー.株式会社 三次元造形装置
EP3325276B1 (en) 2015-07-23 2018-12-12 Koninklijke Philips N.V. Laser printing system
DE102015115810A1 (de) 2015-09-18 2017-03-23 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und 3D-Drucker
DE102015219866A1 (de) * 2015-10-13 2017-04-13 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
EP3368279B1 (en) 2015-10-30 2022-10-19 Seurat Technologies, Inc. Part manipulation using printed manipulation points
DE102015221623A1 (de) * 2015-11-04 2017-05-04 Eos Gmbh Electro Optical Systems Belichteroptik und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
WO2017085470A1 (en) * 2015-11-16 2017-05-26 Renishaw Plc Module for additive manufacturing apparatus and method
US10471543B2 (en) * 2015-12-15 2019-11-12 Lawrence Livermore National Security, Llc Laser-assisted additive manufacturing
CN108495741B (zh) * 2016-01-20 2020-08-04 惠普发展公司,有限责任合伙企业 打印设备
EP3411170A4 (en) 2016-01-28 2020-02-12 Seurat Technologies, Inc. GENERATIVE PRODUCTION, SYSTEM AND METHOD FOR SPACIAL HEAT TREATMENT
US11148319B2 (en) 2016-01-29 2021-10-19 Seurat Technologies, Inc. Additive manufacturing, bond modifying system and method
JP6959698B2 (ja) * 2016-04-25 2021-11-05 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company アディティブ製造装置内の複数のスキャナの較正方法
CN108602266B (zh) * 2016-05-17 2020-10-30 惠普发展公司有限责任合伙企业 具有调谐的融合辐射发射的3d打印机
US10717230B2 (en) * 2016-06-16 2020-07-21 Xerox Corporation Line laser imager for thermoplastic selective laser sintering
KR101787718B1 (ko) * 2016-06-21 2017-11-16 한국기계연구원 3차원 레이저 프린팅 장치 및 방법
CN106216862B (zh) * 2016-07-20 2018-10-16 华中科技大学 一种基于电弧增材和高能束流减材的复合制造方法及装置
EP3487688B1 (en) * 2016-07-20 2022-01-26 Sintratec AG Protection element
US10821717B2 (en) 2016-07-22 2020-11-03 General Electric Company Layer orientation control for pixel-based additive manufacturing
US10953470B2 (en) 2016-08-31 2021-03-23 Raytheon Technologies Corporation Scanning mirror navigation apparatus and method
CN106229808B (zh) * 2016-09-20 2023-08-29 中国电子科技集团公司第十三研究所 脉冲激光器
DE102016218887A1 (de) * 2016-09-29 2018-03-29 SLM Solutions Group AG Herstellen dreidimensionaler Werkstücke mittels einer Mehrzahl von Bestrahlungseinheiten
WO2018064349A1 (en) 2016-09-30 2018-04-05 Velo3D, Inc. Three-dimensional objects and their formation
JP2018059757A (ja) * 2016-10-04 2018-04-12 オムロンオートモーティブエレクトロニクス株式会社 投光光学系、物体検出装置
DE102016120044A1 (de) * 2016-10-20 2018-04-26 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur additiven Herstellung dreidimensionaler Objekte
FR3057793B1 (fr) * 2016-10-26 2021-04-09 Fives Michelin Additive Solutions Appareil et procede pour fabriquer un objet tridimensionnel
FR3057794B1 (fr) * 2016-10-26 2019-07-19 Addup Perfectionnements a la fabrication additive selective
US10919285B2 (en) * 2016-11-07 2021-02-16 General Electric Company Method and system for x-ray backscatter inspection of additive manufactured parts
DE102016222187A1 (de) * 2016-11-11 2018-05-17 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Bestimmen eines Strahlprofils eines Laserstrahls und Bearbeitungsmaschine
DE102016123000B3 (de) * 2016-11-29 2017-12-14 Scansonic Mi Gmbh Verfahren zur Überwachung eines Schutzglases und Überwachungsvorrichtung
