RU2642660C2 - Способ получения карбида кремния - Google Patents

Способ получения карбида кремния Download PDF

Info

Publication number
RU2642660C2
RU2642660C2 RU2016110073A RU2016110073A RU2642660C2 RU 2642660 C2 RU2642660 C2 RU 2642660C2 RU 2016110073 A RU2016110073 A RU 2016110073A RU 2016110073 A RU2016110073 A RU 2016110073A RU 2642660 C2 RU2642660 C2 RU 2642660C2
Authority
RU
Russia
Prior art keywords
silicon
temperature
silicon carbide
mixture
hours
Prior art date
Application number
RU2016110073A
Other languages
English (en)
Other versions
RU2016110073A (ru
Inventor
Маргарита Анатольевна Кудрявцева
Борис Наумович Левонович
Виктория Валерьевна Поварёнкина
Андрей Николаевич Прокопенко
Лидия Николаевна Шевякова
Всеволод Константинович Тузовский
Константин Анатольевич Тузовский
Original Assignee
ООО НПО "КвинтТех"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ООО НПО "КвинтТех" filed Critical ООО НПО "КвинтТех"
Priority to RU2016110073A priority Critical patent/RU2642660C2/ru
Publication of RU2016110073A publication Critical patent/RU2016110073A/ru
Application granted granted Critical
Publication of RU2642660C2 publication Critical patent/RU2642660C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к технологии получения карбида кремния для изготовления приборов СВЧ-техники, оптоэлектроники и силовой техники. Карбид кремния получают из шихты, содержащей нанопорошки кремнийсодержащего (SiO, SiO2, H2SiO3) и углеродсодержащего (углевод общей формулы Cn(H2O)m, где n≥12; m=n-1, многоатомный спирт общей формулы CnH2n+2On, где n≥2, альдегидные либо кетонные производные многоатомных спиртов общей формулы (CH2O)n, где n≥3 компонентов, приготовленной в деионизованной воде, с последующим ступенчатым нагревом в три стадии: до температуры 145-195°C с выдержкой 1,5-3 ч, до 800-1000°C с выдержкой 0,4-1 ч и до 1450-1650°C с выдержкой в течение 1-1,5 ч. Получают порошок карбида кремния белого цвета высокой чистоты - 1⋅10-5 ат.% с выходом годного продукта порядка 80-85%. 3 пр.

