RU2642245C2 - Многослойный алюминиевый лист для бесфлюсовой высокотемпературной пайки в регулируемой атмосфере - Google Patents

Многослойный алюминиевый лист для бесфлюсовой высокотемпературной пайки в регулируемой атмосфере Download PDF

Info

Publication number
RU2642245C2
RU2642245C2 RU2014153559A RU2014153559A RU2642245C2 RU 2642245 C2 RU2642245 C2 RU 2642245C2 RU 2014153559 A RU2014153559 A RU 2014153559A RU 2014153559 A RU2014153559 A RU 2014153559A RU 2642245 C2 RU2642245 C2 RU 2642245C2
Authority
RU
Russia
Prior art keywords
solder
intermediate layer
core
layer
sheet according
Prior art date
Application number
RU2014153559A
Other languages
English (en)
Other versions
RU2014153559A (ru
Inventor
Линда АХЛЬ
Рикард Вестергорд
Давид АБРАХАМССОН
Original Assignee
Гренгес Свиден Аб
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48700674&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2642245(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Гренгес Свиден Аб filed Critical Гренгес Свиден Аб
Publication of RU2014153559A publication Critical patent/RU2014153559A/ru
Application granted granted Critical
Publication of RU2642245C2 publication Critical patent/RU2642245C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/012Soldering with the use of hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/002Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of light metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • B23K35/288Al as the principal constituent with Sn or Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

Изобретение относится к области металлургии, а именно к многослойному алюминиевому листу для высокотемпературной пайки. Многослойный лист для бесфлюсовой высокотемпературной пайки содержит сердцевину из алюминиевого сплава, покрытую промежуточным слоем алюминиевого сплава, и нанесенный на промежуточном слое припой из алюминиевого сплава. Сердцевина выполнена из алюминиевого сплава 3XXX, содержащего, мас.%: Mn<2,0, Cu≤1,2, Fe≤1,0, Si≤1,0, Ti≤0,2, Mg≤2,5, Zr, Cr, V и/или Sc в сумме ≤0,2, остальное – Al и неизбежные примеси. Промежуточный слой выполнен из алюминиевого сплава, содержащего, мас.%: Mg 0,2-2,5, Mn<2,0, Cu≤1,2, Fe≤1,0, Si≤1,0, Ti≤0,2, Zn≤6, Sn≤0,1, In≤0,1, Zr, Cr, V и/или Sc в сумме ≤0,2, остальное – Al и неизбежные примеси. Припой выполнен из алюминиевого сплава, содержащего, мас.%: Si 5-14, Mg<0,02, Bi 0,05-0,2, Fe≤0,8, Zn≤6, Sn≤0,1, In≤0,1, Cu≤0,3, Mn≤0,15, Sr≤0,05, остальное – Al и неизбежные примеси. Материал сердцевины и промежуточный слой имеют более высокую температуру плавления, чем припой, а промежуточный слой является протекторным по отношению к сердцевине. Суммарная толщина плакирующего слоя, состоящего из промежуточного слоя и слоя припоя, по отношению к общей толщине листа составляет 3-30%. Пайка может проводиться в инертной или восстановительной атмосфере без необходимости нанесения флюса. Обеспечивается возможность пайки сложных конструкций с коррозионным потенциалом. 4 н. и 12 з.п. ф-лы, 2 табл.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к многослойному алюминиевому листу для высокотемпературной пайки, включающему материал сердцевины, покрытой промежуточным слоем и наружным покрывающим слоем припоя. Изобретение также относится к теплообменнику, включающему упомянутый улучшенный многослойный алюминиевый лист для высокотемпературной пайки.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к листовым материалам для соединения посредством высокотемпературной пайки алюминиевых материалов в инертной или восстановительной атмосфере, как правило, при атмосферном давлении, без необходимости в применении флюса для разрушения, растворения или удаления поверхностного оксидного слоя.
