WO2020121959A1 - 光学的測距装置、レーザ発光装置およびその製造方法 - Google Patents

光学的測距装置、レーザ発光装置およびその製造方法 Download PDF

Info

Publication number
WO2020121959A1
WO2020121959A1 PCT/JP2019/047775 JP2019047775W WO2020121959A1 WO 2020121959 A1 WO2020121959 A1 WO 2020121959A1 JP 2019047775 W JP2019047775 W JP 2019047775W WO 2020121959 A1 WO2020121959 A1 WO 2020121959A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
laser
regions
light receiving
Prior art date
Application number
PCT/JP2019/047775
Other languages
English (en)
French (fr)
Inventor
木村 禎祐
柳井 謙一
柏田 真司
善英 立野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019204360A external-priority patent/JP7172963B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980082046.3A priority Critical patent/CN113242982A/zh
Publication of WO2020121959A1 publication Critical patent/WO2020121959A1/ja
Priority to US17/344,417 priority patent/US20210341587A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present disclosure relates to a technique for optically measuring a distance to a target.
  • the optical distance measuring device of the present disclosure is a device that performs distance measurement using laser light, and has a light emitting region in which the length of the light emitting region in the first direction is longer than that in the second direction intersecting the first direction.
  • a light emitting section using a semiconductor laser device having, a light receiving section for detecting reflected light of laser light emitted from the light emitting section, and a target depending on the time from the light emission of the light emitting section to the light reception of the light receiving section.
  • a measuring unit for measuring the distance to the object.
  • the light emitting unit is arranged at a position where the plurality of light emitting regions are separated from each other in the second direction and at a position where the plurality of light emitting regions are in contact with each other in the first direction or a part of the light emitting regions overlap each other. ..
  • a plurality of light emitting areas can be continuous in the first direction, and the distance can be measured in a wide range at once in the first direction.
  • FIG. 1 is a schematic configuration diagram of an optical distance measuring device according to an embodiment
  • FIG. 2 is a schematic configuration diagram of the optical system
  • FIG. 3 is an explanatory view schematically showing the structure of the light receiving array
  • FIG. 4 is a schematic configuration diagram of the SPAD operation unit
  • FIG. 5 is an explanatory view showing the arrangement of two light emitting surfaces in the laser element
  • FIG. 6 is an explanatory view showing another arrangement of the two light emitting surfaces of the laser element
  • FIG. 7 is an explanatory view illustrating the structure of the laser element
  • FIG. 8 is an explanatory view showing the optical system from the laser element side
  • FIG. 9 is an explanatory view showing the optical system from the side of the light receiving array 65
  • FIG. 10 is an explanatory diagram for explaining the state of scanning in the scanning area
  • FIG. 11 is an explanatory view showing an example of the light receiving array
  • FIG. 12 is an explanatory diagram showing another configuration example of the light receiving array
  • FIG. 13 is an explanatory diagram showing still another configuration example of the light receiving array
  • FIG. 14 is an explanatory view showing a form in which a plurality of laser elements are combined
  • FIG. 15 is an explanatory view showing another embodiment in which a plurality of laser elements are combined
  • FIG. 16 is an explanatory view showing the manufacturing process of the laser element.
  • the optical distance measuring device 20 of the first embodiment optically measures a distance, and as shown in FIG. 1, projects light for distance measurement on an object OBJ to be distance measured.
  • the optical system 30 that receives the reflected light and the SPAD calculation unit 100 that drives the optical system 30 and processes the signal obtained from the optical system 30 are provided.
  • the optical system 30 emits a laser light, a light emitting unit 40, a scanning unit 50 that scans the laser light from the light emitting unit 40 within a predetermined range, and receives reflected light from the range scanned by the laser light. And a light receiving unit 60.
  • the light emitting unit 40 includes a semiconductor laser element (hereinafter, also simply referred to as a laser element) 41 that emits a laser beam for distance measurement, a circuit board 43 in which a drive circuit of the laser element 41 is incorporated, and a laser element 41.
  • a collimator lens 45 for collimating the emitted laser light is provided.
  • the laser element 41 is a laser diode capable of oscillating a so-called short pulse laser, and the pulse width of the laser light is about 5 nsec. By using a short pulse of 5 nsec, it is possible to improve the resolution of distance measurement.
  • the scanning unit 50 includes a surface reflecting mirror 51 that reflects the laser light that is collimated by the collimator lens 45, a case 53 that holds the surface reflecting mirror 51 rotatably by a rotating shaft 54, and a rotary that rotates and drives the rotating shaft 54.
  • a solenoid 55 is provided.
  • the rotary solenoid 55 receives a control signal Sm from the outside and repeats normal rotation and reverse rotation within a predetermined angle range (hereinafter referred to as an angle of view range).
  • an angle of view range hereinafter referred to as an angle of view range
  • the rotary shaft 54, and thus the surface reflecting mirror 51 also rotates within this range.
  • the laser light incident from the laser element 41 through the collimator lens 45 is scanned in the horizontal direction (H direction) in the drawing within a predetermined angle of view range.
  • the laser element 41 has a shape that is long in the direction orthogonal to the H direction (hereinafter referred to as the V direction). The structure and emission shape of the laser element 41 will be described in detail later.
  • the optical system 30 can perform distance measurement in a region defined by the height of the laser light in the V direction and the angle range of the scanning unit 50 in the H direction.
  • the laser beam output from the optical distance measuring device 20 toward this area is diffusely reflected on the surface of an object OBJ such as a person or a car, and part of the object is a surface reflecting mirror of the scanning unit 50. Return in the 51st direction.
  • the reflected light is reflected by the surface reflecting mirror 51, enters the light receiving lens 61 of the light receiving unit 60, is condensed by the light receiving lens 61, and enters the light receiving array 65.
  • the structure of the light-receiving array 65 is shown schematically in FIG.
  • the light receiving array 65 includes a plurality of light receiving elements 68.
  • the light receiving element 68 uses an avalanche photodiode (APD) in order to realize high response and excellent detection ability.
  • APD avalanche photodiode
  • photons reflected light
  • electron/hole pairs are generated, and the electrons and holes are accelerated by a high electric field, respectively, and collision ionization is caused one after another to generate new electron/hole pairs.
  • Avalanche phenomenon As described above, since the APD can amplify the incident photons, the APD is often used when the intensity of the reflected light becomes small like a distant object.
  • the avalanche phenomenon can occur even when a single photon is incident, so the detection sensitivity can be further increased.
  • Such an APD operated in the Gaiga mode may be referred to as a single photon avalanche diode (SPAD: Single Photon Avalanche Diode).
  • each light receiving element 68 as shown in the equivalent circuit of FIG. 3, a quench resistor Rq and an avalanche diode Da are connected in series between a power supply Vcc and a ground line, and the voltage at the connection point is converted into a logical operation element. It is input to the inverting element INV, which is one of the two, and is converted into a digital signal whose voltage level is inverted. Since the output of the inverting element INV is connected to one input of the AND circuit SW, if the other input is at the high level H, it is directly output to the outside. The state of the other input of the AND circuit SW can be switched by the selection signal SC.
  • the selection signal SC is used to specify from which light receiving element 68 of the light receiving array 65 the signal is to be read, and therefore may be referred to as an address signal.
  • an analog switch may be used instead of the AND circuit SW.
  • a PIN photodiode may be used instead of the avalanche diode Da.
  • the avalanche diode Da If no light is incident on the light receiving element 68, the avalanche diode Da is kept in a non-conducting state. Therefore, the input side of the inverting element INV is held in the pulled-up state, that is, the high level H, through the quench resistor Rq. Therefore, the output of the inverting element INV is kept at the low level L.
