RU2647839C2 - Фотокаталитический элемент для очистки и обеззараживания воздуха и воды и способ его изготовления - Google Patents

Фотокаталитический элемент для очистки и обеззараживания воздуха и воды и способ его изготовления Download PDF

Info

Publication number
RU2647839C2
RU2647839C2 RU2015123582A RU2015123582A RU2647839C2 RU 2647839 C2 RU2647839 C2 RU 2647839C2 RU 2015123582 A RU2015123582 A RU 2015123582A RU 2015123582 A RU2015123582 A RU 2015123582A RU 2647839 C2 RU2647839 C2 RU 2647839C2
Authority
RU
Russia
Prior art keywords
sintered glass
titanium dioxide
glass beads
dioxide powder
photocatalytic element
Prior art date
Application number
RU2015123582A
Other languages
English (en)
Other versions
RU2015123582A (ru
Inventor
Игорь Львович Балихин
Виктор Иванович Берестенко
Игорь Анатольевич Домашнев
Евгений Николаевич Кабачков
Евгений Николаевич Куркин
Владимир Николаевич Троицкий
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем химической физики РАН (ИПХФ РАН)
Научный центр Российской академии наук в Черноголовке (НЦЧ РАН)
Общество с ограниченной ответственностью "ТИОКРАФТ" (ООО "ТИОКРАФТ")
Общество С Ограниченной Ответственностью "Красное Поле"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем химической физики РАН (ИПХФ РАН), Научный центр Российской академии наук в Черноголовке (НЦЧ РАН), Общество с ограниченной ответственностью "ТИОКРАФТ" (ООО "ТИОКРАФТ"), Общество С Ограниченной Ответственностью "Красное Поле" filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем химической физики РАН (ИПХФ РАН)
Publication of RU2015123582A publication Critical patent/RU2015123582A/ru
Application granted granted Critical
Publication of RU2647839C2 publication Critical patent/RU2647839C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4533Gas separation or purification devices adapted for specific applications for medical purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

Изобретение относится к области очистки и обеззараживания воздуха и воды, в частности к фотокаталитическому элементу и способу изготовления фотокаталитического элемента. Способ изготовления фотокаталитического элемента включает спекание стеклянных шариков, модифицирование поверхности спеченных стеклянных шариков и нанесение порошка диоксида титана на модифицированную поверхность спеченных стеклянных шариков. Спекание стеклянных шариков осуществляют при температуре на 5-20°C выше температуры начала размягчения стекла. Модифицирование поверхности спеченных стеклянных шариков осуществляют комплексным химическим травлением путем последовательной обработки поверхности шариков концентрированной плавиковой кислотой в течение 1-5 минут и концентрированной серной кислотой в течение 1-5 минут. Нанесение порошка диоксида титана на модифицированную поверхность спеченных стеклянных шариков осуществляют из водной суспензии с рН=2,9±0,1. Фотокаталитический элемент состоит из спеченных стеклянных шариков, которые имеют открытую пористость с размером пор от 0,1 мм до 0,5 мм при объемной доле пор от 20% до 40%, а поверхность спеченных стеклянных шариков имеет рельефную форму с глубиной рельефа от 0,5 мкм до 10 мкм. Новый фотокаталитический элемент имеет увеличенные механическую прочность, каталитическую активность и срок службы. 2 н.п. ф-лы, 2 ил., 2 табл., 2 пр.