В настоящее время задача заключается в разработке и изготовлении материалов и деталей для промышленного производства теплообменников при как можно более низкой конечной стоимости и как можно более высоком качестве. Наиболее часто используемая при получении теплообменников технология представляет собой высокотемпературную пайку в регулируемой атмосфере, обычно состоящей из азота с как можно более низкими количествами окисляющих примесей (в первую очередь газообразного кислорода и водяного пара). Этот процесс известен как высокотемпературная пайка в регулируемой атмосфере ("CAB") и включает в себя нанесение флюса на основе Al-K-F, например флюса NOCOLOK®, на подлежащие соединению поверхности перед высокотемпературной пайкой. Флюс разрушает, удаляет или растворяет поверхностный оксидный слой присадочного металла, способствуя смачиванию расплавленной присадкой поверхностей отдельных деталей теплообменника. Флюс также предотвращает или снижает образование новых оксидов в процессе образования соединения. Однако остатки флюса после высокотемпературной пайки часто считаются вредными для теплообменника, поскольку они могут отслаиваться от спаянных алюминиевых поверхностей и закупоривать внутренние каналы, тем самым препятствуя эффективному применению теплообменника. Иногда слышатся аргументы, что использование флюса в некоторых случаях способствует коррозии и эрозии и ведет к менее эффективным установкам, а иногда вызывает преждевременный выход установки из строя. Существуют также проблемы, связанные с химическими реакциями, происходящими между остатком флюса и ингибиторами коррозии, используемыми в среде, например в радиаторном контуре, что может вызывать повреждение системы. Помимо чисто функций, связанных с недостатками использования флюса, серьезным является влияние флюса и флюсования на, например, условия работы, стоимость, капиталовложения в связанное с высокотемпературной пайкой оборудование и его обслуживание, расход энергии и природную среду.
В дополнение к вышеупомянутым ограничениям, эффективность удаления оксидов флюсом CAB снижается при использовании Mg в качестве легирующего элемента в подлежащем пайке материале. Это происходит из-за реакции между Mg и флюсообразующими соединениями, которые имеют очень высокую температуру плавления, и это препятствует смачиванию, образованию углового шва и росту соединения. Эта несовместимость вызывает трудности, поскольку Mg является очень эффективным, когда речь заходит об обеспечении прочности в алюминиевых материалах. Следовательно, метод CAB ограничен термически неупрочняемыми (NHT) сплавами и сплавами, которые содержат низкое количество Mg. Хорошо известно, что Mg начинает влиять на результат высокотемпературной пайки уже на следовых уровнях, а при уровнях 0,2% большинство пользователей метода CAB имеют большие проблемы с образованием соединения. Проблема в некоторой степени может быть подавлена увеличением добавок флюса или использованием редких и дорогостоящих Cs-содержащих сортов флюса. Однако эта проблема не решается, а скорее смещается в сторону незначительно более высоких уровней Mg.
Чтобы иметь возможность получать теплообменники, используя метод CAB без применения флюса, необходимой является разработка новых концепций и конструкций материалов, которые делают таким образом возможным образование паяных соединений.
Все марки и обозначения сплавов, использованные в дальнейшем, относятся к «Стандартам обозначения и данным и регистрационным записям Алюминиевой ассоциации» (Aluminium Association designation Standards and Data and the Registration Records), опубликованным Алюминиевой ассоциацией в 2007 г. Далее все процентные величины в отношении содержания химических элементов в сплавах понимаются как означающие массовый процент.
Патент EP1306207B1 описывает алюминиевый припой, подходящий для высокотемпературной пайки в инертном газе без использования флюса. Это изобретение основывается на многослойном листе для высокотемпературной пайки, где наружный материал представляет собой тонкий покрывающий слой, покрывающий сплав на основе Al-Si и содержащий 0,1-0,5% Mg и 0,01-0,5% Bi, и материал сердцевины. В течение стадии постепенного повышения температуры цикла высокотемпературной пайки первым начнет плавиться и расширяться в объеме промежуточный слой Al-Si, разрушая тонкий покрывающий слой и позволяя расплавленному присадочному металлу просачиваться через трещины и выходить на поверхность листа для высокотемпературной пайки.
В WO2008/155067A1 раскрывается способ высокотемпературной пайки без флюса. Это изобретение основывается на многослойном алюминиевом листе, включающем тонкий покрывающий слой, а также припой на основе Al-Si в качестве промежуточного слоя между покрывающим слоем и сердцевиной. Сплав покрытия и сплав сердцевины имеют температуру солидуса выше, чем температура ликвидуса материала припоя. Припой на основе Al-Si содержит 0,01-0,09% Mg и 0,01-0,5% Bi. Содержание Mg в сердцевине предпочтительно составляет <0,015%. В этом документе бесфлюсовую высокотемпературную пайку делают возможной сохранением суммарного содержания Mg в листе для высокотемпературной пайки менее 0,06%.
