RU2655686C2 - Криостат и система для объединенной магнитно-резонансной томографии и радиационной терапии - Google Patents

Криостат и система для объединенной магнитно-резонансной томографии и радиационной терапии Download PDF

Info

Publication number
RU2655686C2
RU2655686C2 RU2016101579A RU2016101579A RU2655686C2 RU 2655686 C2 RU2655686 C2 RU 2655686C2 RU 2016101579 A RU2016101579 A RU 2016101579A RU 2016101579 A RU2016101579 A RU 2016101579A RU 2655686 C2 RU2655686 C2 RU 2655686C2
Authority
RU
Russia
Prior art keywords
annular
sections
volume
annular section
section
Prior art date
Application number
RU2016101579A
Other languages
English (en)
Other versions
RU2016101579A (ru
Inventor
Филип Александер ЙОНАС
Йоханнес Адрианус ОВЕРВЕГ
Виктор МОХНАТЮК
Авери МОНТЕМБО
Мартин КИНГ
Алан ФАЙНДЕР
Original Assignee
Конинклейке Филипс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Н.В. filed Critical Конинклейке Филипс Н.В.
Publication of RU2016101579A publication Critical patent/RU2016101579A/ru
Application granted granted Critical
Publication of RU2655686C2 publication Critical patent/RU2655686C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1039Treatment planning systems using functional images, e.g. PET or MRI
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4808Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • F17C3/085Cryostats
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1055Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using magnetic resonance imaging [MRI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3804Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Abstract