Description

Изобретение относится к производству материалов электронной техники, а именно - к получению карбида кремния высокой чистоты, для изготовления приборов СВЧ-техники, оптоэлектроники и силовой техники.
Первым способом промышленного получения карбида кремния был способ карботермического восстановления SiO2 углеродом при температуре 1700-2000°C (метод Ачисона). Продукт предназначался в основном для производства абразивных материалов, а его чистота была достаточна на уровне 95-99%. Это позволяло использовать не только доступное и дешевое сырье и высокопроизводительные печи, но и добавки, улучшающие ход процесса (поваренная соль, опилки).
Недостатком известного способа являются неоднородность состава и структуры, по причине отсутствия перемешивания в печи. Необходимо дальнейшее применение операций (измельчение, промывка, магнитное обогащение и т.п.) для выделения полученного карбида кремния. Ввиду того, что реакция SiQ2+C эндотермична - расход энергии достигает 20 кВт⋅ час/кг, а длительность процесса составляет 12-24 часа в зависимости от объема загрузки.
Промышленные способы, разработанные Ачесоном, за последние десятилетия не претерпели принципиальных изменений и совершенствовались лишь конструктивно или в частностях.
Известен способ получения карбида кремния взаимодействием диоксида кремния с углеродом при температуре 2200-2400°C - наиболее распространенный метод (Патент Японии №54-122312). Недостатком этого способа является невозможность получения высокочистого карбида кремния полупроводникового качества.
Известен способ получения карбида кремния путем синтеза при температуре 1800-2300°C из шихты, содержащей порошок диоксида кремния и углерод, в виде молотого графита или сажи (Патент США №6022515). При взаимодействии диоксида кремния с углеродом осуществляется твердотельная реакция, скорость и полнота которой зависят от степени контакта твердых частиц диоксида кремния и углеродсодержащего вещества. Достигается это за счет глубокого измельчения исходных компонентов шихты и высокой температуры. Способ имеет тот недостаток, что организовать равномерное прогревание шихты и послойное продвижение фронта горения невозможно, поэтому процесс осуществим лишь в реакторах небольшого объема, с низким выходом годного продукта (не более 75%) и недостаточной чистоты.
Наиболее близким техническим решением является способ получения карбида кремния синтезом из порошков кремния и углерода в виде молотого графита или сажи с размером частиц 20 мкм и менее с добавлением SiO2 в соотношении: С:Si:SiO2=62,4:37,4:0,2 моль. %; либо C:Si:SiO2=34,9:64,9:0,2 моль. %; либо C:Si:SiO2=50,0:41,0:9,0 моль. %; либо C:Si:SiO2=68,0: 23,0: 9,0 моль. % в атмосфере кислорода при содержании O2=0,3-35% к реакционному объему при постепенном подъеме температуры от 800°C до 1450°C (патент США №4217335). Недостатком данного способа является проведение синтеза в твердой фазе, характеризуемой дальним порядком расположения атомов кремния и углерода. Несмотря на использование исходных порошков с микронными размерами частиц, проведение синтеза в атмосфере кислорода и постепенного прогрева шихты, градиент температуры в объеме реакционной смеси значителен, соответственно отсутствует равномерное нагревание реагирующих составляющих, что ведет к медленному образованию β - карбида кремния и низкому выходу готового продукта. Обеспечить послойный фронт горения невозможно, вследствие чего процесс осуществим лишь в реакторах небольшого объема, с низким выходом годного продукта (не более 70-75%). Необходимо отметить, что карбид кремния характеризуется значительным полиморфизмом (250 политипных модификаций) и следующими видами кристаллической решетки:
- 3С - кубическая (β - SiC);
- (2Н; 4Н; 6Н; 8Н) - гексагональная (α - SiC);
- 15R - ромбическая.
При повышении температуры и времени процесса все образующиеся формы переходят в конечном итоге в гексагональный α - политип 6Н. Из всех кристаллических модификаций карбида кремния в полупроводниковых приборах применяются только две гексагональные формы: α - политип 4Н и α - политип 6Н. Полученный карбид кремния (β - SiC) по указанному способу не только не соответствует полупроводниковому уровню чистоты, но и не обладает необходимой гексагональной структурой кристаллической решетки. Для использования такого карбида кремния в производстве полупроводниковых приборов необходима многоступенчатая очистка полученного продукта до полупроводникового качества и перевод β - политипа при нагревании и длительной выдержке более 1700°С, что приведет к введению дополнительных технологических операций и существенному увеличению производственных и энергетических затрат при получении карбида кремния.
Целью настоящего изобретения является получение карбида кремния высокой чистоты, обеспечивающий экономию электроэнергии, высокую производительность и выход годной продукции.
Поставленная цель достигается тем, что в качестве кремнийсодержащего компонента используют нанопорошок общей формулы SiHhOz, где h=0 или 2; z=1,2,3 или смесь нанопорошков соединений кремния в равных долях, в качестве углеродсодержащего компонента используют углевод общей формулы Cn(H2O)m, где n≥12; m=n-1 или многоатомный спирт общей формулы CnH2n+2On, где n≥2, или альдегидные либо кетонные производные многоатомных спиртов общей формулы (CH2O)n, где n≥3, или их смеси в равных долях; при весовом соотношении в пересчете на кремний и углерод Si:C=1:(1,04-1,4); приготовление шихты ведут в деионизованной воде (15-20% к реакционному объему), а нагрев шихты осуществляют ступенчато в три стадии: до температуры 145-195°C с выдержкой в течение 1,5-3 часов; до температуры 800-1000°C с выдержкой в течение 0,4-1 час и до температуры 1450-1650°C с выдержкой в течение 1-1,5 часов.
Суть изобретения состоит в том, что при использовании исходных компонентов с наноразмерами частиц (3-200 нм), резко повышается реакционная способность исходных реагентов за счет роста активности частиц с уменьшением их размеров и за счет увеличения реакционной поверхности в 1000 раз (1 мкм=1⋅10-6 м, 1 нм=1⋅10-9 м). При этом даже в твердой фазе исходной шихты обеспечивается ближний порядок атомов составляющих реагентов.
Весовое соотношение нанопорошков кремнийсодержащих и углеродсодержащих компонентов в пересчете на кремний и углерод (Si:С) выбрано расчетным и опытным путем, оно обеспечивает наиболее высокий выход конечного продукта. Снижение в соотношении Si:С кремния менее 1, как и увеличение углерода более 1,4 приводит к повышенному содержанию углерода в готовом карбиде кремния; снижение в соотношении Si:С углерода менее 1,04, как и увеличение кремния более 1 приводит к повышенному содержанию кремния в готовом карбиде кремния. Как в первом случае, так и во втором нарушается стехиометрический состав полупроводникового соединения AIVBIV-SiC.
В качестве кремнийсодержащих соединений используют монооксид, диоксид кремния или кремниевую кислоту. В качестве углеводов используют дисахариды (сахар рафинированный, лактоза), полисахариды (крахмал, целлюлоза); в качестве многоатомных спиртов используют глицерин, сорбит, ксилит; в качестве альдегидных либо кетонных производных многоатомных спиртов используют глюкозу, фруктозу.