  • the avalanche diode Da is turned on by the incident light (photon). As a result, a large current flows through the quench resistor Rq, the input side of the inverting element INV once becomes low level L, and the output of the inverting element INV is inverted to high level H.
  • the inverting element INV outputs a pulse signal that becomes high level for a very short time when light (photons) enters each light receiving element 68.
  • the output signal of the AND circuit SW that is, the output signal Sout from each light receiving element 68, is output from the avalanche diode Da.
  • the digital signal reflects the status.
  • each light receiving element 68 is generated when the laser element 41 emits light and the light is reflected back to the object OBJ existing in the scanning range. Therefore, as shown in FIG. 4, after the light emitting unit 40 is driven and the laser light (hereinafter referred to as irradiation light pulse) is output, the reflected light pulse reflected by the object OBJ is each light receiving element of the light receiving unit 60.
  • the distance to the target can be detected by measuring the time Tf until the detection by 68.
  • the object OBJ can be present in various positions from near to far from the optical distance measuring device 10.
  • the light receiving element 68 outputs a pulse signal when receiving the reflected light, as described above.
  • the pulse signal output from the light receiving element 68 is input to the SPAD operation unit 100 corresponding to the distance measuring unit.
  • the SPAD calculation unit 100 makes the laser element 41 emit light to scan the external space, and from the time from the time when the laser element 41 outputs the irradiation light pulse to the time when the light receiving array 65 of the light receiving unit 60 receives the reflected light pulse. , Calculates the distance to the object OBJ.
  • the SPAD operation unit 100 includes a well-known CPU and memory, and executes a program prepared in advance to perform processing required for distance measurement.
  • the SPAD calculation unit 100 includes an addition unit 120, a histogram generation unit 130, a peak detection unit 140, a distance calculation unit 150, and the like, in addition to the control unit 110 that performs overall control.
  • the adder unit 120 is a circuit that adds the outputs of a larger number of light receiving elements included in the light receiving element 68 forming the light receiving unit 60.
  • N ⁇ N N is an integer of 2 or more
  • light receiving elements are further provided inside the light receiving element 68, and when a reflected light pulse enters one light receiving element 68 constituting the light receiving unit 60, N ⁇ N elements operate.
  • 7 ⁇ 7 SPADs are provided in one light receiving element 68. Needless to say, the number and arrangement of SPADs can be various other than 7 ⁇ 7, for example, 5 ⁇ 9.
  • the light receiving element 68 is composed of a plurality of SPADs because of the characteristics of the SPADs.
  • the SPAD can detect only one photon, but the detection of the SPAD by the limited light from the object OBJ must be probabilistic.
  • the addition unit 120 of the SPAD operation unit 100 adds the output signal Sout from the SPAD that can detect the reflected light only stochastically and reliably detects the reflected light.
  • the light receiving element 68 may be composed of a single SPAD.
  • the histogram generation unit 130 receives the reflected light pulse thus obtained.
  • the histogram generation unit 130 adds the addition results of the addition unit 120 a plurality of times to generate a histogram.
  • the signal detected by the light receiving element 68 includes noise due to ambient light, etc.
  • the peak detection unit 140 detects the peak of the signal by analyzing the histogram from the histogram generation unit 130.
  • the peak of the signal is nothing but the reflected light pulse from the target OBJ that is the target of distance measurement.
  • the distance calculation unit 150 detects the distance D to the object by detecting the time Tf from the irradiation light pulse to the peak of the reflected light pulse.
  • the detected distance D is output to the outside, for example, if the optical distance measuring device 20 is mounted on an automatic driving vehicle, the automatic driving device or the like. Of course, it can be used as a fixed distance measuring device as well as a moving body such as a drone, an automobile, or a ship.
  • the control unit 110 instructs the circuit board 43 of the light emitting unit 40 to generate a histogram in addition to the command signal SL that determines the light emission timing of the laser element 41, the address signal SC that determines which light receiving element 68 is activated.
  • a signal St for instructing the generation timing of the histogram for the unit 130 and a drive signal Sm for the rotary solenoid 55 of the scanning unit 50 are output.
  • the control unit 110 outputs these signals at a predetermined timing, so that the SPAD operation unit 100 detects the object OBJ existing in a predetermined range together with the distance D to the object OBJ.
  • the optical distance measuring device 20 described above includes, as shown in FIG. 5, two laser emission regions La and Lb that are vertically long in the V direction. As will be described later, the two laser emission regions La and Lb are formed as one semiconductor. The two laser emission regions La and Lb are arranged so as to be displaced in the longitudinal direction of the emission region, and the lower end of the laser emission region La coincides with the upper end of the laser emission region Lb.
  • the longitudinal direction of the laser emission region is also referred to as the first direction.
  • the laser emission regions La and Lb are arranged so as to be offset from each other in the direction orthogonal to the longitudinal direction (hereinafter, referred to as the width direction or the second direction), but the laser emission regions La and Lb have the continuous length LL in the first direction. Forming a region. As shown in FIG. 6, the two laser emission regions La and Lb may be arranged so as to slightly overlap each other in the first direction, and the laser element 41A may be configured to have the length in the first direction as LLA. ..
  • the laser element 41 includes a solder layer 80 at the center in the width direction, and the two laser emission regions La and Lb are point-symmetrical with the center in the direction along the layer of the solder layer 80 as the center of symmetry. It has a structure arranged in. As a result, the laser emission regions La and Lb are arranged at positions contacting with each other at the center CA in the direction along the layer of the solder layer 80. The method of manufacturing the laser element 41 will be described later.
  • the laser element 41 is composed of a laser chip 70 having a light emitting region La and a laser chip 90 having a light emitting region Lb on both sides of the central solder layer 80.
  • the laser chip 70 includes an N-type electrode 78, an insulating layer 77, an N-type cladding layer 76, a light emitting layer 75, a P-type cladding layer 73, a P-type electrode 72, and a bonding electrode 71 in order from the solder layer 80 side.
  • the laser chip 90 includes a P-type electrode 98, an insulating layer 97, a P-type clad layer 96, a light emitting layer 95, an N-type clad layer 93, an N-type electrode 92, and a bonding electrode 91 in this order from the solder layer 80 side. .. Since the light emitting layers 75 and 95 including the two laser light emitting regions La and Lb have the opposite layer structures of N-type and P-type, by applying a voltage between the bonding electrode 71 and the bonding electrode 91, the two lasers are emitted. The light emitting areas La and Lb can be made to emit light.
  • the light emitting layer 95 including the light emitting region Lb has a layer structure in which the light emitting layer 75 has the same layer configuration as that of the light emitting layer 75, and the same potential is applied between the solder layer 80 and the bonding electrode 71 and between the solder layer 80 and the bonding electrode 91. May be given to cause the two laser emission regions La and Lb to emit light in the same manner.
  • the laser element 41 includes vertically elongated light emitting regions La and Lb, and these light emitting regions La and Lb are separated from each other in the width direction (second direction) and in the longitudinal direction (first direction). It is arranged at a contact position (FIG. 5) or an overlapping position (FIG. 6) in the direction. Therefore, when the illumination pulse from the laser element 41 is output to the outside via the collimator lens 45 of the light emitting section 40, the height of the irradiation range PL in the V direction in the scanning range is as shown in FIG.
  • the width is at least twice or slightly less than that. Therefore, as in the present embodiment, only by providing the scanning unit 50 capable of scanning in only one direction, it is possible to measure the distance at once in a wide range not only in the H direction but also in the V direction.
  • the laser beam irradiation range is also divided into irradiation ranges Pa and Pb even in the scanning range.
  • the reflected light from the irradiation ranges Pa and Pb separated in the second direction (H direction) enters the light receiving array 65 via the light receiving lens 61 of the light receiving unit 60, as shown in FIG.