Группа изобретений относится к магнитно-резонансной томографии и радиационной терапии, а также криостату для такой системы. Камера для криостата включает в себя первую и вторую кольцевые секции, разделенные и разнесенные друг от друга вдоль первого направления, и третью кольцевую секцию, простирающуюся в первом направлении между первой и второй кольцевыми секциями и соединяющую первую и вторую кольцевые секции друг с другом. Первая и вторая кольцевые секции ограничивают соответствующие первый и второй внутренние объемы, третья кольцевая секция ограничивает третий внутренний объем, и третий внутренний объем значительно меньше, чем первый внутренний объем, и значительно меньше, чем второй внутренний объем. Технический результат – повышение точности обработки больной ткани одновременно с уменьшением повреждения здоровой ткани. 2 н. и 11 з.п. ф-лы, 5 ил.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
По настоящей патентной заявке согласно 35 U.S.C. § 119 испрашивается приоритет предварительной патентной заявки США № 61/837739, поданной 21 июня 2013 г., которая включена в настоящий документ по ссылке.
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение в общем относится к системе, способной к осуществлению магнитно-резонансной томографии и радиационной терапии, а также криостату для такой системы.
ПРЕДПОСЫЛКИ И СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Разработаны магнитно-резонансные (МР) томографы или сканеры, которые производят изображения, чтобы диагностировать заболевания и отличить здоровую ткань от больной ткани. МР-томограф или сканер, как правило, использует сверхпроводящий магнит для генерации сильных магнитных полей, которые необходимы ему для работы. Для реализации сверхпроводимости магнит обслуживается в криогенных условиях при температуре вблизи абсолютного нуля. Как правило, магнит включает в себя одну или более электропроводящих катушек, которые расположены в криостате, и через которые циркулирует электрический ток для создания магнитного поля.
В то же время разработана радиационная терапия, которая может фокусировать пучок излучения (радиотерапевтический пучок) на целевой области исследования в пациенте и, предпочтительно, разрушать больную ткань, при этом обходя здоровую ткань.
Требуется объединить диагностическую пространственную специфику МР-томографии с технологией фокусирования радиотерапевтического пучка для обеспечения более точной обработки больной ткани одновременно с уменьшением повреждения здоровой ткани. Посредством объединения визуализации в реальном времени и радиационной терапии может быть осуществлено формирование радиотерапевтического пучка в реальном масштабе времени, компенсирующее не только ежедневные изменения анатомии, но также движения тела, такие как дыхание, которые происходят во время процедуры обработки.
При работе радиотерапевтический пучок можно вращать вокруг пациента, чтобы внести сфокусированную дозу излучения в целевую область (то есть больную ткань), щадя при этом здоровую ткань. Объединенная радиационная терапия с МР-томографией требует, чтобы радиотерапевтический пучок достигал пациента, который окружен МР-томографом и сканером. Кроме того, пучок излучения должен проходить через МР-томограф или сканер контролируемым и известным образом, так что величина и локализация энергии, доставляемой радиотерапевтическим пучком, могут быть точно проконтролированы.
Обычно наиболее точные МР-томографы или сканеры используют сильные магнитные поля, создаваемые сверхпроводящими магнитами, которые, как правило, состоят из витков толстых сверхпроводящих проводов, тонких металлических оболочек и большой криогенной ванны (например, с жидким гелием), расположенной в криостате.
Радиотерапевтический пучок ослабляется, когда он проходит через вещество, такое как металлы или даже жидкий гелий в криостате МР-томографа или сканера. Если ослабление или затухание поддерживают постоянным по времени и угловому положению, то можно компенсировать или скорректировать затухание таким образом, чтобы точно контролировать величину и локализацию энергии, доставляемой радиотерапевтическим пучком.
Однако во время обслуживания и работы системы сверхпроводящего магнита МР-томографа или сканера часто случается, что некоторое количество криогенной текучей среды (например, жидкого гелия) выкипает, и поэтому его уровень изменяется, изменяя посредством этого ослабление радиотерапевтического пучка. Кроме того, поскольку криостат, как правило, не полностью заполнен жидким гелием, количество жидкого гелия варьируется как функция положения внутри криостата, и количество или объем жидкого гелия, через который должен проходить радиотерапевтический пучок, также может представлять собой функцию углового положения. В результате, ослабление радиотерапевтического пучка также является функцией углового положения. Таким образом, может быть затруднительным точно контролировать величину энергии излучения, доставляемой радиотерапевтическим пучком в целевую область исследования так, чтобы она была постоянной, и особенно, чтобы она была постоянной при различных угловых положениях.
Один аспект настоящего изобретения может обеспечить аппарат, содержащий источник излучения, выполненный с возможностью генерировать радиотерапевтический пучок, и магнитно-резонансный томограф. Магнитно-резонансный томограф может включать в себя криостат. Криостат может содержать: внутреннюю камеру и область вакуума, практически окружающую внутреннюю камеру. Внутренняя камера может содержать: первую и вторую кольцевые секции, разделенные и разнесенные друг от друга вдоль первого направления, и третью кольцевую секцию, простирающуюся в первом направлении между первой и второй кольцевыми секциями и соединяющую первую и вторую кольцевые секции друг с другом. Внутренняя ширина третьей кольцевой секции в перпендикулярной первому направлению плоскости может быть меньше, чем внутренняя ширина первой кольцевой секции и внутренняя ширина второй кольцевой секции. Радиотерапевтический пучок может быть предназначен для прохождения через третью кольцевую секцию криостата.
В некоторых вариантах осуществления источник излучения может содержать линейный ускоритель.
В некоторых вариантах осуществления источник излучения может содержать многолепестковый коллиматор.
В некоторых вариантах осуществления аппарат может дополнительно включать в себя сверхпроводящие катушки, расположенные в первой и второй кольцевых секциях. Сверхпроводящие катушки могут включать в себя по меньшей мере пару первых полупроводниковых катушек и пару вторых полупроводниковых катушек, причем первые сверхпроводящие катушки могут быть расположены ближе, чем вторые сверхпроводящие катушки к третьей кольцевой секции, и причем диаметр каждой из первых сверхпроводящих катушек может быть больше, чем диаметр каждой из вторых сверхпроводящих катушек.
В некоторых вариантах осуществления радиотерапевтический пучок может быть предназначен для прохождения между парой первых полупроводниковых катушек.
В некоторых вариантах осуществления первая и вторая кольцевые секции могут иметь расположенные в них соответствующие первый и второй кольцевой объемы криогенной текучей среды, третья кольцевая секция может иметь расположенный в ней третий кольцевой объем криогенной текучей среды, а кольцевая глубина третьего кольцевого объема в перпендикулярной первому направлению плоскости может быть меньше, чем кольцевая глубина первого кольцевого объема и кольцевая глубина второго кольцевого объема.
В некоторых вариантах осуществления аппарат может включать в себя трубчатую структуру, простирающуюся в первом направлении между первой и второй кольцевыми секциями.
Другой аспект настоящего изобретения может обеспечивать камеру для криостата. Камера может включать в себя первую и вторую кольцевые секции, разделенные и разнесенные друг от друга вдоль первого направления, и третью кольцевую секцию, простирающуюся в первом направлении между первой и второй кольцевыми секциями и соединяющую первую и вторую кольцевые секции друг с другом. Первая и вторая кольцевые секции могут ограничивать соответствующие первый и второй внутренние объемы, третья кольцевая секция может ограничивать третий внутренний объем, и третий внутренний объем может быть значительно меньше, чем первый внутренний объем и значительно меньше, чем второй внутренний объем.
В некоторых вариантах осуществления первая и вторая кольцевые секции могут иметь расположенные в них соответствующие первый и второй кольцевой объемы криогенной текучей среды, третья кольцевая секция может иметь расположенный в ней третий кольцевой объем криогенной текучей среды, а средняя кольцевая глубина третьего объема в перпендикулярной первому направлению плоскости может быть меньше, чем средняя кольцевая глубина первого объема и средняя кольцевая глубина второго объема.
В некоторых вариантах осуществления криогенная текучая среда может содержать жидкий гелий.
В некоторых вариантах осуществления криогенная текучая среда может содержать газообразный гелий.
В некоторых вариантах осуществления каждый из первого внутреннего объема и второго внутреннего объема могут составлять увеличенный в десять раз третий внутренний объем.