Одной из отличительных особенностей настоящего изобретения является приготовление шихты в деионизованной воде, что приводит к созданию в водной среде реакционного объема равномерного распределения частиц реагентов, за счет образования водородных связей между поверхностью активных полярных наноразмерных частиц и молекул воды. При этом формируется пространственная полимерная структура типа «незамкнутых сот», прочно удерживающая частицы исходных реагентов в «соте» водородных связей воды, что обеспечивает сохранность ближнего порядка между реагирующими частицами и стабильность объема реакционной смеси. Использование количества деионизованной воды менее 15% к реакционному объему не обеспечивает равномерного распределения частиц реагентов в полимерной структуре типа «незамкнутых сот» за счет дефицита водородных связей, что приводит к образованию конгломератов наноразмерных частиц и нестабильности объема реакционной смеси. Использование количества деионизованной воды более 20% к реакционному объему приводит к широкой дисперсии наноразмерных частиц в реакционном объеме, в результате этого снижается скорость проведения процессов на каждой стадии получения карбида кремния.
Ступенчатый нагрев необходим для полноты протекания реакций по каждой стадии:
Первая стадия – карамелизация - проводится при нагревании до температуры 145-195°C с выдержкой в течение 1,5-3 часов для удаления воды с сохранением жидкой среды реакционной смеси, так как углеводы, многоатомные спирты, альдегидные либо кетонные производные многоатомных спиртов или их смеси при нагреве плавятся с образованием жидкой карамели. Жидкая среда значительно увеличивает степень контакта молекул углеродсодержащего реагента с молекулами кремнийсодержащего реагента. Выдержка при температуре 145-195°C в течение 1,5-3 часов необходима для полного расплавления сахаров. Нагрев до температуры менее 145°C и выдержки при ней менее 1,5 часов - замедляет процесс расплавления углеводов, что приводит к неполному завершению процесса карамелизации, в результате чего на последующих стадиях получения карбида кремния формируется продукт с повышенной дефектностью. Нагрев до температуры более 195°C и выдержки при ней более 3,0 часов - нецелесообразен из-за повышенного расхода электроэнергии и частичной деструкции углеводов.
Вторая стадия – карбонизация - проводится при нагревании до температуры 800-1000°C с выдержкой в течение 0,4-1 час для получения чистого углерода и полной дегазации реакционной смеси при одновременном увеличении ее газопроницаемости с целью ускорения реакции образования карбида кремния и проведения процесса при более низкой температуре. Снижение температуры и времени выдержки ниже 800°C и 0,4 часов не обеспечивает полную дегазацию реакционной смеси. Нагрев до температуры более 1000°C и выдержки при ней более 1,0 часа - нецелесообразен из-за повышенного расхода электроэнергии.
Третья стадия – карбидизация - проводится при нагревании до температуры 1450-1650°C с выдержкой в течение 1-1,5 часов, что обеспечивает полное завершение процесса синтеза карбида кремния. При нагреве до температуры менее 1450°C и выдержке при ней менее 1 часа замедляется процесс карбидизации. При нагреве до температуры более 1650°C и выдержке при ней более 1,5 часов повышается расход электроэнергии и, следовательно, стоимость готового продукта.
Технический результат предлагаемого изобретения заключается в получении карбида кремния полупроводниковой чистоты за счет обеспечения меньшей нанодисперстности и высокой газопроницаемости шихты, вследствие чего синтез SiC происходит быстрее при значительно меньшем расходе энергии. Повышение выхода годного продукта, экономия электроэнергии при снижении времени получения карбида кремния, доступность и невысокая стоимость исходных компонентов делают предлагаемый способ экономически выгодным при выпуске полупроводникового карбида кремния высокого качества в обеспечение нужд радиоэлектронной отрасли.
Примеры выполнения
Пример №1. Глюкозу (C6H12O6) в количестве 650 г растворяют в 400 мл деионизованной воды и добавляют при постоянном перемешивании 650 г сорбита (C6H14O6) и 1 кг нанопорошка монооксида кремния (SiO с размером частиц не более 200 нм). Нагревают суспензию шоколадного цвета до температуры 150°C, при которой происходит выпаривание воды и плавление глюкозы с образованием жидкой карамели, которая обволакивает частицы нанопорошка монооксида кремния. Выдерживают при этой температуре 1,5 часа для завершения процесса карамелизации. Затем загружают шихту в графитовый тигель, вакуумируют, нагревают до 800°C, выдерживают 15 минут для проведения процесса карбонизации, затем повышают температуру до 1550°C и выдерживают в течение 1 часа для завершения процесса карбидизации. Получили 838 грамм карбида кремния белого цвета, чистотой 1⋅10-5 ат.%, с выходом годного продукта - 85%.
Пример №2. Сахар рафинированный (C12H22O11) в количестве 1,2 кг растворяют в 500 мл деионизованной воды, добавляют 500 г порошка аэросила (SiO2 размер частиц не более 40 нм) и 500 г силикагеля (H2SiO3 с эффективным диаметром пор 20-120
Figure 00000001
и удельной поверхностью 100-1000 м2/г), перемешивают миксером. Получают смесь, имеющую консистенцию желе. Полученную смесь высушивают и нагревают до температуры 195°C выдерживают при ней 3 часа для проведения процесса карамелизации. Затем загружают в графитовый тигель, вакуумируют, повышают температуру до 1000°C и выдерживают при ней 1 час для завершения процесса карбонизации, затем увеличивали температуру до 1450°C и выдерживают при ней 1,5 часа для полного завершения процесса карбидизации. Получили 770 г карбида кремния белого цвета, чистотой 1⋅10-5 ат.% с выходом годного продукта ≈ 80%.
Пример №3. Навеску крахмала (полисахарид - Cn(H2O)m и ксилита (C5H12O5) величиной 1,4 кг (в равных количествах по 700 г каждого) смешали с навесками порошка монооксида 500 г порошка монооксида кремния (SiO с размером частиц не более 200 нм) и 500 г аэросила (SiO2 размер частиц не более 40 нм), добавляют 450 мл деионизованной воды и перемешивают миксером. Получают смесь, имеющую консистенцию золя шоколадного цвета. Полученную смесь нагревают до температуры 180°C, выдерживают при ней 1,2 часа, высушивают и проводят процесс карамелизации. Затем загружают в графитовый тигель, вакуумируют, повышают температуру до 1650°C и выдерживают при ней 1,3 часа для полного завершения процесса карбидизации. Получили 740 г карбида кремния белого цвета, чистотой 1⋅10-5 ат.% с выходом годного продукта - 80%.
Из полученных образцов карбида кремния были выращены монокристаллы SiC проводниковой чистоты.
Использование предлагаемого способа уменьшает возможность загрязнения полученного карбида кремния, повышает процент выхода до 80-85%, снижает стоимость его производства за счет экономии электроэнергии и использование доступных недорогих исходных реагентов.