Строения листа для высокотемпературной пайки из вышеуказанных документов уровня техники являются аналогичными. Оба основываются на сердцевине, промежуточном металле, который содержит Mg и Bi, покрытом тонким покрывающим слоем. Существует потенциальный риск с такой структурой листа для высокотемпературной пайки. Может иметь место временная задержка между плавлением присадки и смачиванием. Влияние силы тяжести на расплав может заставлять присадку затекать под поверхностный оксид, приводя к неоднородному размеру соединения и большим локализованным скоплениям расплавленной присадки.
Способы бесфлюсовой высокотемпературной пайки, доступные в уровне техники, имеют ограничение в том, что они либо требуют внешнего покрытия с более высокой температурой плавления, чем нижележащий припой, либо представляют собой сочетание двух слоев различных припоев, которые предназначаются для плавления в течение процесса высокотемпературной пайки. Это не допускает одновременные усложненную конструкцию с градиентом коррозионного потенциала, конструкцию с высокопрочным листом и соединение без флюса. Существует также потребность в усовершенствовании процесса высокотемпературной пайки.
Возрастают требования, в первую очередь со стороны автомобильной промышленности, в отношении количества остаточного флюса, который допускается в системе теплообменника. Оказывается трудным и дорогостоящим нанесение небольших и воспроизводимых количеств флюса на локализованные участки на внутренних поверхностях теплообменника для воспроизводимого образования высококачественных внутренних соединений, и данное изобретение обеспечивает очевидное преимущество в этом аспекте производства теплообменников.
Таким образом, по-прежнему существует необходимость в обеспечении листа для высокотемпературной пайки, который преодолевает вышеуказанные проблемы.
Другие примеры ранее известных листов из алюминиевых сплавов для высокотемпературной пайки известны из US 6627330 B1 и WO2010/052231, которые раскрывают самые наружные слои с высоким или преднамеренно добавленным содержанием Mg.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Задачей настоящего изобретения является обеспечение листа из алюминиевых сплавов для высокотемпературной пайки, который можно паять в инертной или восстановительной атмосфере, без необходимости в нанесении флюса, который приводит к улучшенным паяным соединениям и который допускает усложненную конструкцию с коррозионным потенциалом.
Данная задача решается листом из алюминиевых сплавов для высокотемпературной пайки в соответствии с независимым пунктом 1 формулы изобретения. Варианты осуществления определяются зависимыми пунктами формулы изобретения. Лист из алюминиевых сплавов для высокотемпературной пайки согласно настоящему изобретению является особенно подходящим для припаивания к одной или более деталям, отличным от самого листа для высокотемпературной пайки, в частности, для высокотемпературной пайки ребер или коллекторов к наружной поверхности трубки, выполненной из алюминиевого листа для высокотемпературной пайки.
Лист из алюминиевых сплавов для высокотемпературной пайки включает материал сердцевины из алюминиевого сплава, покрытый промежуточным слоем из алюминиевого сплава, который, в свою очередь, покрыт припоем на основе Al-Si. Алюминиевый сплав промежуточного слоя содержит ≤1,0% Si и 0,1-2,5% Mg, предпочтительно ≥0,2% Mg, более предпочтительно ≥0,3% Mg, еще более предпочтительно ≥0,5% Mg. Припой на основе Al-Si содержит 5-14% Si и 0,01-1,0% Bi, предпочтительно 0,05-0,5% Bi, наиболее предпочтительно 0,07-0,2% Bi, ≤0,8% Fe, ≤6% Zn, ≤0,1% Sn, ≤0,1% In, ≤0,3% Cu, ≤0,15% Mn, ≤0,05% Sr и неизбежные примеси, каждая в количествах менее 0,05 мас.%, а суммарное содержание примесей менее 0,2 мас.%, с остатком, состоящим из алюминия. Материал сердцевины и промежуточный слой имеют более высокую температуру плавления, чем припой.
Таким образом, настоящее изобретение основывается на совершенно другом строении листа для высокотемпературной пайки, чем описанное, например, в EP1306207B1 и WO2008/155067A1, чтобы достичь хорошей паяемости без флюса в регулируемой атмосфере и дополнительной защиты от коррозии, а также обходит возможные ограничения уровня техники.
Согласно одному варианту осуществления алюминиевый сплав промежуточного слоя содержит по меньшей мере 0,9% Mg.
Согласно следующему варианту осуществления алюминиевый сплав промежуточного слоя содержит не более 2,2% Mg.