В некоторых вариантах осуществления каждый из первого внутреннего объема и второго внутреннего объема могут составлять увеличенный в сто раз третий внутренний объем.
В некоторых вариантах осуществления камера может включать в себя сверхпроводящие катушки, расположенные в первой и второй кольцевых секциях. Сверхпроводящие катушки могут включать в себя по меньшей мере первую полупроводниковую катушку и вторую полупроводниковую катушку, причем первая сверхпроводящая катушка может быть расположена ближе, чем вторая сверхпроводящая катушка к третьей кольцевой секции, и причем диаметр первой сверхпроводящей катушки может быть больше, чем диаметр второй сверхпроводящей катушки.
В некоторых вариантах осуществления каждая из внутренней ширины первой кольцевой секции и внутренней ширины второй кольцевой секции могут быть больше, чем увеличенная в десять раз внутренняя ширина третьей кольцевой секции.
В некоторых вариантах осуществления каждая из внутренней ширины первой кольцевой секции и внутренней ширины второй кольцевой секции могут быть больше, чем увеличенная в тридцать раз внутренняя ширина третьей кольцевой секции.
Еще один аспект настоящего изобретения может предусматривать камеру для криостата. Камера может содержать первую и вторую кольцевые секции, разделенные и разнесенные друг от друга вдоль первого направления, и третью кольцевую секцию, простирающуюся в первом направлении между первой и второй кольцевыми секциями и соединяющую первую и вторую секции друг с другом. Первая и вторая кольцевые секции могут иметь расположенные в них соответствующие первый и второй кольцевой объемы криогенной текучей среды. Третья кольцевая секция может иметь третий кольцевой объем криогенной текучей среды, расположенный в ней. Средняя кольцевая глубина третьего кольцевого объема в перпендикулярной первому направлению плоскости может быть меньше, чем средняя кольцевая глубина первого кольцевого объема и средняя кольцевая глубина второго кольцевого объема.
В некоторых вариантах осуществления камера может включать в себя сверхпроводящие катушки, расположенные в первой и второй кольцевых секциях. Сверхпроводящие катушки могут включать в себя по меньшей мере первую полупроводниковую катушку и вторую полупроводниковую катушку, причем первая сверхпроводящая катушка расположена ближе, чем вторая сверхпроводящая катушка, к третьей кольцевой секции, и причем диаметр первой сверхпроводящей катушки больше, чем диаметр второй сверхпроводящей катушки.
В некоторых вариантах осуществления каждая из внутренней ширины первой кольцевой секции в перпендикулярной первому направлению плоскости и внутренней ширины второй кольцевой секции в перпендикулярной первому направлению плоскости могут быть больше, чем увеличенная в десять раз внутренняя ширина третьей кольцевой секции в перпендикулярной первому направлению плоскости.
В некоторых вариантах осуществления каждая из внутренней ширины первой кольцевой секции в перпендикулярной первому направлению плоскости и внутренней ширины второй кольцевой секции в перпендикулярной первому направлению плоскости могут быть больше, чем увеличенная в тридцать раз внутренняя ширина третьей кольцевой секции в перпендикулярной первому направлению плоскости.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Настоящее изобретение будет легче понять из подробного описания примерных вариантов осуществления, представленных ниже, при рассмотрении в сочетании с прилагаемыми чертежами.
Фиг. 1 иллюстрирует примерный вариант осуществления магнитно-резонансного (МР) томографа.
Фиг. 2 иллюстрирует вид в разрезе объединенного магнитно-резонансного томографа и радиотерапевтического аппарата.
Фиг. 3 принципиально иллюстрирует одну или более проблем, которые могут возникать при объединении магнитно-резонансного томографа и радиотерапевтического аппарата.
Фиг. 4 иллюстрирует поперечное сечение варианта осуществления аппарата для объединенной магнитно-резонансной томографии и радиотерапии, которое может преодолевать одну или более проблем, проиллюстрированных на фиг. 3.
Фиг. 5A и 5B иллюстрируют другие поперечные сечения варианта осуществления аппарата для объединенной магнитно-резонансной томографии и радиотерапии.
ПОДРОБНОЕ ОПИСАНИЕ
Далее в настоящем документе настоящее изобретение будет описано более полным образом со ссылкой на прилагаемые чертежи, на которых показаны варианты осуществления настоящего изобретения. Настоящее изобретение может, однако, быть воплощено в других формах и не должно рассматриваться как ограниченное вариантами осуществления, приведенными в настоящем документе. Напротив, данные варианты осуществления предложены в качестве обучающих примеров настоящего изобретения. В настоящем раскрытии и формуле изобретения, когда упоминается, что нечто составляет приблизительно некоторое значение, то это означает, что оно находится в пределах 10% от данного значения, а когда упоминается, что нечто составляет около некоторого значения, то это означает, что оно находится в пределах 25% от данного значения. Когда упоминается, что нечто значительно больше, то это означает, что оно по меньшей мере на 10% больше, а когда упоминается, что нечто значительно меньше, то это означает, что оно по меньшей мере на 10% меньше.
Фиг. 1 иллюстрирует примерный вариант осуществления магнитно-резонансного (МР) томографа 100. МР-томограф 100 может включать в себя магнит 102, стол 104 для пациента, выполненный с возможностью поддерживать пациента 10, градиентные катушки 106, выполненные с возможностью по меньшей мере частично окружать по меньшей мере часть пациента 10, для которого МР-томограф 100 генерирует изображение, радиочастотную катушку 108, выполненную с возможностью прикладывать радиочастотный сигнал к по меньшей мере части пациента 10, который подвергается визуализации, и менять направление магнитного поля, а также сканер 110, выполненный с возможностью обнаруживать изменения магнитного поля, вызванные радиочастотным сигналом.
Работа МР-томографа в целом хорошо известна и поэтому не будет повторяться в настоящем документе.
Фиг. 2 иллюстрирует вид в разрезе объединенного магнитно-резонансного (МР) томографа и радиотерапевтического аппарата 200. Аппарат 200 включает в себя источник излучения, содержащий секцию 210 пушки и линейный ускоритель 212 для получения радиотерапевтического пучка 215. В некоторых вариантах осуществления источник излучения может дополнительно включать в себя многолепестковый коллиматор. Аппарат 200 дополнительно включает в себя МР-томограф, включающий в себя криостат 220, имеющий сверхпроводящий магнит (не показан), и криогенную текучую среду, расположенную в нем, для охлаждения сверхпроводящего магнита. Для простоты иллюстрации некоторые компоненты МР-томографа, такие как градиентные катушки, РЧ-катушка и так далее, на фиг. 2 опущены. Криостат 220 имеет внешнюю стенку 221, внутреннее проходное отверстие 227. МР томограф имеет внутреннее проходное отверстие 229, внутри которого расположен стол 104 пациента, который выполнен с возможностью поддерживать пациента 10. Аппарат 200 может быть установлен в полу 20 или на нем.
При работе МР-томограф может производить МР-томограммы пациента 10 или по меньшей мере области исследования 12 в пациенте 10. Например, область исследования 12 может содержать больную ткань, подлежащую обработке с помощью радиотерапевтического пучка 215. При этом радиотерапевтический пучок 215 может быть вращаемым вокруг пациента 10 в плоскости Y-Z, как указано на фиг. 2, для обеспечения сфокусированной дозы излучения в области исследования 12. Аппарат 200 может объединять диагностическую пространственную специфику МР-томографии с технологией фокусирования радиотерапевтического пучка для обеспечения более точной обработки больной ткани с одновременным уменьшением повреждения здоровой ткани. Посредством объединения визуализации в реальном масштабе времени и радиационной терапии может быть осуществлено формирование пучка в реальном масштабе времени, компенсирующее не только ежедневные изменения анатомии, но также движения тела, такие как дыхание, для получения более точной доставки радиотерапевтического пучка.
Фиг. 3 принципиально иллюстрирует одну или более проблем, которые могут возникать при объединении магнитно-резонансного (МР) томографа и радиотерапевтического аппарата. Фиг. 3 иллюстрирует источник 310 излучения, генерирующий радиотерапевтический пучок 315, и криостат 320 МР-томографа, через который радиотерапевтический пучок 315 должен проходить для достижения области исследования 12, например больной ткани пациента, подлежащей обработке с помощью радиотерапевтического пучка 315. Для простоты иллюстрации некоторые компоненты МР-томографа, такие как градиентные катушки, РЧ-катушка и так далее, на фиг. 3 опущены.