Description

Изобретение относится к области очистки и обеззараживания воздуха и воды, в частности к конструкции и способу изготовления фотокаталитического элемента, который может быть использованы в качестве основного функционального узла в устройствах молекулярной и комплексной очистки с использованием фотокатализа.
Фотоактивированная каталитическая окислительная деструкция органических загрязнителей на диоксиде титана под действием ультрафиолетового света является перспективным методом очистки и обеззараживания воздуха и воды. Метод отличается высокой эффективностью, экономичностью, экологической чистотой, позволяя уничтожать практически любые загрязнители органической природы, полностью минерализуя их до воды и углекислого газа. Главным функциональным узлом фотокаталитических устройств очистки, обеспечивающим их эффективность и долговечность, является фотокаталитический элемент, представляющий собой конструкцию, объединяющую нанокристаллический катализатор и носитель заданной формы, установленную в зоне действия УФ излучения.
Фотокаталитический элемент может быть использован в составе устройств для очистки и обеззараживания воздуха в медицинских учреждениях, детских садах, школах, офисах, кинотеатрах, жилых помещениях и т.п. для эффективной борьбы с распространением респираторных инфекций, удаления токсичных загрязнителей и неприятных запахов.
Известен способ получения фотокаталитического материала (United States Patent; Patent Number: 5,919,726; Date of Patent: Jul. 6, 1999), согласно которому на первом этапе на субстрат из какого-либо материала (металл, цемент, глина, песок, гравий, керамика, пластик, дерево, камень, стекло и т.п.) наносится любым способом (распылением, кистью и др.) подслой толщиной от 0,05 до 2 мкм, содержащий гель кремнезема с размером частиц примерно от 20 до 50 мкм, который закрепляется термообработкой при температуре от 100 до 900°C в течение 3-30 минут. На втором этапе подслой обрабатывается тетрахлоридом титана в жидком или парообразном состоянии (возможно добавление водяного пара). На третьем этапе производится термообработка полученного материала при температуре 150-500°C в кислородсодержащей атмосфере в течение 1-10 минут, в результате чего на поверхности образуется слой диоксида титана анатазной модификации. Благодаря наличию подслоя из кремнезема образующийся диоксид титана закрепляется на субстрате и сохраняет фотокаталитические свойства. Метод рекомендуется в основном для производства строительных материалов с фотокаталитическим эффектом очистки и обеззараживания воздуха (керамической плитки, стеновых панелей и т.п.).
В тестах на бактерицидную активность суспензию клеток (0,5 мл) наносили на полученную керамическую плитку. Плитку помещали на чашку Петри и накрывали крышкой из кварцевого стекла. Инкубация проводилась в стерильном боксе при люминесцентном освещении в 1200 люкс при 25°C в течение 3 часов. Результаты представлены в таблице 2. Для сравнения плитка без слоя оксида титана была также проверена. Лучший из испытанных образцов показал снижение концентрации живых клеток Staphylococcus aureus с 3100 до 135 и Klebsiella pneumonia с 1725 до 400.
Главным недостатком данного способа получения фотокаталитического материала является сложный и экологически опасный технологический процесс, связанный с использованием тетрахлорида титана - вещества с высокой летучестью и токсичностью. Кроме того, при нанесении слоя диоксида титана в результате гидролиза TiCl4 выделяется токсичный и коррозионно агрессивный хлористый водород.
Бактерицидная активность полученных образцов материалов недостаточна для их применения в устройствах очистки и обеззараживания воздуха.
Известен фотокаталитический фильтр для очистки воздуха (United States Patent; Patent Number: US 6,491,883 B2; Date of Patent: Dec. 10, 2002). Фильтр состоит из нанесенного на материал основы покрытия толщиной от 5 до 60 мкм, в состав которого входят:
- частицы, пропускающие ультрафиолетовый свет (такие как стеклянные частицы или волокна) с размером в минимальном измерении от 0,2 до 50 мкм в количестве от 5 до 60% по весу;
- частицы фотокаталитического TiO2 средним размером от 0,001 мкм до 0,02 мкм в количестве от 20 до 80% по весу;
- частицы диоксида кремния средним размером от 0,002 до 0,2 мкм в количестве от 10 до 60% по весу;
- опционально глинистый минерал в количестве от 2 до 20% по весу.
Покрытие обладает хорошей адгезией к материалу основы и способно пропускать в объем ультрафиолетовый свет, однако использование мелкодисперсных составляющих, особенно смеси с глинистым связующим, не позволяет обеспечить хорошую газопроницаемость покрытия и эффективную работу частиц фотокаталитического TiO2, находящихся в объеме покрытия. Для создания фотокаталитического элемента для устройств очистки воздуха и воды необходимо иметь материал с высокой открытой пористостью, обеспечивающей беспрепятственную диффузию очищаемой среды к фотокатализатору.
Известна система очистки воздуха для транспортных средств (United States, Patent Application Publication, Pub. No.: US 2012/0128539 A1, Pub. Date: May 24, 2012). Устройство состоит из входа и выхода воздуха и объема для протекания воздуха между ними. В объеме установлены один или несколько элементов с реакционной поверхностью и один или несколько источников ультрафиолетового света. Реакционная поверхность содержит каталитический материал и занимает по крайней мере 50% от внутренней поверхности устройства. В качестве каталитического материала используется диоксид титана или содержащий его материал. В качестве источников ультрафиолетового света используются люминесцентные трубки или светодиоды. Прокачивание воздуха через объем устройства осуществляется вентилятором. Для увеличения площади и времени контакта воздуха с реакционной поверхностью предлагается использовать различные варианты