  • the reflected light from the irradiation ranges Pa and Pb is also imaged on the light receiving array 65 at the positions Ra and Rb displaced in the second direction. Since the plurality of light receiving elements 68 are arranged in the light receiving array 65, the reflected light can be detected by each of these light receiving elements 68.
  • the illumination pulse from the laser element 41 is moved in the H direction by the rotation of the surface reflecting mirror 51 of the scanning unit 50.
  • This state is shown in FIG.
  • the irradiation ranges Pa and Pb in the scanning range TG for distance measurement move in the horizontal direction (H direction).
  • the irradiation ranges Pa and Pb are shifted in the H direction (second direction) and partially overlap in the V direction (first direction).
  • Reflected light pulses from the irradiation ranges Pa and Pb are reflected by the surface reflecting mirror 51 and are incident on the light receiving unit 60. Therefore, the position of the light receiving unit 60 on the light receiving array 65 is the scanning position (emission direction) of the laser light. It is the same regardless of the change.
  • the light receiving array 65 for detecting the reflected light from the irradiation ranges Pa and Pb deviated in the second direction has a configuration in which a plurality of light receiving elements 68 are arranged in a two-dimensional matrix. can do.
  • the control unit 110 may output the address signal SC at an appropriate timing to each light receiving element 68 that the reflected light is supposed to enter.
  • each light receiving element 68 corresponding to the position of this object OBJ causes a reflected light pulse at a time TOF corresponding to the position of the object OBJ (distance from the optical distance measuring device 20).
  • the light receiving element to which reflected light does not enter may have the signal SC turned off (not activated) in advance.
  • FIGS. 12 and 13 may be adopted instead of the two-dimensional arrangement of the light receiving elements 68 shown in FIG.
  • FIG. 12 shows a configuration in which each light receiving element 68 is provided only at a position on the light receiving array 65 where reflected light forms an image. By doing so, the number of light receiving elements 68 can be significantly reduced as compared with the configuration of FIG.
  • each light receiving element 69 has a long structure in the width direction, and each light receiving element 69 is a one-dimensional array. By doing so, not only the number of light receiving elements 69 can be significantly reduced as compared with the configuration of FIG. 11, but also the alignment in the second direction is facilitated.
  • the optical distance measuring device 20 using the laser element 41 can measure the distance in a wide range corresponding to the light emitting area at one time. As a result, even if the scanning unit 50 is limited to unidirectional scanning, distance measurement can be performed in a wide two-dimensional range. Since the light emitting area of the laser element 41 is continuous, there is no occurrence of a scanning leakage area while using a plurality of light emitting elements.
  • the laser element 41 has two laser chips 70 and 90 and has two light emitting regions. However, a single laser element 41 may have two or more light emitting regions. Good. Further, two or more semiconductor laser elements having one or a plurality of light emitting regions may be combined to have a plurality of light emitting regions. 14 and 15 show configuration examples having a large number of light emitting regions. In the example shown in FIG.
  • the semiconductor laser element 41B is formed by combining the two laser elements 412.
  • the light emitting areas La1 to La4 of the first laser element 411 and the light emitting areas Lb1 to Lb4 of the second laser element 412 are arranged at alternate positions, and the light emitting areas are continuous in the arrangement direction (first direction) of the plurality of light emitting areas. Will be done.
  • the longitudinal dimension rr of the light emitting regions may be set larger than the interval rL of the light emitting regions to partially overlap the light emitting regions.
  • both the first laser element 411 and the second laser element 412 have a plurality of light emitting areas, but the number of light emitting areas may be one, or at least one of the two or more light emitting areas. It may have a region.
  • the light receiving array 65B also has a size in the first direction corresponding to this, and many light receiving elements are arranged two-dimensionally.
  • the light receiving elements may be arranged in the same manner as the arrangement of the light receiving elements shown in FIGS. By doing so, it is possible to realize the laser element 41B having a long light emitting region which is displaced in the second direction but is continuous in the first direction. If this laser element 41B is used, the optical distance measuring device 20 can perform distance measurement in a wide range in the V direction corresponding to this light emitting area at once. As a result, even if the scanning unit 50 is limited to unidirectional scanning, distance measurement can be performed in a wide two-dimensional range.
  • the light emitting region of the laser element 41B is continuous, there is no occurrence of a scanning leakage region while using a plurality of light emitting elements.
  • the two laser elements of the first laser element 411 and the second laser element 412 are used in the embodiment shown in FIG. 14, three or more laser elements may be used.
  • the plurality of light emitting regions Lc1 to Lc7 are arranged so as to be inclined with respect to the arrangement direction (first direction) of the plurality of light emitting regions Lc1 to Lc7 to form a laser element 41C. It is also possible.
  • each light emitting region when viewed in the arrangement direction of the light emitting regions Lc1 to Lc7, has a dimension of length rA in the V direction, and the light emitting region of this length rA has light emitting regions Lc1 to Lc7. Will be continuous in the array direction.
  • each of the light emitting regions Lc1 to Lc7 can be realized by different semiconductor laser elements, as in the laser element 41B of FIG.
  • the laser element 41C may be realized by combining a plurality of semiconductor laser elements having a plurality of light emitting regions.
  • the laser element 41 used in the first embodiment includes two laser chips 70 and 90 with the solder layer 80 interposed therebetween.
  • each layer is laminated by a semiconductor process, and a plurality of light emitting regions are formed at a predetermined pitch in the surface direction (first direction) of each layer. Be done.
  • the laser chips 70 and 90 are cut at predetermined places, and these are stacked and soldered. By soldering, the two laser chips 70 and 90 are joined by the solder layer 80, and the laser element 41 is obtained.
  • the pitch of the light emitting regions should be the same as or slightly shorter than the longitudinal dimension of the light emitting regions when laminating the laser chips, and a plurality of light emitting regions should be provided when cutting out the laser chips.
  • the area may be included.
  • the light emitting region as a laser element continuous in the first direction without having to make the light emitting regions continuous in one laser chip.
  • the laser chip 70 and the laser chip 90 are inverted and connected. Alternatively, they may be combined without being inverted.
  • the laser chips 70 and 90 may be configured as different P-type and N-type laser chips, or the laser elements may be configured using the same type of laser chips.
  • the two laser chips 70 and 90 are connected to each other by inverting one with respect to the other by the solder layer 80. Therefore, the distance between the two light emitting regions La and Lb in the second direction can be shortened. Therefore, the distance between the light receiving elements can be reduced.
  • one light emitting region La, Lb is formed in each of the laser chips 70, 90, but two or more light emitting regions of the semiconductor layer are formed in at least one of the laser chips. It may be arranged such that they are shifted in the layer direction and combined. In that case, three or more laser chips may be combined.
  • the present disclosure is not limited to the above-described embodiments, and can be realized with various configurations without departing from the spirit of the present disclosure.
  • the technical features in the embodiments corresponding to the technical features in each mode described in the section of the summary of the invention are provided in order to solve some or all of the above-mentioned problems, or one of the effects described above. It is possible to appropriately replace or combine in order to achieve a part or all. If the technical features are not described as essential in this specification, they can be deleted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本発明の光学的測距装置(20)は、発光部(40)に、第1方向の長さが前記第1方向に交差する第2方向と比べて長い発光領域(La,Lb)を有する半導体レーザ素子(41)を用い、前記発光部(40)の発光から受光部(60)の受光までの時間に応じて、対象物までの距離を測定する。ここで、前記発光部(40)において、複数の発光領域(La,Lb)が、前記第2方向に離間し、かつ、前記第1方向において接する位置又は一部が重なる位置に配置されることにより、前記第1方向に連続した発光領域を形成することができる。