Криостат 320 включает в себя внутреннюю камеру 322, которая окружена или практически (то есть по меньшей мере на 90%) окружена областью 321 вакуума. Во внутренней камере 322 расположены сверхпроводящий магнит, содержащий сверхпроводящие катушки 328, и криогенная текучая среда 323. В некоторых вариантах осуществления криогенная текучая среда 323 может содержать жидкий гелий. В некоторых вариантах осуществления во внутренней камере 322 криостата 320 также может быть расположена криогенная текучая среда из газообразного гелия. Также во внутренней камере 322 расположены экранирующие катушки 318. В некоторых вариантах осуществления экранирующие катушки 318 могут не быть расположены внутри криостата 320.
При работе МР-томограф может производить МР-томограммы пациента или по меньшей мере области исследования 12 в пациенте. Например, область исследования 12 может содержать больную ткань, подлежащую обработке с помощью радиотерапевтического пучка 315. При этом источник 310 излучения может вращаться в плоскости Y-Z, как указано на фиг. 3, вокруг области исследования 12 так, чтобы вынуждать радиотерапевтический пучок 315 также вращаться вокруг области исследования 12, чтобы обеспечить сфокусированную дозу излучения в области исследования 12.
Как проиллюстрировано на фиг. 3, радиотерапевтический пучок 315 должен проходить через часть криогенной текучей среды 323, чтобы достигнуть области исследования 12. Радиотерапевтический пучок 315 ослабляется, когда он проходит через криогенную текучую среду 323 (например, жидкий гелий), и величина ослабления является функцией объема или глубины криогенной текучей среды 323, через которую проходит радиотерапевтический пучок 315.
Как объясняется выше, радиотерапевтический пучок 315 должен проходить через МР-томограф или сканер контролируемым и известным образом, чтобы можно было точно контролировать величину и локализацию энергии, доставляемой радиотерапевтическим пучком 315. Кроме того, коэффициент ослабления радиотерапевтического пучка должен быть постоянным при различных угловых положениях и должен быть сведен к минимуму.
Однако во время обслуживания и работы системы сверхпроводящего магнита обычно случается, что некоторое количество криогенной текучей среды 323 (например, жидкого гелия) выкипает, и поэтому его объем или глубина изменяется, тем самым изменяя ослабление радиотерапевтического пучка 315. Кроме того, поскольку внутренняя камера 322 криостата 320 не полностью заполнена криогенной текучей средой 323 (например, жидким гелием), количество криогенной текучей среды 323 (например, жидкого гелия), через который должен проходить радиотерапевтический пучок 315, также может представлять собой функцию углового положения в плоскости Y-Z, так что ослабление радиотерапевтического пучка 315 также является функцией углового положения в плоскости Y-Z. Таким образом, может быть затруднительным точно контролировать радиотерапевтический пучок 315 так, чтобы он имел постоянный уровень, и особенно, чтобы он был постоянным при различных угловых положениях.
Кроме того, как проиллюстрировано на фиг. 3, некоторые из сверхпроводящих катушек 328 расположены на пути достижения радиотерапевтическим пучком 315 области исследования 12. Кроме того, данные сверхпроводящие катушки 328 не могут быть просто удалены без нарушения однородности магнитного поля, которая важна для генерирования точных МР-томограмм.
Фиг. 4 иллюстрирует поперечное сечение варианта осуществления аппарата 400 для объединенной магнитно-резонансной томографии и радиотерапии, который может преодолевать одну или более проблем, проиллюстрированных на фиг. 3. Аппарат 400 включает в себя источник 410 излучения и МР-томограф, который дополнительно включает в себя криостат 420. Для простоты иллюстрации некоторые компоненты МР-томографа, такие как градиентные катушки, РЧ-катушка и так далее, на фиг. 4 опущены.
Источник 410 излучения может включать в себя линейный ускоритель и многолепестковый коллиматор, которые могут генерировать радиотерапевтический пучок 415, как проиллюстрировано на фиг. 4.
Криостат 420 включает в себя внутреннюю камеру 422, которая окружена или практически (то есть по меньшей мере на 90%) окружена областью 421 вакуума. Внутренняя камера 422 содержит первую кольцевую секцию 4221 и вторую кольцевую секцию 4222, разделенные и разнесенные друг от друга вдоль направления X ("первое направление"), и третью или центральную кольцевую секцию 4223, простирающуюся в направлении X между первой и второй кольцевыми секциями 4221, 4222 и соединяющую первую и вторую кольцевые секции 4221, 4222 друг с другом.
Внутренняя камера 422 выполнена с возможностью помещения в нее объема криогенной текучей среды 423, когда аппарат 400 находится в рабочем состоянии. В некоторых вариантах осуществления криогенная текучая среда 423 может содержать жидкий гелий. В некоторых вариантах осуществления во внутренней камере 422 криостата 420 также может быть расположена криогенная текучая среда из газообразного гелия.
Полезно, чтобы третья кольцевая секция 4223 могла быть выполнена с возможностью помещения в нее значительно меньшего объема криогенной текучей среды 423, чем предусмотрено для помещения в каждую из первой и второй кольцевых секций 4221, 4222. В некоторых вариантах осуществления одна или обе из первой и второй кольцевых секций 4221, 4222 могут вмещать в себя объем криогенной текучей среды 423, который по меньшей мере в 100 раз больше, чем объем криогенной текучей среды 423, который вмещает в себя третья кольцевая секция 4223. В некоторых вариантах осуществления одна или обе из первой и второй кольцевых секций 4221, 4222 могут вмещать в себя объем криогенной текучей среды 423, который больше чем в 1000 раз больше, чем объем криогенной текучей среды 423, который содержит в себе третья кольцевая секция 4223.
В частности, в некоторых вариантах осуществления средняя кольцевая глубина криогенной текучей среды 423 в третьей кольцевой секции 4223 в плоскости Y-Z (то есть плоскости, перпендикулярной направлению X) может быть значительно меньше, чем средняя кольцевая глубина криогенной текучей среды 423 в одной или обеих из первой и второй кольцевых секций 4221, 4222. В некоторых вариантах осуществления средняя кольцевая глубина криогенной текучей среды 423 в третьей кольцевой секции 4223 может быть меньше, чем около 10% от средней кольцевой глубины криогенной текучей среды 423 в одной или обеих из первой и второй кольцевых секциях 4221, 4222. В некоторых вариантах осуществления средняя кольцевая глубина криогенной текучей среды 423 в третьей кольцевой секции 4223 может составлять около 3% от средней кольцевой глубины криогенной текучей среды 423 в одной или обеих из первой и второй кольцевых секций 4221, 4222.
Для этой цели, как показано на фиг. 4, первая кольцевая секция 4221 ограничивает первый внутренний объем, вторая кольцевая секция 4222 ограничивает второй внутренний объем, а третья кольцевая секция 4223 ограничивает третий внутренний объем. В некоторых вариантах осуществления один или оба из первого внутреннего объема, ограниченного первой кольцевой секцией 4221, и второго внутреннего объема, ограниченного второй кольцевой секцией 4222, могут быть по меньшей мере в 100 раз больше, чем третий внутренний объем, ограниченный третьей кольцевой секцией 4223. В некоторых вариантах осуществления один или оба из первого внутреннего объема, ограниченного первой кольцевой секцией 4221, и второго внутреннего объема, ограниченного второй кольцевой секцией 4222, могут быть по меньшей мере в 1000 раз больше, чем третий внутренний объем, ограниченный третьей кольцевой секцией 4223.
Для этого относительные размеры внутренних габаритов внутренней камеры 422 в первой, второй и третьей кольцевых секциях 4221, 4222 и 4223 могут соотноситься, как показано, например, на фиг. 4. В частности, в варианте осуществления, как проиллюстрировано на фиг. 4, внутренняя ширина W3 третьей кольцевой секции 4223 в плоскости Y-Z, перпендикулярной направлению X, меньше, чем внутренняя ширина W1 первой кольцевой секции 4221 и внутренняя ширина W2 второй кольцевой секции 4222 в плоскости Y-Z. В данном случае внутренняя ширина понимается как обозначение габарита в поперечном сечении внутренней части внутренней камеры 422, и поэтому из нее исключают толщину стенки внутренней камеры 422.
Фиг. 5A иллюстрирует поперечное сечение вдоль линии I-I’ на фиг. 4, показывающий пример поперечного сечения в плоскости Y-Z второй кольцевой секции 4222, а фиг. 5B иллюстрирует поперечное сечение вдоль линии II-II’ на фиг. 4, показывающий пример поперечного сечения в плоскости Y-Z третьей кольцевой секции 4223 для одного варианта осуществления аппарата 400. В некоторых вариантах осуществления поперечное сечение в плоскости Y-Z первой кольцевой секции 4221 может быть таким же, как поперечное сечение в плоскости Y-Z второй кольцевой секции 4222, и для простоты объяснения при рассмотрении будет предполагаться, что это имеет место. Однако следует понимать, что в общем случае это не требуется.