конструкций, закрепленных в корпусе элементов гофрированной, спиральной, звездчатой, пальчиковой формы, а также элементы в виде сыпучего материала (например, коротких стеклянных или пластиковых труб, шариков), заполняющего весь прокачиваемый воздухом объем. Для дополнительного увеличения эффективности очистки воздуха реакционная поверхность элементов может содержать наноцеолиты и (или) наносеребро. Использование свободно насыпанных элементов, покрытых катализатором, создает большую реакционную поверхность, контактирующую с очищаемым воздухом, однако возможность перемещения незакрепленных элементов относительно друг друга будет неизбежно приводить к механическому износу каталитического слоя в результате трения и выносу образующейся пыли из устройства, а также к снижению ресурса работы катализатора. Для эффективно работающего устройства необходимо иметь консолидированный фотокаталитический элемент с высокой внутренней пористостью и газопроницаемостью. Катализатор должен быть нанесен на всю поверхность носителя, включая поверхность внутренних пор.
Наиболее близким по совокупности существенных признаков к заявляемому изобретению является фотокаталитический элемент и способ его получения (патент Российской Федерации №2151632 от 20.10.1998 г.), содержащий пористый носитель заданной формы (преимущественно в виде трубы или пластины), выполненный из 5-10 слоев спеченных стеклянных шариков, и порошок диоксида титана анатазной модификации с удельной поверхностью 100-150 м2/г, нанесенный на поверхность носителя. Способ изготовления такого фотокаталитического элемента включает:
изготовление носителя заданной формы спеканием стеклянных шариков диаметром 0,1-1,5 мм при температуре ниже температуры размягчения стекла в оболочке из металла, графита или легко разрушаемого материала, охлаждение, извлечение носителя из оболочки, активацию поверхности носителя парами или 1-2% раствором плавиковой кислоты, нанесение на поверхность носителя порошка диоксида титана из водной суспензии порошка, сушку носителя на воздухе.
Данный фотокаталитический элемент и способ его получения имеет следующие недостатки:
- вследствие спекания стеклянных шариков при температуре ниже температуры размягчения стекла механическая прочность получаемого фотокаталитического элемента недостаточно высока, в связи с чем наблюдается большой процент разрушения фотокаталитических элементов на стадии транспортировки, сборки и эксплуатации фотокаталитических устройств;
- недостаточно высокая удельная поверхность применяемого порошка диоксида титана (100-150 м2/г) ограничивает максимально возможную активность фотокаталитического элемента в процессах очистки воздуха и воды;
- активация поверхности носителя описанным способом (обработка парами или 1-2%-ным раствором плавиковой кислоты) не является достаточно эффективным способом увеличения прочности сцепления порошка диоксида титана со стеклянными шариками, особенно для фотокаталитических элементов, используемых в устройствах очистки воды. В процессе эксплуатации фотокаталитических элементов в водных потоках происходит унос части порошка диоксида титана с поверхности носителя и, как следствие, снижение активности и срока службы фотокаталитического элемента;
- отсутствие контроля за показателем pH водной суспензии при нанесении порошка диоксида титана на носитель не позволяет устойчиво получать фотокаталитические элементы с максимальной активностью.
Задачей предлагаемого изобретения является создание нового фотокаталитического элемента, для которого характерны:
- увеличенная механическая прочность;
- увеличенная каталитическая активность;
- увеличенный срок службы.
Задача достигается тем, что фотокаталитический элемент для очистки и обеззараживания воздуха и воды содержит:
- пористый носитель заданной формы с размером пор от 0,1 мм до 0,5 мм и объемной долей пор от 20% до 40%, состоящий из спеченных стеклянных шариков, поверхность которых имеет рельеф глубиной от 0,5 мкм до 5 мкм, и порошок диоксида титана с удельной поверхностью 150-400 м2/г, нанесенный на поверхность стекла в количестве 0,5-2% по отношению к массе фотокаталитического элемента.
Также задача решается способом получения фотокаталитического элемента, который включает:
- изготовление носителя путем спекания стеклянных шариков в твердой оболочке, задающей необходимую форму и размер носителя при температуре на 5-20°C выше температуры начала размягчения стекла;
- охлаждение носителя и извлечение его из оболочки;
- формирование на стеклянной поверхности носителя рельефа глубиной от 0,5 мкм до 5 мкм путем последовательной обработки носителя концентрированной плавиковой кислотой в течение 1-5 минут и концентрированной серной кислотой в течение 1-5 минут;
- промывку носителя водой и высушивание его в сушильном шкафу при температуре 80-120°C;
- нанесение на стеклянную поверхность спеченных шариков порошка диоксида титана с удельной поверхностью 150-400 м2/г в количестве 0,5-2% по отношению к массе фотокаталитического элемента путем обработки носителя водной суспензией порошка диоксида титана с pH = 2,9±0,1;
- высушивание готового фотокаталитического элемента в сушильном шкафу при температуре 150-200°С.
Спекание стеклянных шариков при температуре на 5-20°C выше температуры начала размягчения стекла позволяет обеспечить высокую механическую прочность носителя при одновременном сохранении высокой открытой пористости (20%-40% пор размером 0,1 мм-0,5 мм).
Модифицирование поверхности спеченных стеклянных шариков концентрированными растворами плавиковой и серной кислот позволяет создать на поверхности стекла рельеф глубиной от 0,5 мкм до 5 мкм, который обеспечивает прочное сцепление и удержание порошка диоксида титана на поверхности носителя в потоке очищаемого воздуха или воды. На рисунке приведены микрофотографии поверхности спеченных шариков до (1) и после (2) обработки кислотами. Подобный эффект образования рельефа не достигается при обычной активации поверхности парами или разбавленными растворами плавиковой кислоты.