В соответствии с одним вариантом осуществления промежуточный слой непосредственно прилегает к материалу сердцевины, т.е. без какой-либо прослойки между промежуточным слоем и материалом сердцевины. Согласно другому варианту осуществления слой припоя непосредственно прилегает к промежуточному слою, т.е. без какой-либо прослойки между слоем припоя и промежуточным слоем. Согласно еще одному варианту осуществления промежуточный слой размещается между слоем сердцевины и припоем без каких-либо дополнительных слоев между слоем сердцевины и этим припоем.
Лист из алюминиевых сплавов для высокотемпературной пайки используется для получения паяных изделий, таких как теплообменники.
Поскольку флюс не присутствует на внешних поверхностях теплообменника, полученного из листа для высокотемпературной пайки согласно данному изобретению, удается избежать любых затруднений с отслаиванием остатка флюса, который может попадать, например, в пассажирский салон транспортного средства. Это также улучшает внешний вид теплообменника. Поскольку флюс не присутствует на внутренних поверхностях теплообменника, удается избежать любых затруднений с закупориванием, эрозией и химическими реакциями между флюсом и охлаждающей средой и других очевидных недостатков, связанных с остатком флюса.
Существует также явное преимущество в стоимости, которое будет иметь высокотемпературная пайка блоков теплообменника без использования флюса, поскольку это исключает не только стоимость самого флюса, но и сокращает время проведения через линию высокотемпературной пайки, позволяет снизить трудовые затраты, высвобождает площадь производственных помещений, уменьшает потребности по обслуживанию оборудования высокотемпературной пайки и уменьшает потребности в уборке помещений. Кроме того, важными преимуществами, которые будут иметь место, являются улучшение условий труда персонала, уменьшение выброса твердых отходов и сточных вод от системы флюсования и меньшие количества вредных газообразных выбросов, образующихся в процессе высокотемпературной пайки.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Лист из алюминиевых сплавов для высокотемпературной пайки по настоящему изобретению состоит из сердцевины на алюминиевой основе, покрытой с одной или двух сторон богатым магнием (Mg) алюминиевым сплавом в качестве промежуточного слоя, который, в свою очередь, покрыт припоем на основе Al-Si, причем упомянутый припой содержит добавку Bi. Температура ликвидуса припоя на основе Al-Si ниже, чем температура солидуса сердцевины и промежуточного слоя, который имеет более высокую температуру ликвидуса, чем наивысшая допустимая температура высокотемпературной пайки. Mg из промежуточного слоя должен диффундировать к внешней поверхности припоя в процессе нагревания до температуры высокотемпературной пайки. Если туда поступает подходящее количество Mg в подходящее время, оксид будет разрушаться, делая возможным смачивание расплавленным присадочным металлом любой противоположной поверхности и образование соединения, при наличии нетронутого промежуточного слоя, который способствует обеспечению градиента коррозионного потенциала по толщине листа после высокотемпературной пайки. В настоящем изобретении содержание Mg в присадочном материале, т.е. в материале припоя, предпочтительно составляет <0,01%. Настоящее изобретение показывает, что оптимальная паяемость достигается c Mg в промежуточном слое между сердцевиной и присадочным металлом.
В дальнейшем изобретение описывается в виде трехслойного листа из алюминиевых сплавов для высокотемпературной пайки, причем высокотемпературная пайка происходит на одной стороне листа. Тем не менее изобретение можно использовать для создания паяных соединений на обеих сторонах сердцевины, и в таком случае лист для высокотемпературной пайки будет построен пятью слоями. Он также может быть покрыт протекторной водонепроницаемой оболочкой на одной стороне и тогда будет четырехслойным листом, или же водонепроницаемой оболочкой с промежуточным слоем между сердцевиной и плакировкой из водонепроницаемой оболочки, что даст пятислойный лист.
Настоящее изобретение предусматривает изделие в виде листа из алюминиевых сплавов для высокотемпературной пайки, включающее: материал сердцевины, покрытый богатым Mg промежуточным слоем, который, в свою очередь, покрыт сплавом на основе Al-Si, который содержит Bi для повышения характеристик высокотемпературной пайки, причем упомянутые материал сердцевины и промежуточный слой имеют более высокую температуру плавления, чем припой, и действительно более высокие температуры плавления, чем предназначенная для высокотемпературной пайки температура. Mg из промежуточного слоя диффундирует через слой припоя к внешней поверхности припоя в процессе нагревания до температуры высокотемпературной пайки. Если туда поступает подходящее количество Mg в подходящее время, поверхностный оксид будет разрушаться, позволяя расплавленному присадочному металлу смачивать любую противоположную поверхность и образовывать соединение, при наличии нетронутого промежуточного слоя, который способствует обеспечению градиента коррозионного потенциала по толщине листа после высокотемпературной пайки. Для обеспечения образования хорошего соединения в теплообменнике припой должен плавиться при примерно 577°C, а нагрев может достигать температур в интервале 585-610°C. Как правило, стремятся к интервалу 595-605°C. Это требует, чтобы ликвидус промежуточного слоя и слоя сердцевины был выше, и они оба должны иметь температуры ликвидуса, превышающие 615°C.