US10399179B2 (en) 2016-12-14 2019-09-03 General Electric Company Additive manufacturing systems and methods
US10589508B2 (en) * 2016-12-15 2020-03-17 General Electric Company Additive manufacturing systems and methods
US10583530B2 (en) 2017-01-09 2020-03-10 General Electric Company System and methods for fabricating a component with laser array
US10549519B2 (en) * 2017-01-12 2020-02-04 Caterpillar Inc. Systems and methods for calibrating additive manufacturing operations based on energy density
GB201701355D0 (en) 2017-01-27 2017-03-15 Renishaw Plc Direct laser writing and chemical etching
US11548094B2 (en) * 2017-02-15 2023-01-10 General Electric Company System and methods for fabricating a component with laser array
US10317881B2 (en) 2017-03-01 2019-06-11 General Electric Company Parallelized CAD using multi laser additive printing
US10695865B2 (en) * 2017-03-03 2020-06-30 General Electric Company Systems and methods for fabricating a component with at least one laser device
JP6844347B2 (ja) * 2017-03-15 2021-03-17 株式会社リコー レーザ処理装置
US10906132B2 (en) * 2017-03-31 2021-02-02 General Electric Company Scan strategies for efficient utilization of laser arrays in direct metal laser melting (DMLM)
EP3382828A1 (en) * 2017-03-31 2018-10-03 Koninklijke Philips N.V. Inherently safe laser arrangement comprising a vertical cavity surface emitting laser
US11014302B2 (en) 2017-05-11 2021-05-25 Seurat Technologies, Inc. Switchyard beam routing of patterned light for additive manufacturing
DE102017210994A1 (de) 2017-06-28 2019-01-03 Eos Gmbh Electro Optical Systems Messsystem für eine Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts
EP3645246B1 (en) * 2017-06-28 2021-10-13 3D Systems, Inc. Three-dimensional printing system and method of forming a three-dimensional article
US11407034B2 (en) 2017-07-06 2022-08-09 OmniTek Technology Ltda. Selective laser melting system and method of using same
EP3619026A4 (en) * 2017-07-28 2020-12-09 Hewlett-Packard Development Company, L.P. THREE-DIMENSIONAL PRINTER WITH MOVEMENT DEVICE
GB201712726D0 (en) * 2017-08-08 2017-09-20 Landa Labs (2012) Ltd Electric current and heat mitigation in a printing machine writing module
US10766242B2 (en) * 2017-08-24 2020-09-08 General Electric Company System and methods for fabricating a component using a consolidating device
CN107457986A (zh) * 2017-08-26 2017-12-12 吴江中瑞机电科技有限公司 超高速循环式光固化3d打印机
EP3451470A1 (en) * 2017-08-30 2019-03-06 Koninklijke Philips N.V. Laser arrangement comprising a vcsel array
JP6642546B2 (ja) * 2017-09-21 2020-02-05 日亜化学工業株式会社 波長ビーム結合装置
TWI719261B (zh) * 2017-09-29 2021-02-21 國立中興大學 利用光學讀寫頭之積層製造裝置
US11084132B2 (en) 2017-10-26 2021-08-10 General Electric Company Diode laser fiber array for contour of powder bed fabrication or repair
WO2019099928A2 (en) * 2017-11-17 2019-05-23 Kevin Friesth Advanced automated fabrication system and methods for thermal and mechanical components utilizing quadratic or squared hybrid direct laser sintering, direct metal laser sintering, cnc, thermal spraying, direct metal deposition and frictional stir welding