На фиг. 1 представлена поверхность носителя до (1) и после (2) кислотного модифицирования.
При нанесении порошка диоксида титана на поверхность носителя важнейшим фактором, определяющим конечную активность фотокаталитического элемента, является показатель pH водной суспензии, из которой происходит нанесение. Максимальная активность реализуется при pH = 2,9±0,1. С учетом экстремального вида зависимости активности фотокатализатора от pH среды (рис. 2) при нанесении порошка диоксида титана необходимо строго придерживаться указанной кислотности суспензии (pH = 2,9±0,1). Такой прием в совокупности с применением порошка диоксида титана с высокой удельной поверхностью (150-400 м2/г) позволяет получать фотокаталитические элементы с максимальной активностью.
На фиг. 2 приведена зависимость фотокаталитической активности диоксида титана от pH суспензии.
Сущность предлагаемого изобретения характеризуется следующими примерами.
Пример 1.
Стеклянные шарики (фракция 0,8-1 мм) засыпают до заполнения в цилиндрический канал разборной оболочки из нержавеющей стали, имеющий наружный диаметр 86 мм, ширину 6 мм и высоту 420 мм. Оболочку помещают в печь и проводят спекание шариков при температуре на 15°C выше температуры начала размягчения стекла (около 690°C) в течение 1 ч 20 мин. После охлаждения до комнатной температуры оболочку разбирают и извлекают полученный носитель в виде пористой стеклянной трубы.
Далее проводят модифицирование поверхности носителя погружением сначала в концентрированную плавиковую кислоту на 1 минуту, затем промывают водой и обрабатывают концентрированной серной кислотой в течение 3 минут, промывают водой и высушивают в сушильном шкафу при температуре 100°C до полного удаления влаги.
Готовят водную суспензию из дистиллированной воды и порошка диоксида титана анатазной модификации с удельной поверхностью 350 м2/г с содержанием диоксида титана 10 масс. %. С помощью капельного добавления разбавленной серной кислоты pH суспензии доводят до значения 2,9±0,1. Погружают в полученную суспензию высушенный носитель, извлекают и высушивают в сушильном шкафу при температуре 150°С.
Готовый фотокаталитический элемент содержит:
- пористый трубчатый носитель, состоящий из спеченных стеклянных шариков с модифицированной поверхностью, длиной 420 мм, диаметром 86 мм с толщиной стенки 6 мм;
- порошок диоксида титана анатазной модификации с удельной поверхностью 350 м2/г в количестве 12 г на один элемент.
В качестве контрольного образца был изготовлен еще один фотокаталитический элемент, порядок изготовления которого отличался только отсутствием операций по модифицированию поверхности. Рельеф на поверхности шариков отсутствовал. Содержание диоксида титана в готовом фотокаталитическом элементе составило 10 г.
Полученные в примере образцы (основной - №1 и контрольный - №2) были испытаны в процессе обеззараживания воды, содержащей культуру кишечной палочки (Escherichia coli). Согласно схеме эксперимента через стенку вертикально установленного фотокаталитического элемента в режиме циркуляции пропускалась вода, содержащая клетки Escherichia coli с расходом 2 л/мин. Внутри трубы была установлена лампа ультрафиолетового света, освещающая внутреннюю поверхность фотокаталитического элемента ультрафиолетовым светом с длиной волны 320-405 нм, мощностью в ИК-диапазоне 9 Вт. Через заданные промежутки времени отбирались пробы воды, которые наносились на питательную среду в чашках Петри. Через 48 часов подсчитывалось количество выросших на питательной среде колоний. Кроме того, через 10 часов непрерывного протекания воды контролировался унос порошка диоксида титана потоком воды по изменению веса высушенного фотокаталитического элемента. Результаты измерений приведены в таблице 1.
Figure 00000001
Из результатов испытаний видно, что модифицирование носителя с приданием рельефа поверхности стекла увеличивает захват порошка диоксида титана при нанесении его из суспензии, дает более прочное сцепление катализатора с носителем и увеличивает фотокаталитическую активность фотокаталитического элемента в целом.
Пример 2.
Стеклянные шарики (фракция 0,8-1 мм) засыпают до заполнения в плоский щелевой канал разборной оболочки из нержавеющей стали, имеющий длину 60 мм, ширину 5 мм и высоту 400 мм. Дальнейшие операции по спеканию, модифицированию поверхности носителя и нанесению катализатора проводят так же, как в примере 1.
Готовый фотокаталитический элемент содержит:
- пористый носитель в виде параллелепипеда с размерами
Figure 00000002
, состоящий из спеченных стеклянных шариков с модифицированной поверхностью;
- порошок диоксида титана анатазной модификации с удельной поверхностью 350 м2/г в количестве 2 г на один элемент.
Контрольный образец для тестирования был приготовлен по такой же схеме за исключением того, что нанесение порошка диоксида титана на носитель проводили из суспензии с pH=4,5. Полученные в примере образцы (основной - №3 и контрольный - №4) были испытаны в реакции фотокаталитического окисления паров ацетона в воздухе. Эксперимент проводился в герметичном боксе объемом 300 л, куда помещался реактор с испытуемым образцом, ультрафиолетовая лампа, аналогичная используемой в примере 1, и вентилятор, обеспечивающий движение воздуха. Начальная концентрация паров создавалась испарением соответствующего количества жидкого ацетона и составляла 100 ppm. После включения УФ-лампы с помощью газовых сенсоров измерялась концентрация ацетона и конечного продукта его окисления (CO2) с течением времени. Результаты испытаний приведены в таблице 2.
Figure 00000003
Результаты демонстрируют большую каталитическую активность образца №1, осаждение диоксида титана, на который проводили из суспензии с pH=2,9±0,1.