ПРИПОЙ
Припой на основе Al-Si предпочтительно содержит не более 0,02% Mg, более предпочтительно <0,01% Mg, чтобы получить хорошую высокотемпературную пайку. Важно, чтобы содержание Mg в тонком слое припоя сохранялось низким для того, чтобы избежать чрезмерного роста оксидов на поверхности в процессе нагрева перед высокотемпературной пайкой. Добавление Bi в слой припоя согласно настоящему изобретению улучшает образование соединения, так что соединение образуется быстрее и имеет больший размер. Он также может содержать Zn, Sn и In, которые уменьшают коррозионный потенциал алюминиевых сплавов, или Cu и Mn, которые увеличивают коррозионный потенциал. Sr является мощным модификатором для достижения небольшого размера частиц Si, а также может присутствовать в технологически обоснованных количествах вплоть до 500 частей на миллион.
Количество Si в припое на основе Al-Si может быть выбрано для удовлетворения желательных требований конкретного процесса высокотемпературной пайки и составляет обычно от 5 до 14% Si, но предпочтительно используется 7-13% Si.
Таким образом, предпочтительный состав припоя на основе Al-Si содержит
Si 5-14%, предпочтительно 7-13%,
Mg<0,02%, предпочтительно <0,01%,
Bi 0,01-1,0%, предпочтительно 0,05-0,5%, наиболее предпочтительно 0,07-0,2%,
Fe≤0,8%
Cu≤0,3%,
Mn≤0,15%,
Zn≤6%,
Sn≤0,1%,
In≤0,1%,
Sr≤0,05% и
неизбежные примеси, каждая в количествах менее 0,05%, а суммарное содержание примесей менее 0,2%, с остатком, состоящим из алюминия.
МАТЕРИАЛ СЕРДЦЕВИНЫ
Лист для высокотемпературной пайки по настоящему изобретению может быть использован с любым алюминиевым материалом сердцевины листа для высокотемпературной пайки. Подходящий материал сердцевины может быть любым сплавом серии AA3xxx. В рамках настоящего изобретения было обнаружено, что образование соединения при высокотемпературной пайке также хорошо работает с добавленным в сплав сердцевины Mg, что означает, что сердцевине может быть придана более высокая прочность. Сердцевина также должна содержать Mn для прочности, паяемости и коррозионных характеристик и Cu для изменения коррозионных характеристик и для прочности после пайки. Кроме того, она может также содержать Si в целях прочности и дисперсоидообразования, а также Ti для прочности, коррозионной стойкости и в качестве добавки, измельчающей зерно при литье. Элементы Zr, Cr, V и Sc могут присутствовать в целях изменения прочности и дисперсоидообразования.
Таким образом, сплав сердцевины предпочтительно содержит:
Mn<2,0%,
Cu≤1,2%,
Fe≤1,0%,
Si≤1,0%,
Ti≤0,2%,
Mg≤2,5%, предпочтительно 0,03-2,0%,
Zr, Cr, V и/или Sc≤0,2% в сумме и
неизбежные примеси, каждая в количествах менее 0,05%, а суммарное содержание примесей менее 0,2%, с остатком, состоящим из алюминия.
ПРОМЕЖУТОЧНЫЙ СЛОЙ
Тонкий промежуточный слой состоит из алюминиевого сплава, имеющего температуру плавления выше, чем температура плавления покрывающего твердого припоя на основе Al-Si, и должен будет содержать значительное количество Mg, чтобы сделать возможной диффузию через поверхностный припой для разрушения оксида на поверхности. Таким образом, промежуточный слой должен иметь содержание Mg выше 0,1%, а более предпочтительно выше 0,2%. Наиболее предпочтительным случаем является добавление Mg в сплав в количествах 0,3% или более, наиболее предпочтительно более 0,5%. Образование соединения выполнимо при 0,5% Mg в промежуточном слое, как показано в примерах. Однако оно значительно лучше с по меньшей мере 0,9% Mg в промежуточном слое. Прокатываемость материала может быть затруднена, когда содержание Mg в промежуточном слое превышает 2,5%. Предпочтительно, максимальное содержание Mg в промежуточном слое не превышает 2,2%. Таким образом, содержание Mg в промежуточном слое составляет 0,1-2,5%, предпочтительно 0,2-2,5%, более предпочтительно 0,3-2,5%, еще более предпочтительно 0,5-2,5%, а наиболее предпочтительно 0,9-2,2%. Промежуточный слой может также содержать Si, Mn, Fe, Ti, Cu, Zn, Cr, Zr, V и Sc по тем же причинам, как и материал сердцевины. Zn, Sn и In могут быть включены для уменьшения коррозионного потенциала сплава и для помощи в создании подходящего градиента коррозионного потенциала по толщине листа после пайки.