Как показано на фиг. 4 и фиг. 5A, первая и вторая кольцевые секции 4221, 4222 частично ограничены практически круговой внешней поверхностью 4221a и практически круговой внутренней поверхностью 4221b. Хотя фиг. 4 и 5A иллюстрируют вариант осуществления, в котором внутренняя и внешняя поверхности 4221a и 4221b являются практически круговыми, в других вариантах осуществления они могут принимать другие формы, например овальную или прямоугольную, и они могут принимать формы, отличающиеся друг от друга. Как показано на фиг. 5B, третья кольцевая секция 4223 частично ограничивается практически круговой внешней поверхностью 4223a и практически круговой внутренней поверхностью 4223b. Хотя фиг. 5B иллюстрирует вариант осуществления, в котором внутренняя и внешняя поверхности 4222a и 4223b являются практически круговыми, в других вариантах осуществления они могут принимать другие формы, например овальную или прямоугольную, и они могут иметь формы, отличающиеся друг от друга. То есть первая и вторая кольцевые секции 4221, 4222 и 4223 могут принимать форму кругового кольца, овального кольца, прямоугольного кольца или форму кого-либо другого кольца.
Хотя вариант осуществления с фиг. 4 и 5A-B иллюстрирует третью кольцевую секцию 4223 как один канал, соединяющий первую и вторую кольцевые секции 4221, 4222 друг с другом, предусмотрены другие варианты осуществления, которые включают в себя несколько каналов, соединяющих первую и вторую кольцевые секции 4221, 4222 друг с другом, при условии, что поддерживается уровень криогенной текучей среды, через которую проходит радиотерапевтический пучок 415.
Как проиллюстрировано на фиг. 4, внутреннюю камеру 422 криостата можно рассматривать как имеющую первое углубление глубины D1 в ее внешней поверхности у центральной кольцевой секции 4223, а также имеющую второе углубление глубины D2 в ее внутренней поверхности у центральной кольцевой секции 4223. Хотя, как проиллюстрировано на фиг. 4, 5A и 5B, глубины D1 и D2 равны друг другу, в некоторых вариантах осуществления глубины D1 и D2 могут отличаться друг от друга. В некоторых вариантах осуществления глубина D1 или глубина D2 могут быть равны нулю или практически нулю.
Полезно, чтобы внутренняя ширина W3 третьей или центральной кольцевой секции 4223 могла быть сделана настолько тонкой, насколько возможно, при том, что она продолжает обеспечивать структурную целостность и делает возможной тепловую связь между первой и второй кольцевыми секциями 4221, 4222 внутренней камеры 422, например, посредством обмена криогенной текучей средой 423 между первой и второй кольцевыми секциями 4221, 4222, которые могут сохранять тепловое равновесие. В некоторых вариантах осуществления внутренняя ширина W3 больше чем 5 мм.
В некоторых вариантах осуществления одна или обе из внутренней ширины W1 первой кольцевой секции 4221 и внутренней ширины W2 второй кольцевой секции 4222 могут больше, чем увеличенная в десять раз внутренняя ширина третьей кольцевой секции 4223. Например, в некоторых вариантах осуществления каждая из внутренней ширины W1 и W2 могут составлять 500 мм, а внутренняя ширина W3 может составлять меньше чем 50 мм.
В некоторых вариантах осуществления одна или обе из внутренней ширины W1 первой кольцевой секции 4221 и внутренней ширины W2 второй кольцевой секции могут быть больше, чем увеличенная в тридцать раз внутренняя ширина третьей кольцевой секции 4223. Например, в некоторых вариантах осуществления каждая из внутренней ширины W1 и W2 может составлять около 500 мм или приблизительно 500 мм, а внутренняя ширина W3 может составлять около 15 мм или приблизительно 15 мм.
Первая и вторая кольцевые секции 4221, 4222 имеют расположенные в них множество сверхпроводящих катушек, включая первую или центральную сверхпроводящую катушку(и) 428a и вторую сверхпроводящую катушку(и) 428b. В некоторых вариантах осуществления в третьей или центральной кольцевой секции 4223 сверхпроводящая катушка(и) не расположена. Также в первой и второй кольцевых секциях 4221, 4222 внутренней камеры 422 расположены экранирующие катушки 418. В некоторых вариантах осуществления экранирующие катушки 418 могут не быть расположены внутри криостата 420.
В полезной конфигурации, как проиллюстрировано на фиг. 4, первая или центральная сверхпроводящая катушка(и) 428a может быть расположена ближе, чем вторая сверхпроводящая катушка(и) 428b к третьей кольцевой секции 4223, а диаметр первой или центральной сверхпроводящей катушки (катушек) 428a может быть больше, чем диаметр второй сверхпроводящей катушки (катушек) 428b, которые помещены с противоположных концов первой и второй кольцевых секций 4221, 4222. Поскольку первая или центральная сверхпроводящая катушка(и) 428a должна быть расположена вне траектории радиотерапевтического пучка 415, в аппарате 400 они разведены дальше по сравнению с конфигурацией, проиллюстрированной на фиг. 3, для того чтобы позволить радиотерапевтическому пучку 415 проходить между ними. Однако, посредством увеличения радиуса/диаметра первой или центральной сверхпроводящей катушки (катушек) 428a, например, по отношению ко второй сверхпроводящей катушке (катушкам) 428b, которые помещены с противоположных концов первой и второй кольцевых секций 4221, 4222, становится возможным поддерживать однородное магнитное поле для корректной МР-томографии.
Также на фиг. 4 проиллюстрирована трубчатая структура 425, простирающаяся в направлении X между первой и второй кольцевыми секциями 4221 и 4222. По трубчатой структуре 425 между первой и второй кольцевыми секциями 4221 и 4222 может проходить газ (например, газообразный гелий) и/или один или более электрических проводов и/или других структурных компонентов. В некоторых вариантах осуществления трубчатая структура 425 может иметь ширину или поперечное сечение около 5 мм.
При работе МР-томограф может производить МР-томограммы пациента или по меньшей мере области исследования 12 в пациенте. Например, область исследования 12 может содержать больную ткань, подлежащую обработке с помощью радиотерапевтического пучка 415. При этом источник 410 излучения может вращаться в плоскости Y-Z, как указано на фиг. 4 (направление "R", как показано на фиг. 5A), вокруг области исследования 12 так, чтобы вынуждать радиотерапевтический пучок 415 также вращаться вокруг области исследования 12 для обеспечения сфокусированной дозы излучения в области исследования 12.
Как проиллюстрировано на фиг. 4, радиотерапевтический пучок 415 проходит через третью или центральную кольцевую область 4223 внутренней камеры 422 криостата 420 для достижения области исследования 12. Соответственно, радиотерапевтический пучок 415 проходит через относительно тонкий объем или кольцевую глубину криогенной текучей среды 423 (например, жидкого гелия) в третьей или центральной кольцевой области 4223, тогда как относительно большой объем или кольцевая глубина криогенной текучей среды 423 (например, жидкого гелия) остается в связанных друг с другом первой и второй кольцевых областях 4221 и 4222, содержащих и охлаждающих сверхпроводящие катушки 428a, 428b. Полезно, чтобы, третья или центральная кольцевая область 4223 внутренней камеры 422 имела достаточно тонкий кольцевой объем криогенной текучей среды 423 (например, жидкого гелия) на траектории радиотерапевтического пучка 415, чтобы изменение уровня криогенной текучей среды 423 (например, жидкого гелия) не значительно влияло на дозу излучения, получаемого областью исследования 12 пациента 10. При этом относительно большой объем криогенной текучей среды 423 (например, жидкого гелия) в первой и второй кольцевых областях 4221 и 4222, через которые радиотерапевтический пучок 415 не проходит, обеспечивает тепловой резервуар для обслуживания и работы криостата 420. Полезно, чтобы третья или центральная кольцевая область 4223 (то есть внутренняя ширина W3 третьей или центральной кольцевой области 4223) имела размер, который делает возможной тепловую связь между первой и второй кольцевыми областями 4221 и 4222, учитывающую производственные допуски, и при этом уменьшает как поглощение радиотерапевтического пучка 415, так и угловое отклонение, когда радиотерапевтический пучок 415 вращается в плоскости Y-Z. Кроме того, обеспечение углубления с вакуумом в области 421 вакуума со стороны как внутренней стенки 4221b, так и внешней стенки 4221a (то есть глубин D1 и D2, показанных на фиг. 4) может естественным образом создавать механическую структуру, которая позволяет первым или центральным сверхпроводящим катушкам 428a иметь больший диаметр/радиус, чем сверхпроводящие катушки 428b, помещенные с противоположных концов первой и второй кольцевых областей 4221 и 4222. Благодаря обеспечению тепловой связи между первой и второй кольцевыми областями 4221 и 4222 внутренней камеры 422 посредством присоединенной третьей или центральной кольцевой области 4223 проектирование и конструирование криостата 420 может быть упрощено по сравнению, например, с криостатом, который включает в себя две отдельные и термически изолированные внутренние камеры.
При том, что в настоящем документе раскрыты предпочтительные варианты осуществления, возможно множество изменений, которые остаются в пределах концепции и объема настоящего изобретения. Такие изменения станут понятны среднему специалисту в данной области техники после изучения описания изобретения, чертежей и формулы изобретения в настоящем документе. Настоящее изобретение, следовательно, не ограничено ничем, кроме объема прилагаемой формулы изобретения.