Description

光学的測距装置、レーザ発光装置およびその製造方法 関連出願の相互参照
 本願は、2018年12月14日に日本国において出願された特許出願番号2018-234447号および2019年11月12日に日本国において出願された特許出願番号2019-204360号に基づくものであって、それらの優先権の利益を主張するものであり、それらの特許出願の全ての内容が、参照により、本願明細書に組み入れられる。
 本開示は、光学的に対象までの距離を測定する技術に関する。
 特開2016-176721号公報に記載されているように、レーザ光を所定の領域に投写し、その反射光を検出するまでに時間により、対象物までの距離を測定する測距技術が知られている。こうした測距技術では、レーザ光を2次元的に走査して所定の領域における対象物までの距離を測定する際、レーザ光の主走査方向に交差する副走査方向に、複数のレーザ光源を配列し、一度の主走査で、副走査方向に所定の範囲に亘って、対象物を検出することが試みられている。
 しかしながら、半導体レーザ素子において複数の光源(発光面)を副走査方向に配列しようとすると、光源となるレーザ素子の発光面とこれに隣接する発光面とを隙間なく並べることは極めて困難であり、レーザ素子の1つの発光面がカバーする範囲と、これに隣接する発光面がカバーする範囲との間に隙間が空いてしまう虞があった。こうしたレーザ光がカバーする範囲に隙間が生じると、この隙間に入った対象物の検出が上手く行かず、検出できたとしても検出までに相当の遅れが生じるといった場合が考えられた。
 本開示は、以下の形態又は適用例として実現することが可能である。
 本開示の光学的測距装置は、レーザ光を用いて測距を行なう装置であって、発光領域の第1方向の長さが前記第1方向に交差する第2方向と比べて長い発光領域を有する半導体レーザ素子を用いた発光部と、前記発光部から射出されたレーザ光の反射光を検出する受光部と、前記発光部の発光から前記受光部の受光までの時間に応じて、対象物までの距離を測定する測定部とを備える。ここで、前記発光部は、複数の前記発光領域が、前記第2方向に離間し、かつ前記複数の発光領域が前記第1方向において接する位置または発光領域の一部が重なる位置に配置される。
 こうした光学的測距装置は、複数の発光領域を、第1方向に連続させることができ、測距を第1方向に関して、一度に広い範囲について行なうことができる。
図1は、実施例の光学的測距装置の概略構成図であり、 図2は、光学系の概略構成図であり、 図3は、受光アレイの構成を模式的に示す説明図であり、 図4は、SPAD演算部の概略構成図であり、 図5は、レーザ素子における2つの発光面の配置を示す説明図であり、 図6は、レーザ素子における2つの発光面の他の配置を示す説明図であり、 図7は、レーザ素子の構造を例示する説明図であり、 図8は、光学系をレーザ素子の側から示す説明図であり、 図9は、光学系を受光アレイ65の側から示す説明図であり、 図10は、走査領域における走査の様子を説明する説明図であり、 図11は、受光アレイの一例を示す説明図であり、 図12は、受光アレイの他の構成例を示す説明図であり、 図13は、受光アレイの更に他の構成例を示す説明図であり、 図14は、複数のレーザ素子を組み合わせた形態を示す説明図であり、 図15は、複数のレーザ素子を組み合わせた他の形態を示す説明図であり、 図16は、レーザ素子の製造工程を示す説明図である。
A.第1実施形態:
 第1実施形態の光学的測距装置20は、距離を光学的に測距するものであり、図1に示すように、測距する対象OBJに対して測距のための光を投射し、反射光を受ける光学系30および光学系30を駆動し、また光学系30から得られた信号を処理するSPAD演算部100を備える。光学系30は、レーザ光を射出する発光部40と、発光部40からのレーザ光を測距する所定の範囲に走査する走査部50と、レーザ光を走査した範囲からの反射光を受光する受光部60とを備える。
 光学系30の詳細を図2に示す。図示するように、発光部40は、測距用のレーザ光を射出する半導体レーザ素子(以下、単にレーザ素子とも言う)41、レーザ素子41の駆動回路を組み込んだ回路基板43、レーザ素子41から射出されたレーザ光を平行光にするコリメートレンズ45を備える。レーザ素子41は、いわゆる短パルスレーザを発振可能なレーザダイオードであり、レーザ光のパルス幅は、5nsec程度である。5nsecの短パルスを用いることで、測距の分解能を高めることができる。
 走査部50は、コリメートレンズ45により平行光とされたレーザ光を反射する表面反射鏡51、この表面反射鏡51を回転軸54により回転可能に保持するケース53、回転軸54を回転駆動するロータリソレノイド55を備える。ロータリソレノイド55は、外部からの制御信号Smを受けて、所定の角度範囲(以下、画角範囲という)内で正転および逆転を繰り返す。この結果、回転軸54、延いては表面反射鏡51もこの範囲で回動する。結果的にコリメートレンズ45を介してレーザ素子41から入射したレーザ光は、図示横方向(H方向)に所定の画角範囲で走査される。
 表面反射鏡51を所定範囲内で駆動することにより、発光部40が射出されたレーザ光は、横方向(H方向)に走査される。レーザ素子41は、H方向に対して、これに直交する方向(以下、V方向という)に長い形状を備えている。レーザ素子41の構造と、発光形状については、後で詳しく説明する。
 光学系30は、レーザ光のV方向高さと、走査部50によるH方向の角度範囲とで規定される領域で、測距を行なうことができる。光学的測距装置20から、この領域に向けて出力されるレーザ光は、人や車などの対象物OBJがあると、その表面で乱反射し、その一部は、走査部50の表面反射鏡51方向に戻ってくる。この反射光は、表面反射鏡51で反射し、受光部60の受光レンズ61に入射し、受光レンズ61で集光されて、受光アレイ65に入射する。