Claims (3)

1. Фотокаталитический элемент для очистки и обеззараживания воздуха и воды, состоящий из спеченных стеклянных шариков с нанесенным на них порошком диоксида титана, отличающийся тем, что спеченные стеклянные шарики имеют открытую пористость с размером пор от 0,1 мм до 0,5 мм при объемной доле пор от 20% до 40%, при этом поверхность спеченных стеклянных шариков имеет рельефную форму с глубиной рельефа от 0,5 мкм до 10 мкм, площадь удельной поверхности порошка диоксида титана составляет 150-400 м2/г, при массовой доле порошка диоксида титана 0,5-2% по отношению к массе фотокаталитического элемента.
2. Способ изготовления фотокаталитического элемента по п. 1, включающий спекание стеклянных шариков, модифицирование поверхности спеченных стеклянных шариков, нанесение порошка диоксида титана на модифицированную поверхность спеченных стеклянных шариков, отличающийся тем, что спекание стеклянных шариков осуществляют при температуре на 5-20°С выше температуры начала размягчения стекла, а перед нанесением порошка диоксида титана поверхность спеченных стеклянных шариков подвергают модифицированию химическими травителями, при этом нанесение порошка диоксида титана на поверхность спеченных стеклянных шариков осуществляют из водной суспензии порошка диоксида титана с рН=2,9±0,1.
3. Способ изготовления фотокаталитического элемента по п. 2, отличающийся тем, что для модифицирования поверхности спеченных стеклянных шариков химическими травителями используют последовательную обработку концентрированной плавиковой кислотой в течение 1-5 минут и концентрированной серной кислотой в течение 1-5 минут.
RU2015123582A 2012-12-20 2012-12-20 Фотокаталитический элемент для очистки и обеззараживания воздуха и воды и способ его изготовления RU2647839C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2012/001086 WO2014098641A1 (ru) 2012-12-20 2012-12-20 Фотокаталитический элемент для очистки и обеззараживания воздуха и воды и способ его изготовления