Таким образом, сплав промежуточного слоя предпочтительно содержит:
Mg 0,1-2,5%, предпочтительно ≥0,2%, более предпочтительно ≥0,3%, еще более предпочтительно ≥0,5%, наиболее предпочтительно 0,9-2,2%,
Mn<2,0%,
Cu≤1,2%,
Fe≤1,0%,
Si≤1,0%,
Ti≤0,2%,
Zn≤6%,
Sn≤0,1%,
In≤0,1%,
Zr, Cr, V и/или Sc≤0,2% в сумме и
неизбежные примеси, каждая в количествах менее 0,05%, а суммарное содержание примесей менее 0,2%, с остатком, состоящим из алюминия.
СОСТАВНОЙ ЛИСТ ДЛЯ ВЫСОКОТЕМПЕРАТУРНОЙ ПАЙКИ
Благодаря обеспечению изделия в виде листа из алюминиевых сплавов для высокотемпературной пайки, включающего: материал сердцевины, покрытый промежуточным слоем, включающим Mg, который, в свою очередь, покрыт сплавом на основе Al-Si, который содержит Bi для повышения характеристик высокотемпературной пайки, причем вышеупомянутые материал сердцевины и промежуточный слой имеют более высокую температуру плавления, чем припой, и действительно более высокие температуры плавления, чем предназначенная для высокотемпературной пайки температура. Лист для высокотемпературной пайки может быть эффективно подвергнут высокотемпературной пайке в регулируемой атмосфере без использования флюса. Противоположная сторона может быть неплакированной, выполненной с аналогичным строением, плакированной протекторной плакировкой или плакировкой припоя на основе Al-Si. Тем не менее листы для высокотемпературной пайки, которые можно использовать в настоящем изобретении, не ограничиваются вышеприведенными строениями.
Суммарная толщина алюминиевого листа для высокотемпературной пайки составляет в интервале между 0,1 и 4 мм, которая является подходящей при изготовлении теплообменников. Толщина промежуточного слоя предпочтительно составляет 5-200 мкм, с тем чтобы обеспечивать эффективное разрушение оксидов во время высокотемпературной пайки. Толщина слоя припоя может составлять между 5 и 100 мкм. Суммарная толщина плакирующего слоя по отношению к суммарной толщине многослойного листа для высокотемпературной пайки предпочтительно составляет от 3 до 30%. Толщина припоя выбирается таким образом, чтобы имелось в наличии достаточно присадки для обеспечения адекватного размера соединения после высокотемпературной пайки. Также данную толщину следует выбирать такой, чтобы подходящее количество Mg диффундировало через слой припоя к наружному оксиду в процессе нагрева при пайке, тем самым обеспечивая адекватное разрушение оксидов и хорошее смачивание. Толщина промежуточного слоя по отношению к толщине слоя припоя составляет между 25% и 250%, с большинством применений, требующих соотношения толщин, ожидаемых в интервале от 50% до 150%. Подходящий интервал температур, при котором осуществляется высокотемпературная пайка, составляет в диапазоне от 580°C до 610°C, а предпочтительно от 590°C до 605°C.
Химические составы промежуточного слоя и сердцевин следует выбирать таким образом, чтобы после высокотемпературной пайки они обеспечивали подходящий градиент коррозионного потенциала. Это означает, что промежуточный слой должен быть подходяще протекторным по отношению к сердцевине.