 受光アレイ65の構成を模式的に図3に示した。受光アレイ65は、複数の受光素子68から構成されている。受光素子68は、高い応答性と優れた検出能力とを実現するために、アバランシェフォトダイオード(APD)が用いられる。APDに反射光(フォトン)が入射すると、電子・正孔対が生成され、電子と正孔が各々高電界で加速され、次々と衝突電離を引き起こして新たな電子・正孔対が生成される(アバランシェ現象)。このように、APDはフォトンの入射を増幅することができることから、遠くの対象物のように反射光の強度が小さくなる場合には、APDが用いられることが多い。APDの動作モードには、降伏電圧未満の逆バイアス電圧で動作させるリニアモードと、降伏電圧以上の逆バイアス電圧で動作させるガイガモードとがある。リニアモードでは、生成される電子・正孔対よりも高電解領域から出て消滅する電子・正孔対の数が大きく、電子・正孔対の崩壊は自然に止まる。このため、APDからの出力電流は、入射光量にほぼ比例する。
 他方、ガイガモードでは、単一フォトンの入射でもアバランシェ現象を起こすことができるため、検出感度を更に高めることができる。こうしたガイガモードで動作されるAPDを、シングルフォトンアバランシェダイオード(SPAD:Single Photon Avalanche Diode)と呼ぶことがある。
 各受光素子68は、図3の等価回路を示すように、電源Vccと接地ラインとの間に直列にクエンチ抵抗器RqとアバランシェダイオードDaを接続し、その接続点の電圧を論理演算素子の一つである反転素子INVに入力し、電圧レベルの反転したデジタル信号に変換している。反転素子INVの出力は、アンド回路SWの一方の入力に接続されているから、他方の入力がハイレベルHになっていれば、外部にそのまま出力される。アンド回路SWの他方の入力の状態は、選択信号SCにより切り換えることができる。選択信号SCは、受光アレイ65のどの受光素子68からの信号を読み出すかを指定するのに用いられることから、アドレス信号と呼ぶことがある。なお、アバランシェダイオードDaをリニアモードで用い、その出力をアナログ信号のまま扱う場合などには、アンド回路SWに代えて、アナログスイッチを用いればよい。また、アバランシェダイオードDaに代えて、PINフォトダイオードを用いることも可能である。
 受光素子68に光が入射していなければ、アバランシェダイオードDaは、非導通状態に保たれる。このため、反転素子INVの入力側は、クエンチ抵抗器Rqを介してプルアップされた状態、つまりハイレベルHに保たれている。従って、反転素子INVの出力はロウレベルLに保たれる。各受光素子68に外部から光が入射すると、アバランシェダイオードDaは、入射した光(フォトン)により通電状態となる。この結果、クエンチ抵抗器Rqを介して大きな電流が流れ、反転素子INVの入力側は一旦ロウレベルLとなり、反転素子INVの出力はハイレベルHに反転する。クエンチ抵抗器Rqを介して大きな電流が流れた結果、アバランシェダイオードDaに印加される電圧は低下するから、アバランシェダイオードDaへの電力供給は止り、アバランシェダイオードDaは、非導通状態に復する。この結果、反転素子INVの出力信号も反転してロウレベルLに戻る。結果的に、反転素子INVは、各受光素子68に光(フォトン)が入射すると、ごく短時間、ハイレベルとなるパルス信号を出力することになる。そこで、各受光素子68が光を受光するタイミングに合わせて、アドレス信号SCをハイレベルHにすれば、アンド回路SWの出力信号、つまり各受光素子68からの出力信号Sout は、アバランシェダイオードDaの状態を反映したデジタル信号となる。
 各受光素子68の出力Sout は、レーザ素子41が発光し、その光が走査範囲に存在する対象物OBJに反射して戻ってくることで生じる。従って、図4に示したように、発光部40が駆動されてレーザ光(以下、照射光バルスという)が出力されてから、対象物OBJによって反射した反射光バルスが受光部60の各受光素子68により検出されるまでの時間Tfを計ることにより、対象までの距離を検出できる。対象物OBJは、光学的測距装置10の近くから遠くまで、様々な位置に存在し得る。
 受光素子68は、以上説明したように、反射光を受けると、パルス信号を出力する。受光素子68が出力するパルス信号は、測距部に相当するSPAD演算部100に入力される。SPAD演算部100は、レーザ素子41を発光させて外部の空間を走査しつつ、レーザ素子41が照射光パルスを出力した時点から受光部60の受光アレイ65が反射光バルスを受け取るまでの時間から、対象物OBJまでの距離を演算する。SPAD演算部100は、周知のCPUやメモリを備え、予め用意されたプログラムを実行することで、測距に必要な処理を行なう。具体的には、SPAD演算部100は、全体の制御を行なう制御部110の他、加算部120、ヒストグラム生成部130、ピーク検出部140、距離演算部150等を備える。
 加算部120は、受光部60を構成する受光素子68に含まれる更に多数の受光素子の出力を加算する回路である。受光素子68の内部には、更にN×N個(Nは2以上の整数)の受光素子が設けられており、反射光パルスが受光部60を構成する一つの受光素子68に入射すると、N×N個の素子が動作する。本実施形態では、1つの受光素子68内に7×7個のSPADが設けられている。もとより、SPADの数や配列は、7×7個以外、例えば5×9個など、種々の構成が可能である。
 本実施形態で、受光素子68を複数個のSPADから構成しているのは、SPADの特性による。SPADは、たった一つのフォトンが入射しただけでこれを検出することが可能であるが、対象物OBJからの限られた光によるSPADの検出は確率的なものにならざるを得ない。SPAD演算部100の加算部120は、確率的にしか反射光を検出し得ないSPADからの出力信号Sout を加算して反射光を確実に検出する。もとより、受光素子68は、単一のSPADで構成してもよい。
 こうして得られた反射光パルスをヒストグラム生成部130が受け取る。ヒストグラム生成部130は、加算部120の加算結果を複数回足し合せてヒストグラムを生成する。受光素子68が検出する信号には、外乱光などによるノイズも含まれるが、複数個の照射光パルスに対する各受光素子68からの信号を足し合せると、反射光パルスに対応する信号は累積され、ノイズに対応する信号は累積されないので、反射光パルスに対応する信号が明確になる。そこで、ヒストグラム生成部130からのヒストグラムを解析して、ピーク検出部140が信号のピークを検出する。信号のピークは、測距の対象となっている対象OBJからの反射光パルスに他ならない。こうしてピークが検出されると、距離演算部150は、照射光パルスから、反射光パルスのピークまでの時間Tfを検出することで、対象物までの距離Dを検出する。検出され距離Dは、外部に、例えば光学的測距装置20が自動運転車両に搭載されていれば、自動運転装置などに出力される。もとより、ドローンや自動車、船舶などの移動体の他、固定された測距装置として用いることも可能である。