Claims (28)

1. Аппарат (400) для объединенной магнитно-резонансной томографии и радиационной терапии, содержащий:
источник излучения (410), выполненный с возможностью генерировать радиотерапевтический пучок (415); и
магнитно-резонансный томограф (100),
причем магнитно-резонансный томограф включает в себя криостат (420), содержащий:
внутреннюю камеру (422) и
область вакуума (421), практически окружающую внутреннюю камеру,
причем внутренняя камера содержит:
первую и вторую кольцевые секции (4221, 4222), разделенные и разнесенные друг от друга вдоль первого направления, причем первая и вторая кольцевые секции имеют расположенные в них соответствующие первый и второй кольцевые объемы криогенной текучей среды, и
третью кольцевую секцию (4223), простирающуюся в первом направлении между первой и второй кольцевыми секциями и соединяющую первую и вторую кольцевые секции друг с другом, причем третья кольцевая секция имеет расположенный в ней третий кольцевой объем криогенной текучей среды (323); и
трубчатую структуру (425) отдельно и на удалении от третьей кольцевой секции, простирающуюся в первом направлении между первой и второй кольцевыми секциями и соединяющую первую и вторую кольцевые секции друг с другом,
причем средняя кольцевая глубина третьего кольцевого объема в перпендикулярной первому направлению плоскости меньше, чем средняя кольцевая глубина первого кольцевого объема и средняя кольцевая глубина второго кольцевого объема,
причем радиотерапевтический пучок предназначен для прохождения через третью кольцевую секцию криостата.
2. Аппарат (400) по п. 1, причем источник излучения содержит линейный ускоритель (212).
3. Аппарат (400) по п. 1, причем источник излучения содержит многолепестковый коллиматор.
4. Аппарат (400) по п. 1, дополнительно содержащий сверхпроводящие катушки (428a, 428b), расположенные в первой и второй кольцевых секциях, причем сверхпроводящие катушки включают в себя по меньшей мере пару первых сверхпроводящих катушек (428a) и пару вторых сверхпроводящих катушек (428b), причем первые сверхпроводящие катушки расположены ближе, чем вторые сверхпроводящие катушки, к третьей кольцевой секции и причем диаметр каждой из первых сверхпроводящих катушек больше, чем диаметр каждой из вторых сверхпроводящих катушек.
5. Аппарат (400) по п. 4, причем радиотерапевтический пучок (415) предназначен для прохождения между парой первых сверхпроводящих катушек (428a).
6. Камера (422) для криостата (420), содержащая:
первую и вторую кольцевые секции (4221, 4222), разделенные и разнесенные друг от друга вдоль первого направления, причем первая и вторая кольцевые секции имеют расположенные в них соответствующие первый и второй кольцевые объемы криогенной текучей среды;
третью кольцевую секцию (4223), простирающуюся в первом направлении между первой и второй кольцевыми секциями и соединяющую первую и вторую секции друг с другом, причем третья кольцевая секция имеет расположенный в ней третий кольцевой объем криогенной текучей среды (323); и
трубчатую структуру (425) отдельно и на удалении от третьей кольцевой секции, простирающуюся в первом направлении между первой и второй кольцевыми секциями и соединяющую первую и вторую кольцевые секции друг с другом,
причем средняя кольцевая глубина третьего кольцевого объема в перпендикулярной первому направлению плоскости меньше, чем средняя кольцевая глубина первого кольцевого объема и средняя кольцевая глубина второго кольцевого объема.
7. Камера (422) по п. 6, дополнительно содержащая сверхпроводящие катушки (428a, 428b), расположенные в первой и второй кольцевых секциях, причем сверхпроводящие катушки включают в себя по меньшей мере первую сверхпроводящую катушку (428a) и вторую сверхпроводящую катушку (428b), причем первая сверхпроводящая катушка расположена ближе, чем вторая сверхпроводящая катушка, к третьей кольцевой секции и причем диаметр первой сверхпроводящей катушки больше, чем диаметр второй сверхпроводящей катушки.
8. Камера (422) по п. 6, причем каждая из внутренней ширины первой кольцевой секции в перпендикулярной первому направлению плоскости и внутренней ширины второй кольцевой секции в перпендикулярной первому направлению плоскости больше, чем увеличенная в десять раз внутренняя ширина третьей кольцевой секции в перпендикулярной первому направлению плоскости.
9. Камера (422) по п. 6, причем каждая из внутренней ширины первой кольцевой секции в перпендикулярной первому направлению плоскости и внутренней ширины второй кольцевой секции в перпендикулярной первому направлению плоскости больше, чем увеличенная в тридцать раз внутренняя ширина третьей кольцевой секции в перпендикулярной первому направлению плоскости.
10. Аппарат (400) по п. 1, причем внешний диаметр криостата является практически постоянным.
11. Камера (422) по п. 6, причем внутренняя ширина третьей кольцевой секции в перпендикулярной первому направлению плоскости меньше, чем внутренняя ширина первой кольцевой секции и внутренняя ширина второй кольцевой секции.
12. Камера (422) по п. 6, причем первая и вторая кольцевые секции ограничивают соответствующие первый и второй внутренние объемы, причем третья кольцевая секция ограничивает третий внутренний объем и причем третий внутренний объем значительно меньше, чем первый внутренний объем, и значительно меньше, чем второй внутренний объем.
13. Камера (422) по п. 6, причем первая и вторая кольцевые секции ограничивают соответствующие первый и второй внутренние объемы, причем третья кольцевая секция ограничивает третий внутренний объем, причем каждый из первого внутреннего объема и второго внутреннего объема по меньшей мере в сто раз превосходит третий внутренний объем.
RU2016101579A 2013-06-21 2014-06-05 Криостат и система для объединенной магнитно-резонансной томографии и радиационной терапии RU2655686C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361837739P 2013-06-21 2013-06-21
US61/837,739 2013-06-21
US201361882924P 2013-09-26 2013-09-26
US61/882,924 2013-09-26
PCT/IB2014/061962 WO2014203105A1 (en) 2013-06-21 2014-06-05 Cryostat and system for combined magnetic resonance imaging and radiation therapy