Конструкция листа в идеале такова, что достаточное количество Mg должно достигать границы раздела оксид/металл для разрушения оксида в нужное время в течение цикла нагрева для высокотемпературной пайки. Если слишком много Mg достигает границы раздела оксид/металл слишком рано в течение цикла нагрева для высокотемпературной пайки, то избыток Mg может содействовать получению слишком толстого оксида и предотвращать смачивание и рост соединения. Если слишком мало Mg достигает границы раздела оксид/металл или если он поступает слишком поздно в течение цикла нагрева для высокотемпературной пайки, смачивание и рост соединения будут неполными или отсутствовать. Это обусловлено тем, что присадка может затекать под слой неразрушенного оксида. Таким образом, цикл нагрева для высокотемпературной пайки является очень важным, и его следует рассматривать вместе с конструкцией листа, термомеханическим маршрутом получения, характеристиками печи и остальной конструкцией узла теплообменника для обеспечения успешного исхода бесфлюсовой высокотемпературной пайки.
Изобретение дополнительно предусматривает теплообменник, включающий описанный выше лист из алюминиевых сплавов для высокотемпературной пайки.
ПОЛУЧЕНИЕ ЛИСТА ДЛЯ ВЫСОКОТЕМПЕРАТУРНОЙ ПАЙКИ
Каждый из вышеописанных сплавов может быть отлит с использованием литья с прямым охлаждением (DC) или непрерывным двухвалковым литьем, или непрерывным литьем в ленточной установке для литья. Выбор метода литья разрешается с учетом технических, экономических критериев и производительности. Сплав сердцевины отливают в виде плоской заготовки (сляба) с использованием маршрута литья с прямым охлаждением, в то время как промежуточный слой и наружный тонкий слой отливают с использованием или литья с прямым охлаждением, или методов непрерывного литья.
Преобладающим методом, используемым в настоящее время, является литье с прямым охлаждением, а затем плоские заготовки слитка припоя и слитка сплава промежуточного слоя обе поверхностно очищают и затем нагревают в печи до температуры между 350 и 550°C, причем продолжительность выдержки при этой температуре изменяется от 0 до 20 часов. После этого оба сплава подвергают горячей прокатке до желаемой толщины и нарезают на отрезки подходящей длины. Пластину промежуточного слоя затем помещают на очищенную поверхность слитка сердцевины, а пластину припоя затем помещают на поверхность промежуточного слоя. Пластины удерживаются на месте на плоской заготовке сердцевины с помощью роликовых сварных швов вдоль двух противоположных сторон посредством сварки металлов в атмосфере инертного газа (MIG) или посредством стального бандажа, или других подходящих методов сделать пакет слитков поддающимся управлению. Этот пакет затем помещается в печь предварительного нагрева. Пакет нагревают до температуры между 350°C и 550°C, а продолжительность выдержки при этой температуре составляет между 0 и 20 часами. После этого плакированный пакет подвергают горячей прокатке, холодной прокатке до конечного размера, растягивают для улучшения плоскостности и разрезают вдоль до ширины поставки. Промежуточные и конечные термические обработки для достижения более легкого получения и достижения правильного состояния поставки выполняют по мере необходимости.
ПРИМЕРЫ
Все сплавы в примерах отливали, используя лабораторное литейное оборудование, в так называемые кокили с вертикальным разъемом типа "книга", получая небольшие плоские заготовки длиной 150 мм, шириной 90 мм и толщиной 20 мм. Химические составы сплавов, исследованных на пригодность к высокотемпературной пайке, можно увидеть в таблице 1.
Каждую заготовку подвергали поверхностной очистке, нагревали от комнатной температуры до 450°C в течение 8 часов, выдерживали при 450°C в течение 2 часов и охлаждали в окружающем воздухе. Затем материалы прокатывали до подходящей толщины и при необходимости подвергали смягчающему отжигу между проходами для способствования легкой прокатке. Затем материалы сердцевины, промежуточного слоя припоя и наружного слоя объединяли, делая трехслойные плакированные пакеты, где слои прикреплялись друг к другу посредством холодной прокатки. Материалы подвергали холодной прокатке до толщины 0,25 мм, которая обеспечивала одностороннее плакирование с 10% промежуточного слоя и 10% слоя припоя, с промежуточными смягчающими отжигами при необходимости для обеспечения легкой прокатки, придавая заключительный обратный отжиг до состояния H24 для обеспечения крупных рекристаллизованных зерен в сердцевине в течение последующей процедуры высокотемпературной пайки. Вместо смягчающего отжига можно предусмотреть отработанные давлением состояния, например H12, H14 или H112, для обеспечения крупных рекристаллизованных зерен.
Таблица 1
Химические составы (мас.%) исследованных сплавов по результатам анализов расплавов оптической эмиссионной спектроскопией (OES).