 制御部110は、発光部40の回路基板43に対してレーザ素子41の発光タイミングを決定する指令信号SLや、いずれの受光素子68をアクティブにするかを決定するアドレス信号SC の他、ヒストグラム生成部130に対するヒストグラムの生成タイミングを指示する信号Stや、走査部50のロータリソレノイド55に対する駆動信号Smを出力する。制御部110が予め定めたタイミングでこれらの信号を出力することにより、SPAD演算部100は、所定の範囲に存在する対象物OBJを、その対象物OBJまでの距離Dと共に検出する。
 上述した光学的測距装置20において、図5に示すように、V方向に縦長の形状をした2つのレーザ発光領域La,Lbを備える。後述するように、この2つのレーザ発光領域La,Lbは、1つの半導体として作り込まれている。2つのレーザ発光領域La,Lbは、発光領域の長手方向にずらして配置されており、レーザ発光領域Laの下端が、レーザ発光領域Lbの上端と一致している。レーザ発光領域の長手方向を、以下、第1方向とも呼ぶ。このため、レーザ発光領域La,Lbは、長手方向と直交する方向(以下、幅方向または第2方向と呼ぶ)にはずれて配置されているものの、第1方向において、連続した長さLLの発光領域を形成している。なお、図6に示すように、2つのレーザ発光領域La,Lbを第1方向に僅かに重なるように配置し、その第1方向長さをLLAとしたレーザ素子41Aとして構成することも差し支えない。
 レーザ素子41は、図7に示すように、幅方向中心にはんだ層80を備え、はんだ層80の層に沿った方向の中心を対称の中心として、2つのレーザ発光領域La,Lbを点対称に配置した構造を備える。結果的に、レーザ発光領域La,Lbは、はんだ層80の層に沿った方向の中心CAで接した位置に配置される。このレーザ素子41の製造方法については、後述する。
 レーザ素子41は、中心のはんだ層80の両側に、発光領域Laを備えるレーザチップ70と発光領域Lbを備えるレーザチップ90とから構成されている。レーザチップ70は、はんだ層80側から順に、N型電極78、絶縁層77、N型クラッド層76、発光層75、P型クラッド層73、P型電極72、ボンディング電極71を備える。同様に、レーザチップ90は、はんだ層80側から順に、P型電極98、絶縁層97、P型クラッド層96、発光層95、N型クラッド層93、N型電極92、ボンディング電極91を備える。2つのレーザ発光領域La,Lbを備える発光層75,95は、N型とP型という反対の層構造を備えるので、ボンディング電極71およびボンディング電極91間に電圧を印加することにより、2つのレーザ発光領域La,Lbを発光させることができる。もとより、発光領域Lbを備える発光層95を、発光層75と全く同じ層構成でみ込む層構造とし、はんだ層80とボンディング電極71の間、はんだ層80とボンディング電極91との間に同じ電位を付与して、2つのレーザ発光領域La,Lbを、同じように発光させてもよい。
 かかるレーザ素子41を用いた測距の手法について、図8を用いて説明する。図5に示したように、レーザ素子41は、縦長の発光領域La,Lbを備え、しかもこれらの発光領域La,Lbを、幅方向(第2方向)に離間し、かつ長手方向(第1方向)において接する位置(図5)または重なる位置(図6)に配置している。従って、このレーザ素子41からの照光パルスを発光部40のコリメートレンズ45を介して外部に出力すると、図8に示したように、走査範囲において、そのV方向の照射範囲PLの高さは、発光領域Laが点光源である場合はもとより、第1方向に長い発光領域Laであったとしても、これより少なくとも2倍または2倍弱の幅を備える。従って、本実施例のように、一方向にのみ走査可能な走査部50を備えるだけで、H方向はもとより、V方向にも広い範囲に亘って、一度に測距することが可能となる。
 もとより、図8に示したように、発光領域La,Lbは第2方向にずれているから、走査範囲においても、レーザ光の照射範囲は、照射範囲Pa,Pbに分かれている。この第2方向(H方向)に離れた照射範囲Pa,Pbからの反射光は、図9に示したように、受光部60の受光レンズ61を介して、受光アレイ65に入射する。このとき、照射範囲Pa,Pbからの反射光は、受光アレイ65上でも、第2方向にずれた位置Ra,Rbに結像する。受光アレイ65には、複数の受光素子68が配置されているから、反射光は、これらの各受光素子68により検出することが可能となる。
 実際の測距の際には、レーザ素子41からの照光パルスは、走査部50の表面反射鏡51の回動により、H方向に移動される。この様子を図10に示した。表面反射鏡51の回動に伴うレーザ光の射出位置(方向)の移動に伴い、測距を行なう走査範囲TGにおいて、照射範囲Pa,Pbは、水平方向(H方向)に移動する。図10の例では、照射範囲Pa,Pbは、H方向(第2方向)にずれており、V方向(第1方向)に一部重なっているものとした。照射範囲Pa,Pbからの反射光パルスは、表面反射鏡51に反射して受光部60に入射するので、受光部60の受光アレイ65上での位置は、レーザ光の走査位置(射出方向)の変更に拠らず、同一である。
 こうした第2方向にずれた照射範囲Pa,Pbからの反射光を検出するための受光アレイ65としては、図11に示したように、縦横二次元に複数の各受光素子68を配列した構成とすることができる。光学系30のアライメントを予め取ることで、発光領域La,Lbから射出されたレーザ光が対象物OBJによって反射した場合に入射する受光アレイ65上の位置を定めることができる。そこで、制御部110が、反射光が入射するとされた各受光素子68に対して、適切なタイミングでアドレス信号SCを出力すればよい。走査範囲に対象物OBJがあれば、この対象物OBJの位置に対応する各受光素子68は、対象物OBJの位置(光学的測距装置20からの隔たり)に応じた時間TOFで反射光パルスを検出する。発光領域La,Lbの形状に合わせて、反射光が入らない受光素子は予め信号SCをオフ(アクティブにしない)としておいてもよい。