Publications (2)

Publication Number Publication Date
RU2016101579A RU2016101579A (ru) 2017-07-24
RU2655686C2 true RU2655686C2 (ru) 2018-05-29

Family

ID=51022928

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016101579A RU2655686C2 (ru) 2013-06-21 2014-06-05 Криостат и система для объединенной магнитно-резонансной томографии и радиационной терапии

Country Status (7)

Country Link
US (1) US10729918B2 (ru)
EP (1) EP3011357B1 (ru)
JP (1) JP6475234B2 (ru)
CN (1) CN105393133B (ru)
BR (1) BR112015031515A2 (ru)
RU (1) RU2655686C2 (ru)
WO (1) WO2014203105A1 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015031515A2 (pt) * 2013-06-21 2017-07-25 Koninklijke Philips Nv aparelho, e, câmara para um criostato
GB2545436B (en) * 2015-12-15 2018-04-11 Siemens Healthcare Ltd A cylindrical superconducting magnet with a shield of ferromagnetic material
US11883685B2 (en) 2017-08-24 2024-01-30 Shanghai United Imaging Healthcare Co., Ltd. Therapeutic system and method
CN109420259A (zh) 2017-08-24 2019-03-05 上海联影医疗科技有限公司 治疗系统和使用治疗系统的方法
CN114668987A (zh) * 2018-11-14 2022-06-28 上海联影医疗科技股份有限公司 放射治疗系统
CN114401667A (zh) * 2019-09-09 2022-04-26 上海联影医疗科技股份有限公司 治疗装置
WO2023102916A1 (en) * 2021-12-10 2023-06-15 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for imaging and treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224571A (ja) * 2000-02-15 2001-08-21 Hitachi Medical Corp 開放型超電導磁石とそれを用いた磁気共鳴イメージング装置
RU2290863C2 (ru) * 2004-05-14 2007-01-10 ГОУ ВПО Омская Государственная Медицинская Академия Способ контроля состояния криосистемы охлаждения экрана магнитно-резонансных томографов
WO2011106524A1 (en) * 2010-02-24 2011-09-01 Viewray Incorporated Split magnetic resonance imaging system
WO2012143173A1 (en) * 2011-04-21 2012-10-26 Siemens Plc Combined mri and radiation therapy equipment

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60217608A (ja) * 1984-04-12 1985-10-31 Fuji Electric Corp Res & Dev Ltd 均一磁場コイル
US5568104A (en) * 1995-10-23 1996-10-22 General Electric Company Open MRI superconductive magnet with cryogenic-fluid cooling
US5939962A (en) * 1996-08-07 1999-08-17 Mitsubishi Denki Kabushiki Kaisha Split type magnetic field generating apparatus for MRI
US5874880A (en) * 1998-03-05 1999-02-23 General Electric Company Shielded and open superconductive magnet
US6591127B1 (en) * 1999-03-15 2003-07-08 General Electric Company Integrated multi-modality imaging system and method
JP4639763B2 (ja) * 2004-11-12 2011-02-23 三菱電機株式会社 磁気共鳴イメージング装置
GB2427479B (en) 2005-06-22 2007-11-14 Siemens Magnet Technology Ltd Particle Radiation Therapy Equipment and method for performing particle radiation therapy
GB2427478B (en) * 2005-06-22 2008-02-20 Siemens Magnet Technology Ltd Particle radiation therapy equipment and method for simultaneous application of magnetic resonance imaging and particle radiation
JP2007000254A (ja) * 2005-06-22 2007-01-11 Mitsubishi Electric Corp Mri用超電導電磁石装置
DE102008007245B4 (de) * 2007-02-28 2010-10-14 Siemens Aktiengesellschaft Kombiniertes Strahlentherapie- und Magnetresonanzgerät
US8487269B2 (en) * 2007-02-28 2013-07-16 Siemens Aktiengesellschaft Combined radiation therapy and magnetic resonance unit
EP2262570A1 (en) * 2008-03-12 2010-12-22 Navotek Medical Ltd. Combination mri and radiotherapy systems and methods of use
WO2011008969A1 (en) * 2009-07-15 2011-01-20 Viewray Incorporated Method and apparatus for shielding a linear accelerator and a magnetic resonance imaging device from each other
EP2486417B1 (en) * 2009-10-06 2019-07-31 Koninklijke Philips N.V. Retrospective calculation of radiation dose and improved therapy planning
US8378682B2 (en) * 2009-11-17 2013-02-19 Muralidhara Subbarao Field image tomography for magnetic resonance imaging
DE102010001746B4 (de) * 2010-02-10 2012-03-22 Siemens Aktiengesellschaft Vorrichtung mit einer Kombination aus einer Magnetresonanzvorrichtung und einer Strahlentherapievorrichtung
DE102010001743B4 (de) * 2010-02-10 2012-07-12 Siemens Aktiengesellschaft Vorrichtung mit einer Kombination aus einer Magnetresonanzvorrichtung und einer Strahlentherapievorrichtung
EP2400314A1 (en) 2010-06-14 2011-12-28 Agilent Technologies U.K. Limited Superconducting magnet arrangement and method of mounting thereof
EP2613848B1 (en) * 2010-09-09 2014-08-13 Koninklijke Philips N.V. A dosimeter, therapeutic apparatus and computer program product for measuring radiation dosage to a subject during magnetic resonance imaging
GB2484529B (en) * 2010-10-15 2012-09-19 Siemens Ag Beam deflection arrangement within a combined radiation therapy and magnetic resonance unit
WO2012063162A1 (en) * 2010-11-09 2012-05-18 Koninklijke Philips Electronics N.V. Magnetic resonance imaging and radiotherapy apparatus with at least two-transmit-and receive channels
WO2012063158A1 (en) * 2010-11-09 2012-05-18 Koninklijke Philips Electronics N.V. Magnetic resonance imaging system and radiotherapy apparatus with an adjustable axis of rotation
JP6151642B2 (ja) * 2010-12-08 2017-06-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. スリップリングアセンブリ
RU2013132567A (ru) * 2010-12-13 2015-01-20 Конинклейке Филипс Электроникс Н.В. Терапевтическое устройство, содержащее устройство для лучевой терапии, механическую систему позиционирования и систему магнитно-резонансной томографии
JP6018185B2 (ja) * 2011-05-31 2016-11-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Mri放射線治療装置の静磁場補正
EP2724172A2 (en) * 2011-06-27 2014-04-30 Koninklijke Philips N.V. Bone mri using an ultrashort echo time pulse sequence with fid and multiple gradient echo acquisition and water-fat separation processing
US20140288349A1 (en) * 2011-07-28 2014-09-25 Deutsches Krebsforschungszentrum Therapeutic device for treating a predefined body part of a patient with rays
US8981779B2 (en) * 2011-12-13 2015-03-17 Viewray Incorporated Active resistive shimming fro MRI devices
EP2664359A1 (en) * 2012-05-14 2013-11-20 Koninklijke Philips N.V. Magnetic resonance guided therapy with interleaved scanning
RU2634636C2 (ru) * 2012-06-20 2017-11-02 Конинклейке Филипс Н.В. Графический пользовательский интерфейс для медицинских инструментов
JP6001177B2 (ja) * 2012-09-18 2016-10-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 磁気共鳴で案内される直線加速器
GB2507792B (en) * 2012-11-12 2015-07-01 Siemens Plc Combined MRI and radiation therapy system
JP6420768B2 (ja) * 2012-12-17 2018-11-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 熱伝達装置を用いた低損失な永久電流スイッチ
RU2015137718A (ru) * 2013-02-06 2017-03-14 Конинклейке Филипс Н.В. Активная компенсация для компонент искажения поля в системе создания изображений магнитного резонанса с гентри
US9404983B2 (en) * 2013-03-12 2016-08-02 Viewray, Incorporated Radio frequency transmit coil for magnetic resonance imaging system
US9675271B2 (en) * 2013-03-13 2017-06-13 Viewray Technologies, Inc. Systems and methods for radiotherapy with magnetic resonance imaging
CN105190343B (zh) * 2013-03-14 2019-03-01 皇家飞利浦有限公司 用于超导磁体系统的气体流量减少的电引线
US10376716B2 (en) * 2013-04-18 2019-08-13 Koninklijke Philips N.V. Radiation therapy system with real-time magnetic resonance monitoring
BR112015031515A2 (pt) * 2013-06-21 2017-07-25 Koninklijke Philips Nv aparelho, e, câmara para um criostato
WO2015011679A1 (en) * 2013-07-26 2015-01-29 Koninklijke Philips N.V. Method and device for controlling cooling loop for superconducting magnet system in response to magnetic field
EP3052187B1 (en) * 2013-09-30 2018-11-14 Koninklijke Philips N.V. Alignment of the coordinate systems of external beam radiotherapy and magnetic resonance imaging systems
US10307616B2 (en) * 2013-10-17 2019-06-04 Koninklijke Philips, N.V. Medical apparatus with a radiation therapy device and a radiation detection system
US10099070B2 (en) * 2013-11-08 2018-10-16 Koninklijke Philips N.V. Medical apparatus for radiotherapy and ultrasound heating
CN105745553B (zh) * 2013-11-13 2019-11-05 皇家飞利浦有限公司 包括热学有效的跨越系统的超导磁体系统以及用于冷却超导磁体系统的方法
CN106104291B (zh) * 2014-03-13 2020-06-16 皇家飞利浦有限公司 具有电子剂量计的磁共振天线
JP6615122B2 (ja) * 2014-05-09 2019-12-04 コーニンクレッカ フィリップス エヌ ヴェ Mriモジュールと、rfコイルの位置を決定するための手段とを含む療法システム
RU2687843C2 (ru) * 2014-05-21 2019-05-16 Конинклейке Филипс Н.В. Способ и устройство для поддерживания сверхпроводящей катушки и аппарат, включающий в себя устройство для поддерживания сверхпроводящей катушки
US9943703B2 (en) * 2014-07-28 2018-04-17 The University Of Maryland, Baltimore System and method for irradiation therapy using voxel based functional measurements of organs at risk
CN106688060B (zh) * 2014-09-09 2019-03-08 皇家飞利浦有限公司 具有低温热缓冲的超导磁体
GB2531591B (en) * 2014-10-23 2017-01-11 Elekta ltd Combined radiotherapy and MRI apparatus
US10413253B2 (en) * 2014-11-21 2019-09-17 Samsung Electronics Co., Ltd. Method and apparatus for processing medical image
US11045108B2 (en) * 2014-11-26 2021-06-29 Viewray Technologies, Inc. Magnetic resonance imaging receive coil assembly
JP6438584B2 (ja) * 2014-12-12 2018-12-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 冷却喪失時に超伝導マグネットシステム内の真空を維持するシステムおよび方法
WO2016166071A1 (en) * 2015-04-14 2016-10-20 Koninklijke Philips N.V. Radiotherapy planning with improved accuracy
DE102015213730B4 (de) * 2015-07-21 2017-03-23 Siemens Healthcare Gmbh Qualitätskontrolle einer Bestrahlungsplanung durch Vergleich erster und zweiter MR-basierter Dosisverteilungen im Planungsvolumen
US10252083B2 (en) * 2015-09-23 2019-04-09 Varian Medical Systems Inc. Systems, methods, and devices for high-energy irradiation
DE102016200433A1 (de) * 2016-01-15 2017-07-20 Siemens Healthcare Gmbh Verfahren zur Planung einer Bestrahlung eines Patienten
CN108780133B (zh) * 2016-03-17 2021-10-22 皇家飞利浦有限公司 用于mri装置的mr可见标记以及mr引导的辐射治疗系统
US20170368373A1 (en) * 2016-06-22 2017-12-28 Velayudhan Sahadevan Device and Methods for Broadbeam and Microbeam Chemo-Radiosurgery Combined with Its Tumor Exosome Apheresis
WO2018093933A1 (en) * 2016-11-15 2018-05-24 Reflexion Medical, Inc. System for emission-guided high-energy photon delivery
JP7286272B2 (ja) 2018-06-21 2023-06-05 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224571A (ja) * 2000-02-15 2001-08-21 Hitachi Medical Corp 開放型超電導磁石とそれを用いた磁気共鳴イメージング装置
RU2290863C2 (ru) * 2004-05-14 2007-01-10 ГОУ ВПО Омская Государственная Медицинская Академия Способ контроля состояния криосистемы охлаждения экрана магнитно-резонансных томографов
WO2011106524A1 (en) * 2010-02-24 2011-09-01 Viewray Incorporated Split magnetic resonance imaging system
WO2012143173A1 (en) * 2011-04-21 2012-10-26 Siemens Plc Combined mri and radiation therapy equipment