US11027336B2 (en) * 2017-11-21 2021-06-08 Hamilton Sundstrand Corporation Splatter shield systems and methods for additive manufacturing
CN109940879B (zh) * 2017-12-20 2023-08-29 广州中国科学院先进技术研究所 一种新型可见光固化3d打印机的控制系统及方法
EP3509170A1 (en) * 2018-01-05 2019-07-10 Koninklijke Philips N.V. Energy efficient laser arrangement
US11376797B2 (en) 2018-01-16 2022-07-05 Hewlett-Packard Development Company, L.P. Three dimensional printing system
EP3518356A1 (en) * 2018-01-24 2019-07-31 Koninklijke Philips N.V. Laser arrangement with irregular emission pattern
EP3524409A1 (en) * 2018-02-09 2019-08-14 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing three-dimensional objects
CN111565881B (zh) * 2018-03-23 2022-06-14 普锐特冶金技术日本有限公司 激光加工头、激光加工装置以及激光加工头的调整方法
US10875094B2 (en) * 2018-03-29 2020-12-29 Vulcanforms Inc. Additive manufacturing systems and methods
EP3552806A1 (en) 2018-04-09 2019-10-16 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method of apparatus for forming an object by means of additive manufacturing
CN108581215B (zh) * 2018-05-14 2020-01-31 苏州米氪激光技术服务有限公司 一种双花纹地毯加工用的交错式激光雕刻设备
GB201807830D0 (en) * 2018-05-15 2018-06-27 Renishaw Plc Laser beam scanner
WO2019236106A1 (en) * 2018-06-08 2019-12-12 Hewlett-Packard Development Company, L.P. Printing devices
EP3588702A1 (en) * 2018-06-26 2020-01-01 Koninklijke Philips N.V. Vcsel array with small pulse delay
WO2020014344A1 (en) 2018-07-10 2020-01-16 3D Systems, Inc. Three dimensional (3d) printer with high resolution light engine
US11325299B2 (en) 2018-07-16 2022-05-10 Massachusetts Institute Of Technology Additive manufacturing via optical aperture division multiplexing
EP3598591A1 (en) * 2018-07-17 2020-01-22 Koninklijke Philips N.V. Laser arrangement with reduced building height
DE102018211972B4 (de) * 2018-07-18 2020-04-23 Trumpf Laser Gmbh Optische Anordnung zur variablen Erzeugung eines Multifoki-Profils, sowie Verfahren zum Betrieb und Verwendung einer solchen Anordnung
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
WO2020091743A1 (en) * 2018-10-30 2020-05-07 Hewlett-Packard Development Company, L.P. Microwave energy emitters with tips
KR20200053320A (ko) 2018-11-08 2020-05-18 삼성전자주식회사 홀로그래픽 디스플레이 장치
DE102018219302A1 (de) 2018-11-12 2020-05-14 Eos Gmbh Electro Optical Systems Selektives Sintern von polymerbasiertem Aufbaumaterial
DE102018219303A1 (de) 2018-11-12 2020-05-14 Eos Gmbh Electro Optical Systems Verzugsoptimiertes Kunststoffpulver
KR102130343B1 (ko) * 2018-11-14 2020-08-06 한국기계연구원 레이저와 분말을 이용한 3차원 형상 제조장치
CN113195127A (zh) 2018-12-14 2021-07-30 速尔特技术有限公司 使用用于二维打印的高通量激光从粉末创建对象的增材制造系统
JP7172963B2 (ja) * 2018-12-14 2022-11-16 株式会社デンソー 光学的測距装置、レーザ発光装置の製造方法
WO2020121959A1 (ja) * 2018-12-14 2020-06-18 株式会社デンソー 光学的測距装置、レーザ発光装置およびその製造方法
EP3898058A4 (en) 2018-12-19 2022-08-17 Seurat Technologies, Inc. ADDITIONAL MANUFACTURING SYSTEM USING A PULSE MODULATED LASER FOR TWO-DIMENSIONAL PRINTING
KR102171814B1 (ko) * 2018-12-28 2020-10-29 한국광기술원 분할 성형 지원형 광경화 3d 프린터
US20220088873A1 (en) * 2019-01-24 2022-03-24 Adaptive 3D Technologies, Llc Systems, methods, and materials for ultra-high throughput additive manufacturing