 図11に示した各受光素子68の二次元的な配列に代えて、図12や図13に示す構成を採用しても差し支えない。図12は、受光アレイ65上の反射光が結像する位置にのみ各受光素子68を設けた構成を示している。こうすれば、受光素子68の数を図11の構成より大幅に減らすことができる。また、図13では、各受光素子69を幅方向に長い構造とし、各受光素子69を一次元配列としている。こうすれば、受光素子69の数を図11の構成より大幅に減らせるだけでなく、第2方向のアライメントが容易となる。
 以上説明した第1実施形態によれば、第2方向にはずれているものの第1方向に連続した長い発光領域を有するレーザ素子41を実現することができる。このため、このレーザ素子41を用いた光学的測距装置20は、この発光領域に対応した広い範囲の測距を一度に行なうことができる。この結果、走査部50を一方向走査に限っても、二次元の広い範囲について測距を行なうことができる。レーザ素子41の発光領域が連続しているので、複数の発光素子を用いながら、走査漏れとなる領域を生じることがない。
B.レーザ素子のその他の実施形態:
 上記第1実施形態では、レーザ素子41は2つレーザチップ70,90を用いて、2つの発光領域を備えるものとしたが、単一のレーザ素子41に2以上の発光領域を設けるものとしてもよい。また、一つまたは複数の発光領域を有する半導体レーザ素子を2つ以上組み合わせて、複数の発光領域を有する構成としてもよい。多数の発光領域を備える構成例を図14,図15に示した。図14に示した例では、発光領域の長手方向寸法rrと同じ間隔rLだけ空けて発光領域La1~La4を配置した第1レーザ素子411と、同様に複数の発光領域Lb1~Lb4を配置した第2レーザ素子412とを組み合わせて、半導体レーザ素子41Bを形成している。第1レーザ素子411の発光領域La1~La4と第2レーザ素子412の発光領域Lb1~Lb4は、互い違いの位置に配置され、複数の発光領域の配列方向(第1方向)に、発光領域が連続することになる。なお、発光領域の長手方向寸法rrを、発光領域の間隔rLより大きくして、発光領域を一部重なるようにしても差し支えない。また、図14の構成例では、第1レーザ素子411,第2レーザ素子412を共に複数の発光領域を有するものとしたが、発光領域は共に1つでもよいし、少なくとも一方が2以上の発光領域を有するものとしてもよい。
 この場合、受光アレイ65Bも、これに応じた第1方向の大きさを備え、多数の受光素子を二次元的に配列している。もとより、受光素子は、図12や図13に示した受光素子の配列と同じように配列しても良い。こうすれば、第2方向にはずれているものの第1方向に連続した長い発光領域を有するレーザ素子41Bを実現することができる。このレーザ素子41Bを用いれば、光学的測距装置20は、この発光領域に対応したV方向に広い範囲の測距を一度に行なうことができる。この結果、走査部50を一方向走査に限っても、二次元の広い範囲について測距を行なうことができる。レーザ素子41Bの発光領域が連続しているので、複数の発光素子を用いながら、走査漏れとなる領域を生じることがない。なお、図14に示した実施形態では、第1レーザ素子411および第2レーザ素子412の2つのレーザ素子を用いたが、3以上のレーザ素子を用いても良い。
 また、図15に示したように、複数の発光領域Lc1~Lc7の向きを、複数の発光領域Lc1~Lc7の配列方向(第1方向)に対して傾けて配置して、レーザ素子41Cとすることも可能である。こうすれば、発光領域Lc1~Lc7の配列方向に見たとき、各発光領域は、V方向に長さrAの寸法を持つことになり、この長さrAの発光領域が、発光領域Lc1~Lc7の配列方向に連続していることになる。発光領域Lc1~Lc7のかかる配置に合せて、受光アレイ65C上に反射光が結像されるので、これを受光素子を用いて検出できることは、他の実施形態と同様である。こうしても図14の場合と同様の作用効果を奏することができる。図15に示したレーザ素子41Cでも、図14のレーザ素子41Bと同様、各発光領域Lc1~Lc7を、それぞれ別々の半導体レーザ素子により実現することも可能である。あるいは複数個の発光領域を備えた半導体レーザ素子を複数個組み合わせて、レーザ素子41Cを実現してもよい。
C.レーザ素子の製造方法:
 次に、第1実施形態で用いたレーザ素子41の製造方法について簡略に説明する。第1実施形態で用いたレーザ素子41は、はんだ層80を挟んで2つのレーザチップ70,90を備える。このレーザチップ70,90は、図16の上段に示したように、半導体プロセスにより各層を積層し、各層の面方向(第1方向)に、複数の発光領域が、所定ピッチを隔てて作り込まれる。このレーザチップ70,90を所定の場所で切断し、これを重ねてはんだ付けする。はんだ付けにより、2つのレーザチップ70,90は、はんだ層80により結合され、レーザ素子41が得られる。なお、発光領域を3個以上連続させたければ、レーザチップを積層するとき、発光領域のピッチを発光領域の長手方向の寸法と同一または僅かに短いピッチとし、レーザチップを切り出すとき、複数の発光領域を含むようにすればよい。
 こうすることで、1つのレーザチップでは、発光領域を連続させなくても、レーザ素子としての発光領域を第1方向に連続させることが可能となる。なお、2つのレーザチップをはんだ層で結合するとき、各レーザチップの発光に必要な向きに電圧を印加できるように電極を配置すれば、レーザチップ70とレーザチップ90とは反転して結合してもよいし、反転させずに結合しても良い。同様に、レーザチップ70,90をP型、N型の異なるレーザチップとしてレーザ素子を構成しても良いし、同型のレーザチップを用いて構成してもよい。本実施形態では、2つのレーザチップ70,90は、一方を他方に対して反転してはんだ層80により結合している。このため、2つの発光領域La,Lbの第2方向の隔たりを短くすることができる。従って、受光素子の隔たりも小さくできる。
 図16の例では、各レーザチップ70,90には、それぞれ1つの発光領域La,Lbが形成されるものとしたが、少なくともいずれか一方のレーザチップに、2以上の発光領域を半導体層の層方向にずらして設け、これを組み合わせるものとしてもよい。また、その場合、3つ以上のレーザチップを組み合わせるものとしてもよい。
 本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。