Claims (1)

  1. Способ получения карбида кремния, включающий приготовление шихты из кремнийсодержащего и углеродсодержащего компонентов, загрузку шихты, нагрев шихты, отличающий тем, что в качестве кремнийсодержащего компонента используют нанопорошок общей формулы SiHhOz, где h=0 или 2; z=1, 2, 3 или смесь нанопорошков соединений кремния в равных долях, в качестве углеродсодержащего компонента используют углевод общей формулы Cn(H2O)m, где n≥12; m=n-1 или многоатомный спирт общей формулы CnH2n+2On, где n≥2, или альдегидные либо кетонные производные многоатомных спиртов общей формулы (СН2O)n, где n≥3, или их смеси в равных долях; при весовом соотношении в пересчете на кремний и углерод Si:С=1:(1,04-1,4); приготовление шихты ведут в деионизованной воде (15-20% к реакционному объему), а нагрев шихты осуществляют ступенчато в три стадии: до температуры 145-195°С с выдержкой в течение 1,5-3 часов; до температуры 800-1000°С с выдержкой в течение 0,4-1 часа и до температуры 1450-1650°С с выдержкой в течение 1-1,5 часов.
RU2016110073A 2016-03-21 2016-03-21 Способ получения карбида кремния RU2642660C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016110073A RU2642660C2 (ru) 2016-03-21 2016-03-21 Способ получения карбида кремния

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016110073A RU2642660C2 (ru) 2016-03-21 2016-03-21 Способ получения карбида кремния

Publications (2)

Publication Number Publication Date
RU2016110073A RU2016110073A (ru) 2017-09-26
RU2642660C2 true RU2642660C2 (ru) 2018-01-25