CN111654680B (zh) * 2019-03-04 2024-08-13 北京谦恒德科技有限公司 一种数字光处理光机的投影拼接方法及装置
DE102019204032B4 (de) * 2019-03-25 2021-09-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Erzeugung einer räumlich modulierbaren Leistungsdichteverteilung aus Laserstrahlung
CN110142406B (zh) * 2019-03-29 2020-05-19 西北大学 二维光纤面阵高精度激光3d金属打印机及其打印控制方法
CN109986079B (zh) * 2019-03-29 2020-04-14 西北大学 激光线阵3d金属打印机及其文件转换、打印控制方法
EP3722075B1 (en) * 2019-04-08 2022-06-29 LayerWise N.V. Three-dimensional printing system optimizing seams between zones for multiple energy beams
EP3748287B1 (en) * 2019-06-06 2021-10-13 TRUMPF Photonic Components GmbH Vcsel based pattern projector
US11230058B2 (en) 2019-06-07 2022-01-25 The Boeing Company Additive manufacturing using light source arrays to provide multiple light beams to a build medium via a rotatable reflector
US20220194002A1 (en) * 2019-07-08 2022-06-23 SLM Solutions Group AG Optical unit and system for producing a three-dimensional workpiece
JP2022544339A (ja) 2019-07-26 2022-10-17 ヴェロ3ディー,インコーポレーテッド 三次元オブジェクトの形成における品質保証
CN110899986B (zh) * 2019-08-16 2022-02-01 广东省广袤科技有限公司 激光扫描刻蚀制造二维码方法及其装置
CN110524874B (zh) * 2019-08-23 2022-03-08 源秩科技(上海)有限公司 光固化3d打印装置及其打印方法
CN110412544A (zh) * 2019-08-23 2019-11-05 上海禾赛光电科技有限公司 激光发射系统以及包括所述激光发射系统的激光雷达
KR102367742B1 (ko) * 2019-12-10 2022-02-25 (주)캐리마 선형광원 장치 및 이를 포함하는 3d프린터
BR112022015287A2 (pt) * 2020-02-03 2022-12-20 Stamm Vegh Corp Plataforma, sistemas e dispositivos para impressão 3d
JP7463782B2 (ja) * 2020-03-17 2024-04-09 富士フイルムビジネスイノベーション株式会社 発光素子アレイ、発光装置、光学装置、計測装置及び情報処理装置
CN111605191A (zh) * 2020-06-24 2020-09-01 深圳市智能派科技有限公司 一种多尺寸光固化3d打印机拼接光源
US20220062998A1 (en) * 2020-08-27 2022-03-03 Apple Inc. Novel architectures for high-throughput additive manufacturing
CN113001988B (zh) * 2021-03-12 2021-11-12 江苏乾度智造高科技有限公司 三维打印装置及方法
IT202100008102A1 (it) 2021-04-01 2021-07-01 3D New Tech S R L Sistema multi laser per additive manufacturing
US20240227308A1 (en) * 2021-05-12 2024-07-11 Hewlett-Packard Development Company, L.P. Print agent coverage amounts
IT202100013136A1 (it) 2021-05-21 2021-08-21 3D New Tech S R L Sistema multi laser per additive manufacturing
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11599084B2 (en) * 2021-06-18 2023-03-07 Kyndryl, Inc. Early notification system of degradation of 3D printed parts
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
WO2023287405A1 (en) * 2021-07-14 2023-01-19 Hewlett-Packard Development Company, L.P. Lattice cell modifications
DE102021208911A1 (de) 2021-08-13 2023-02-16 Eos Gmbh Electro Optical Systems Verbesserung der Positionsgenauigkeit der Energiezufuhr in einer additiven Fertigungsvorrichtung
US20230056905A1 (en) * 2021-08-23 2023-02-23 Palo Alto Research Center Incorporated Independently-addressable high power surface-emitting laser array with tight-pitch packing
US11827037B2 (en) * 2021-08-23 2023-11-28 Xerox Corporation Semiconductor array imager for printing systems
US20230054034A1 (en) * 2021-08-23 2023-02-23 Palo Alto Research Center Incorporated 3d package for semiconductor thermal management