Claims (11)

  1.  レーザ光を用いた光学的測距装置(20)であって、
     発光領域の第1方向の長さが前記第1方向に交差する第2方向と比べて長い発光領域を有する半導体レーザ素子(41)を用いた発光部(40)と、
     前記発光部から射出されたレーザ光の反射光を検出する受光部(60)と、
     前記発光部の発光から前記受光部の受光までの時間に応じて、対象物までの距離を測定する測定部(100)と
     を備え、
     前記発光部は、複数の前記発光領域(La,Lb)が、前記第2方向に離間し、かつ前記複数の発光領域が前記第1方向において接する位置または発光領域の一部が重なる位置に配置された
     光学的測距装置。
  2.  前記半導体レーザ素子は、前記発光領域をそれぞれ備える第1,第2の半導体レーザ素子(411,412)を備え、前記第1,第2半導体レーザ素子の少なくとも一方は、複数の発光領域を備える請求項1記載の光学的測距装置。
  3.  請求項2記載の光学的測距装置であって、
     前記第1半導体レーザ素子は、複数の発光領域を備え、前記複数の発光領域が、前記第1方向に、前記第1方向の発光領域の長さより短い距離だけ離間されて設けられ、
     前記第1半導体レーザ素子とは前記第2方向に離間して設けられた第2半導体レーザ素子は、前記発光領域の前記第1方向が、前記第1半導体レーザ素子の発光領域の前記第1方向と同方向とされ、かつ前記発光領域が前記第1半導体レーザ素子の前記複数の発光領域の間に配置された
     光学的測距装置。
  4.  請求項1から請求項3のいずれか一項に記載の光学的測距装置であって、
     更に、前記発光部からの光を水平方向および垂直方向の少なくとも一方に走査する走査部(50)と、
     前記走査部によって、前記水平方向および前記垂直方向の少なくとも一方に走査された前記レーザ光による反射光を、前記受光部に導く光学系(30)と
     を備える光学的測距装置。
  5.  前記受光部は、前記第1方向と前記第2方向とに対応して2次元配列された複数の受光素子(68)を備える請求項1から請求項4のいずれか一項に記載の光学的測距装置。
  6.  請求項5記載の光学的測距装置であって、
     前記受光部は、前記2次元的配列された受光素子のうち、前記複数の発光領域の形状および配置に応じて反射光が入射しない部位の受光素子への通電が、予めオフにされた光学的測距装置。
  7.  請求項1から請求項6のいずれか一項に記載の光学的測距装置であって、
     前記受光部は、前記第1方向に対応した方向に複数の受光素子(69)を備え、
     前記受光素子の前記第2方向に対応した方向への受光領域は、前記複数の発光領域の前記第2方向への離間距離に対応した長さ以上の幅を備える
     光学的測距装置。
  8.  レーザ光を外部に射出するレーザ発光装置であって、
     複数の発光領域を有する半導体レーザ素子を備え、
     前記半導体レーザ素子の前記複数の発光領域は、第1方向の長さが前記第1方向に交差する第2方向の長さと比べて長く、
     前記複数の発光領域のうち隣接する発光領域は、前記第2方向に離間し、かつ前記発光領域が前記第1方向において接する位置または重なる位置に配置された
     レーザ発光装置。
  9.  レーザ発光装置の製造方法であって、
     基板上に半導体層を積層して、発光領域を形成し、前記発光領域を、前記半導体層の層方向である第1方向に沿った長さが、前記積層方向である第2方向の長さより長く形成した発光部を、複数製作し、
     前記複数の発光部を、前記第2方向に離間し、かつ前記複数の発光部における発光領域が前記第1方向において接する位置または前記発光領域の一部が重なる位置に配置する
     レーザ発光装置の製造方法。
  10.  請求項9記載のレーザ発光装置の製造方法であって、
     前記複数の発光部は、
      前記積層された半導体層において、前記発光領域を複数製作し、
      前記複数の発光領域を、前記第2方向に沿って切断して、少なくとも一つの前記発光領域を含む少なくとも2つのチップに切り分け、
      前記切り分けたチップ同士を接合して形成する
     レーザ発光装置の製造方法。
  11.  請求項10記載のレーザ発光装置の製造方法であって、
     少なくとも一方の前記チップは、複数の前記発光領域を含み、
     前記発光領域は、前記第1方向に、前記第1方向の発光領域の長さより短い距離だけ離間されて形成される
     レーザ発光装置の製造方法。
PCT/JP2019/047775 2018-12-14 2019-12-06 光学的測距装置、レーザ発光装置およびその製造方法 WO2020121959A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980082046.3A CN113242982A (zh) 2018-12-14 2019-12-06 光学测距装置、激光发光装置及其制造方法
US17/344,417 US20210341587A1 (en) 2018-12-14 2021-06-10 Optical ranging device, laser light emitting device, and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018234447 2018-12-14
JP2018-234447 2018-12-14
JP2019204360A JP7172963B2 (ja) 2018-12-14 2019-11-12 光学的測距装置、レーザ発光装置の製造方法
JP2019-204360 2019-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/344,417 Continuation US20210341587A1 (en) 2018-12-14 2021-06-10 Optical ranging device, laser light emitting device, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2020121959A1 true WO2020121959A1 (ja) 2020-06-18

Family

ID=71076012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047775 WO2020121959A1 (ja) 2018-12-14 2019-12-06 光学的測距装置、レーザ発光装置およびその製造方法

Country Status (1)

Country Link
WO (1) WO2020121959A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517279A (ja) * 2004-10-15 2008-05-22 トリコ プロダクツ コーポレーション オブ テネシー Vcsel型ダイオードアレイを用いた物体検出システム
JP2017503683A (ja) * 2013-12-17 2017-02-02 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ レーザー印刷システム
WO2017112416A1 (en) * 2015-12-20 2017-06-29 Apple Inc. Light detection and ranging sensor
US20180284236A1 (en) * 2017-04-03 2018-10-04 Robert Bosch Gmbh Lidar device and method for scanning a scan angle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517279A (ja) * 2004-10-15 2008-05-22 トリコ プロダクツ コーポレーション オブ テネシー Vcsel型ダイオードアレイを用いた物体検出システム
JP2017503683A (ja) * 2013-12-17 2017-02-02 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ レーザー印刷システム
WO2017112416A1 (en) * 2015-12-20 2017-06-29 Apple Inc. Light detection and ranging sensor
US20180284236A1 (en) * 2017-04-03 2018-10-04 Robert Bosch Gmbh Lidar device and method for scanning a scan angle

Similar Documents

Publication Publication Date Title
JP6644892B2 (ja) 光検出測距センサ
JP6111617B2 (ja) レーザレーダ装置
US9304228B2 (en) Object detection apparatus with detection based on reflected light or scattered light via an imaging unit
JP3832101B2 (ja) 距離測定装置
JP2016188808A (ja) レンジセンサとその部品
JP6682569B2 (ja) 光電センサ及び物体検出方法
US20230023489A1 (en) Light module and lidar apparatus having at least one light module of this type
JP2019100919A5 (ja)
WO2019176360A1 (en) Optical device, range sensor using optical device, and mobile object
WO2020255697A1 (ja) 光学的測距装置
WO2021220861A1 (ja) 測距装置
WO2020116078A1 (ja) レーザレーダ
US11668801B2 (en) LIDAR system
JP2019078631A (ja) パルス光照射受光装置、および光レーダー装置
US20190064327A1 (en) Object detection apparatus
WO2020121959A1 (ja) 光学的測距装置、レーザ発光装置およびその製造方法
JP7172963B2 (ja) 光学的測距装置、レーザ発光装置の製造方法
JP6748143B2 (ja) 光センサおよび電子機器
US20210382177A1 (en) System for monitoring surroundings of vehicle
US20230204732A1 (en) Distance measuring device
KR20230150331A (ko) 고체 레이저 레이더 및 이를 사용한 탐지 방법
JP2020030121A (ja) 対象物検出装置、対象物検出システム
JP6908015B2 (ja) 光学的測距装置および光学的測距方法
CN115201844A (zh) 固态激光雷达及使用其进行探测的方法
WO2020008863A1 (ja) 光測距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897488

Country of ref document: EP

Kind code of ref document: A1