Also Published As

Publication number Publication date
RU2016101579A (ru) 2017-07-24
US20160136456A1 (en) 2016-05-19
EP3011357A1 (en) 2016-04-27
EP3011357B1 (en) 2022-10-12
JP6475234B2 (ja) 2019-02-27
BR112015031515A2 (pt) 2017-07-25
CN105393133A (zh) 2016-03-09
US10729918B2 (en) 2020-08-04
JP2016526411A (ja) 2016-09-05
WO2014203105A1 (en) 2014-12-24
CN105393133B (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
RU2655686C2 (ru) Криостат и система для объединенной магнитно-резонансной томографии и радиационной терапии
KR101423607B1 (ko) Mri 및 방사선 병용 요법 장비
JP2021524775A (ja) 磁気共鳴結像システム用のb0磁石の機器および方法
US7960710B2 (en) Particle radiation therapy equipment
AU2009261910C1 (en) Radiation therapy system
US10061000B2 (en) MRI magnet for radiation and particle therapy
US8803524B2 (en) Split magnetic resonance imaging system
JP5715116B2 (ja) 磁気共鳴システム用モザイク式シム・コイル
CN109420259A (zh) 治疗系统和使用治疗系统的方法
JP4247948B2 (ja) 磁石装置及びmri装置
WO2016071733A1 (en) Mri guided radiation therapy
JP5791856B2 (ja) 特に磁気共鳴撮像誘導下の治療システム用の磁気共鳴高周波アンテナを有する患者ベッド
CN111228658A (zh) 一种磁共振图像引导的放射治疗系统
RU200143U1 (ru) Катушка для магнитно-резонансной томографии на основе диэлектрических колец
CN211325033U (zh) 梯度线圈及磁共振扫描设备
EP4152030A1 (en) Gradient coil assembly for a magnetic resonance imaging device and magnetic resonance imaging device
WO2015181939A1 (ja) 超電導磁石装置
US20210103019A1 (en) Open bore magnet for mri guided radiotherapy system
CN114504737A (zh) 磁共振引导的放射治疗系统及磁共振设备
CN118043694A (en) Imaging and therapy system and method
WO2021112720A1 (ru) Катушка для магнитно-резонансной томографии на основе диэлектрических колец