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
WO2023059618A1 (en) 2021-10-07 2023-04-13 Additive Monitoring Systems, Llc Structured light part quality monitoring for additive manufacturing and methods of use
WO2023075797A1 (en) * 2021-10-29 2023-05-04 Hewlett-Packard Development Company, L.P. Flexible structures
US11987008B2 (en) 2022-01-11 2024-05-21 General Electric Company Irradiation sequences for consolidating powder material in an additive manufacturing machine
CN114536772B (zh) * 2022-04-21 2022-07-12 南京铖联激光科技有限公司 3d打印系统中智能分区控制系统及其控制方法
KR20240025737A (ko) * 2022-08-19 2024-02-27 한국전자기술연구원 열 쏠림 현상 최소화를 위한 공구 경로 패턴 면적에 따른 공구 경로 생성 방법
CN117021569B (zh) * 2023-08-24 2024-07-16 爱司凯科技股份有限公司 基于图像数据分割平移的面阵激光连续移动3d打印方法
CN117428210B (zh) * 2023-12-20 2024-03-08 中国商用飞机有限责任公司 多激光选区熔融搭接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793783A (en) * 1992-12-07 1998-08-11 Sdl, Inc. Method for producing a highpower beam from a diode laser source having one array or plural subarrays
EP1241013A1 (de) * 2001-03-13 2002-09-18 Heidelberger Druckmaschinen Aktiengesellschaft Bebilderungseinrichtung für eine Druckform mit einem Array von VCSEL-Lichtquellen
WO2011021140A2 (en) * 2009-08-20 2011-02-24 Koninklijke Philips Electronics N.V. Laser device with configurable intensity distribution

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940113A (en) 1994-12-19 1999-08-17 Xerox Corporation Lensless printing system with a light bar printhead
EP0781661A1 (en) * 1995-12-22 1997-07-02 Xerox Corporation Increased pixel density and increased printing speed in a xerographic line printer with multiple linear arrays of surface emitting lasers
CN1299167A (zh) * 1999-08-30 2001-06-13 贝尔-福斯公司 通过电阻元件提供插头放电的插座
US6393038B1 (en) * 1999-10-04 2002-05-21 Sandia Corporation Frequency-doubled vertical-external-cavity surface-emitting laser
US6264981B1 (en) 1999-10-27 2001-07-24 Anesta Corporation Oral transmucosal drug dosage using solid solution
US6353502B1 (en) 2000-06-13 2002-03-05 Eastman Kodak Company VCSEL field correction
JP2002019177A (ja) 2000-07-06 2002-01-23 Seiko Epson Corp 光プリンタヘッド
JP2002316363A (ja) * 2001-02-16 2002-10-29 Fuji Photo Film Co Ltd 光造形装置及び露光ユニット
CN100463484C (zh) 2001-03-29 2009-02-18 松下电器产业株式会社 图像写入装置,光源,光源单元,微透镜以及微透镜的制造方法
JP2003080604A (ja) * 2001-09-10 2003-03-19 Fuji Photo Film Co Ltd 積層造形装置
WO2003085457A1 (fr) 2002-04-10 2003-10-16 Fuji Photo Film Co., Ltd. Tete d'exposition, dispositif d'exposition et utilisation
DE10235434A1 (de) * 2002-08-02 2004-02-12 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens
DE10308708A1 (de) * 2003-02-28 2004-09-09 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co.Kg Vorrichtung zur Beaufschlagung eines Objektes mit Laserstrahlung, Bearbeitungsvorrichtung für die Bearbeitung eines Objektes sowie Druckvorrichtung für das Drucken von Bildinformationen
US7059530B2 (en) * 2003-04-24 2006-06-13 Psion Teklogix,Inc. Heated protective window for an optical scanning device
US8009358B2 (en) 2003-10-17 2011-08-30 Explay Ltd. Optical system and method for use in projection systems