Publications (2)

Publication Number Publication Date
RU2015123582A RU2015123582A (ru) 2017-01-23
RU2647839C2 true RU2647839C2 (ru) 2018-03-21

Family

ID=50978797

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015123582A RU2647839C2 (ru) 2012-12-20 2012-12-20 Фотокаталитический элемент для очистки и обеззараживания воздуха и воды и способ его изготовления

Country Status (6)

Country Link
US (1) US9925529B2 (ru)
EP (1) EP2937139A4 (ru)
CN (1) CN105073247B (ru)
EA (1) EA027566B1 (ru)
RU (1) RU2647839C2 (ru)
WO (1) WO2014098641A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788746B2 (en) 2018-01-26 2023-10-17 Seoul Viosys Co., Ltd. Fluid treatment device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11819580B2 (en) 2016-10-18 2023-11-21 PurWorld Technologies LLC Method of chemically disinfecting a vehicle
KR20180124569A (ko) * 2017-05-12 2018-11-21 서울바이오시스 주식회사 유체 처리 장치
CN107670656B (zh) * 2017-09-25 2020-08-11 莱恩创科(北京)科技有限公司 一种光催化剂负载方法
CN110124720A (zh) * 2019-05-21 2019-08-16 福州大学 一种在玻璃珠表面负载氮化碳光催化剂的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037300A1 (en) * 1995-05-26 1996-11-28 University Technologies International Inc. Photocatalyst compound and process for production thereof
RU2151632C1 (ru) * 1998-10-20 2000-06-27 Балихин Игорь Львович Фотокаталитический элемент и способ его получения
US20040071612A1 (en) * 2002-09-30 2004-04-15 Colby Mary W. Sintered glass bead filter with active microbial destruction
RU2257955C2 (ru) * 2000-01-27 2005-08-10 Баттелл Мемориал инститьют Катализатор, способ его получения и реакции с его применением
US20080268229A1 (en) * 2006-08-09 2008-10-30 Daeyeon Lee Superhydrophilic coatings
RU100189U1 (ru) * 2010-03-04 2010-12-10 Учреждение Российской академии наук Научный центр РАН в Черноголовке (НЦЧ РАН) Фотокаталитический очиститель воздуха конвективного типа

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216367A (ja) 1998-01-30 1999-08-10 Osaka Prefecture 光触媒材料の製造方法
US6135838A (en) * 1998-10-07 2000-10-24 Chung Shan Institute Of Science And Technology Method of making UV lamp for air cleaning
JP3818811B2 (ja) 1999-12-27 2006-09-06 日本パーカライジング株式会社 空気浄化用光触媒フィルター
CN100427183C (zh) * 2006-04-26 2008-10-22 哈尔滨工业大学 填充式球载纳米TiO2气体净化组合装置
US9586460B2 (en) 2008-11-05 2017-03-07 Johnson Controls Technology Company Air purification system for vehicles
RU98134U1 (ru) * 2010-04-15 2010-10-10 Учреждение Российской Академии Наук Институт Проблем Химической Физики Ран (Ипхф Ран) Бытовой фотокаталитический очиститель воздуха