Family

ID=59930819

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016110073A RU2642660C2 (ru) 2016-03-21 2016-03-21 Способ получения карбида кремния

Country Status (1)

Country Link
RU (1) RU2642660C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767270C1 (ru) * 2021-08-25 2022-03-17 Кирилл Борисович ИГНАТЬЕВ Способ получения карбида кремния
RU2789998C1 (ru) * 2022-06-30 2023-02-14 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ получения карбида кремния

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340417A (en) * 1989-01-11 1994-08-23 The Dow Chemical Company Process for preparing silicon carbide by carbothermal reduction
US20110175024A1 (en) * 2008-09-30 2011-07-21 Juergen Erwin Lang Method for producing high-purity silicon carbide from hydrocarbons and silicon oxide through calcination
EP2470473A2 (en) * 2009-08-26 2012-07-04 LG Innotek Co., Ltd. System and method for manufacturing silicon carbide pulverulent body
KR20130023976A (ko) * 2011-08-30 2013-03-08 엘지이노텍 주식회사 탄화규소 분말 제조 방법
RU2013116458A (ru) * 2013-04-11 2014-10-20 Борис Георгиевич Грибов Способ получения карбида кремния

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340417A (en) * 1989-01-11 1994-08-23 The Dow Chemical Company Process for preparing silicon carbide by carbothermal reduction
US20110175024A1 (en) * 2008-09-30 2011-07-21 Juergen Erwin Lang Method for producing high-purity silicon carbide from hydrocarbons and silicon oxide through calcination
EP2470473A2 (en) * 2009-08-26 2012-07-04 LG Innotek Co., Ltd. System and method for manufacturing silicon carbide pulverulent body
KR20130023976A (ko) * 2011-08-30 2013-03-08 엘지이노텍 주식회사 탄화규소 분말 제조 방법
RU2013116458A (ru) * 2013-04-11 2014-10-20 Борис Георгиевич Грибов Способ получения карбида кремния

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767270C1 (ru) * 2021-08-25 2022-03-17 Кирилл Борисович ИГНАТЬЕВ Способ получения карбида кремния
RU2789998C1 (ru) * 2022-06-30 2023-02-14 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ получения карбида кремния

Also Published As

Publication number Publication date
RU2016110073A (ru) 2017-09-26

Similar Documents

Publication Publication Date Title
JP5133051B2 (ja) 高純度の珪素含有生成物
TWI613335B (zh) 碳化矽粉末及碳化矽單晶的製造方法
Kevorkijan et al. Low-temperature synthesis of sinterable SiC powders by carbothermic reduction of colloidal SiO 2
JP2012504103A (ja) 二酸化珪素からのソーラーグレードシリコンの製造
JP2007532468A5 (ru)
JP2011102205A (ja) α型炭化ケイ素粉体の粒径制御方法及び炭化ケイ素単結晶
CN110156468A (zh) 一种ZrC-ZrB2-SiC陶瓷复合粉体的前驱体转化法制备工艺
EP2334598A2 (de) Herstellung von solar-silicium aus siliciumdioxid
CN102333726B (zh) 太阳能级硅的制备方法
US20080314446A1 (en) Processes for the preparation of solar-grade silicon and photovoltaic cells
RU2642660C2 (ru) Способ получения карбида кремния
CN113666375A (zh) 一种绿色制备高比表面积β-碳化硅的方法
CN101792181B (zh) 一种硅酸铋纳米晶的制备方法
CN101391788A (zh) 一种抛光液用氧化铝粉的制备方法
CN109811415B (zh) 一种从高岭土低温制备莫来石晶须的方法
US20080314445A1 (en) Method for the preparation of high purity silicon
JP2015000850A (ja) 有機アルコキシシランの製造方法
KR101549477B1 (ko) 고순도 탄화규소 분말의 제조방법
KR101071282B1 (ko) 메조포러스 실리카로부터 제조된 탄화규소 분말 및 그 제조방법
JP5043632B2 (ja) 六方晶窒化ホウ素の製造方法
CN113457621A (zh) C3n4-石墨烯复合材料的制备方法及其应用
Huang et al. On the 2H-to 3C-Type Transformation and Growth Mechanism of SiC Nanowires upon Carbothermal Reduction of Rice Straws
JPS616110A (ja) 炭化珪素の製造方法
RU2393112C1 (ru) Способ получения нановолокон карбида кремния
JP2016079057A (ja) キラルな固体金属及び固体複合体、並びにそれらの製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180322