US20050151828A1 (en) * 2004-01-14 2005-07-14 Xerox Corporation. Xerographic printing system with VCSEL-micro-optic laser printbar
US7995084B2 (en) * 2007-01-25 2011-08-09 Seiko Epson Corporation Line head and an image forming apparatus using the line head
JP4238938B2 (ja) * 2007-05-30 2009-03-18 パナソニック電工株式会社 積層造形装置
JP2009056796A (ja) * 2007-08-07 2009-03-19 Seiko Epson Corp 露光ヘッド及びそれを用いた画像形成装置
JP2009158709A (ja) * 2007-12-26 2009-07-16 Seiko Epson Corp 面発光型半導体レーザアレイおよび面発光型半導体レーザ
JP4548497B2 (ja) 2008-03-04 2010-09-22 カシオ計算機株式会社 有機elヘッドおよびそれを用いた印刷装置
US8253780B2 (en) 2008-03-04 2012-08-28 Genie Lens Technology, LLC 3D display system using a lenticular lens array variably spaced apart from a display screen
CN102905905B (zh) * 2010-03-18 2016-03-09 皇家飞利浦电子股份有限公司 激光烧结设备和用于控制激光烧结设备的方法
JP2012153029A (ja) * 2011-01-26 2012-08-16 Fuji Xerox Co Ltd 露光装置及び画像形成装置
EP3079912B1 (en) * 2013-12-17 2020-03-25 EOS GmbH Electro Optical Systems Laser printing system
JP7149834B2 (ja) 2018-12-17 2022-10-07 キヤノン株式会社 シンチレータの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793783A (en) * 1992-12-07 1998-08-11 Sdl, Inc. Method for producing a highpower beam from a diode laser source having one array or plural subarrays
EP1241013A1 (de) * 2001-03-13 2002-09-18 Heidelberger Druckmaschinen Aktiengesellschaft Bebilderungseinrichtung für eine Druckform mit einem Array von VCSEL-Lichtquellen
WO2011021140A2 (en) * 2009-08-20 2011-02-24 Koninklijke Philips Electronics N.V. Laser device with configurable intensity distribution

Also Published As

Publication number Publication date
EP3079912A1 (en) 2016-10-19
US20160279707A1 (en) 2016-09-29
EP3705300A1 (en) 2020-09-09
US20160311230A1 (en) 2016-10-27
JP6585597B2 (ja) 2019-10-02
US10723139B2 (en) 2020-07-28
EP3079912B1 (en) 2020-03-25
US11858204B2 (en) 2024-01-02
WO2015091485A1 (en) 2015-06-25
US10518555B2 (en) 2019-12-31
MX2016007805A (es) 2016-09-07
JP6810199B2 (ja) 2021-01-06
BR112016013879A2 (pt) 2017-08-08
CN105829113A (zh) 2016-08-03
CN105829113B (zh) 2018-05-15
RU2016123826A (ru) 2017-12-21
KR20160099568A (ko) 2016-08-22
JP6310560B2 (ja) 2018-04-11
JP2017503683A (ja) 2017-02-02
ES2799123T3 (es) 2020-12-14
US20220266509A1 (en) 2022-08-25
CN105980159B (zh) 2018-01-02
KR102283851B1 (ko) 2021-07-30
EP3083254A1 (en) 2016-10-26
EP3083254B1 (en) 2019-06-26
US11260583B2 (en) 2022-03-01
CN108582769B (zh) 2020-08-28
JP2019199084A (ja) 2019-11-21
WO2015091459A1 (en) 2015-06-25
US20240083109A1 (en) 2024-03-14
RU2674511C1 (ru) 2018-12-11
JP2017501052A (ja) 2017-01-12
US20200307075A1 (en) 2020-10-01
CN105980159A (zh) 2016-09-28
CN108582769A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
RU2656205C1 (ru) Система лазерной печати
JP2017501052A5 (ru)
US20200183285A1 (en) Imaging Device
US6765604B2 (en) Banding-reduced imaging of a printing form
JP7277614B2 (ja) Vcselベースのパターンプロジェクタ
EP3582008A1 (en) Exposure arrangement for an additive manufacturing system, additive manufacturing system and method of manufacturing an object
JP5495334B2 (ja) 光記録ヘッドおよび画像形成装置
JP2019177551A (ja) 紫外線照射装置
JP7443867B2 (ja) レーザーユニット及びレーザーマーカー装置
JP2011188080A (ja) 光源ユニット及びこれを用いた画像読取装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201217