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037300A1 (en) * 1995-05-26 1996-11-28 University Technologies International Inc. Photocatalyst compound and process for production thereof
RU2151632C1 (ru) * 1998-10-20 2000-06-27 Балихин Игорь Львович Фотокаталитический элемент и способ его получения
RU2257955C2 (ru) * 2000-01-27 2005-08-10 Баттелл Мемориал инститьют Катализатор, способ его получения и реакции с его применением
US20040071612A1 (en) * 2002-09-30 2004-04-15 Colby Mary W. Sintered glass bead filter with active microbial destruction
US20080268229A1 (en) * 2006-08-09 2008-10-30 Daeyeon Lee Superhydrophilic coatings
RU100189U1 (ru) * 2010-03-04 2010-12-10 Учреждение Российской академии наук Научный центр РАН в Черноголовке (НЦЧ РАН) Фотокаталитический очиститель воздуха конвективного типа

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788746B2 (en) 2018-01-26 2023-10-17 Seoul Viosys Co., Ltd. Fluid treatment device

Also Published As

Publication number Publication date
US20160008804A1 (en) 2016-01-14
WO2014098641A1 (ru) 2014-06-26
CN105073247A (zh) 2015-11-18
RU2015123582A (ru) 2017-01-23
US9925529B2 (en) 2018-03-27
EA201500592A1 (ru) 2015-09-30
EP2937139A1 (en) 2015-10-28
EP2937139A4 (en) 2016-12-14
EA027566B1 (ru) 2017-08-31
CN105073247B (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
RU2647839C2 (ru) Фотокаталитический элемент для очистки и обеззараживания воздуха и воды и способ его изготовления
Mukai et al. Preparation of porous TiO2 cryogel fibers through unidirectional freezing of hydrogel followed by freeze-drying
JP2775399B2 (ja) 多孔質光触媒及びその製造方法
US20030050196A1 (en) Photocatalyst compositions and methods for making the same
US20100239470A1 (en) Photocatalysts Based on Structured Three-Dimensional Carbon or Carbon-Containing Material Forms
JP2517874B2 (ja) 酸化チタン薄膜光触媒の製造方法
JP2002517628A (ja) 光触媒コーティングを備える基材
JP2002285691A (ja) 内装材
JPH08103631A (ja) 光触媒フィルター及びその製造方法
CN101703793A (zh) 一种大通量纳米晶光催化空气净化器
JPH10305230A (ja) 光触媒とその製造方法および有害物質の分解・除去方法
WO2021224358A1 (en) A filter and a method for manufacturing thereof
JP4163374B2 (ja) 光触媒膜
RU2151632C1 (ru) Фотокаталитический элемент и способ его получения
JP5544515B2 (ja) 耐候性・耐汚染性塗膜形成用エマルション塗料の製造方法、そのエマルション塗料及び耐候性・耐汚染性塗膜
JP3567693B2 (ja) 固定化光触媒の製造方法および有害物質の分解・除去方法
KR101891512B1 (ko) 공기 및 수 정화 소독용 광촉매성 요소 및 이의 제조 방법
CN111153658A (zh) 一种利用可见光催化降解甲醛的硅藻泥及其制备方法
RU2008141552A (ru) Фильтрующая среда для очистки жидкости и газа, способ ее получения и способ фильтрования
WO2017157328A1 (zh) 线性钛氧聚合物、二氧化钛涂层、光催化剂涂层及其制备方法
JP4849862B2 (ja) 新規ヘテロポリ酸塩、それを用いた光触媒、及び光触媒機能性部材
JP2005052713A (ja) 炭素繊維担持多孔質チタン酸化物光触媒とフイルター
JP2002186861A (ja) 多孔質光触媒およびその製造方法
JP2006075696A (ja) 光触媒担持シリカスート体とその製造方法、空気清浄装置、排ガス処理装置、排水処理装置及び浄水装置
JP3809101B2 (ja) 空気清浄化ユニット

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20171026

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20171208

PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20210525