Сплав Тип Si Fe Cu Mn Mg Ti Zr Bi
A Сердцевина 0,14 0,50 0,12 1,09 <0,01 0,02 <0,01 <0,01
B Сердцевина 0,07 0,22 0,81 1,70 <0,01 0,05 0,14 <0,01
C Сердцевина/промежуточный слой 0,75 0,22 0,29 0,60 0,31 0,15 <0,01 <0,01
D Сердцевина 0,68 0,25 0,30 0,03 0,42 0,14 <0,01 <0,01
E Сердцевина/промежуточный слой 0,05 0,20 0,28 1,30 0,22 0,02 <0,01 <0,01
F Сердцевина/промежуточный слой 0,50 0,22 <0,01 0,06 0,67 0,01 <0,01 <0,01
G Промежуточный слой 0,05 0,17 <0,01 <0,01 0,51 <0,01 <0,01 <0,01
H Промежуточный слой 0,03 0,15 <0,01 <0,01 0,96 <0,01 <0,01 <0,01
I Промежуточный слой 0,03 0,15 <0,01 <0,01 1,9 <0,01 <0,01 <0,01
J Промежуточный слой 0,07 0,28 <0,01 0,80 1,1 <0,01 <0,01 <0,01
K Промежуточный слой 0,09 0,33 <0,01 1,7 1,0 <0,01 <0,01 <0,01
L Промежуточный слой 0,05 0,17 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01
M Припой 10,0 0,23 <0,01 0,01 1,26 <0,01 <0,01 0,09
N Припой 10,2 0,17 <0,01 <0,01 0,11 <0,01 <0,01 0,12
O Припой 8,0 0,18 <0,01 <0,01 <0,01 <0,01 <0,01 0,11
P Припой 8,0 0,18 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01
Q Припой 10,2 0,17 <0,01 <0,01 <0,01 <0,01 <0,01 0,12
Высокотемпературную пайку выполняли в лабораторной стеклоплавильной печи с камерой для пайки объемом приблизительно 3 дм3. Печь продували азотом в течение всего цикла высокотемпературной пайки с расходом 10 стандартных литров в минуту. Циклом высокотемпературной пайки был линейный нагрев от комнатной температуры до 600°C за 10 минут, выдержка 3 минуты при 600°C и последующее охлаждение на воздухе до комнатной температуры. Макет образца представлял собой простой неплакированный изогнутый уголок на испытательном образце, где плакирующие материалы использовали в качестве испытательного образца, а неплакированный сплав AA3003 толщиной 0,5 мм использовали в качестве уголка. Всю высокотемпературную пайку выполняли без флюса. Образцы исследовали путем визуального осмотра паяных соединений, и репрезентативная выборка некоторых результатов приводится ниже.
Таблица 2
Выборочные экспериментальные результаты
Примечание Сердцевина Промежуточный слой Припой Результат
Пример 1: стандартный лист для CAB Сравнительный B --- P Нет соединения между плакированным испытательным образцом и неплакированным уголком
Пример 2: стандартный лист для вакуумной высокотемпературной пайки Сравнительный A --- M Нет соединения между плакированным испытательным образцом и неплакированным уголком
Пример 3 По изобретению B G O Образовано соединение между плакированным испытательным образцом и неплакированным уголком. Маленькое.
Пример 4 По изобретению C H Q Образовано соединение между плакированным испытательным образцом и неплакированным уголком.
Пример 5 По изобретению D I O Образовано соединение между плакированным испытательным образцом и неплакированным уголком.
Пример 6 По изобретению E J Q Образовано соединение между плакированным испытательным образцом и неплакированным уголком.
Пример 7 По изобретению F K O Образовано соединение между плакированным испытательным образцом и неплакированным уголком.
Пример 8 Сравнительный B G N Нет соединения, слишком много Mg в припое
Пример 9 По изобретению B C O Образовано соединение между плакированным испытательным образцом и неплакированным уголком, слегка подвижное.
Пример 10 По изобретению B E O Соединяются, но с трудом
Пример 11 По изобретению B F O Образовано соединение между плакированным испытательным образцом и неплакированным уголком.
Пример 12 Сравнительный F K P Не соединяются, нет Bi в припое
Пример 13 Сравнительный B L O Не соединяются, нет Mg в промежуточном слое

Claims (21)

1. Многослойный лист для бесфлюсовой высокотемпературной пайки, содержащий сердцевину из алюминиевого сплава, покрытую промежуточным слоем алюминиевого сплава, и нанесенный на промежуточный слой припой из алюминиевого сплава,
при этом сердцевина выполнена из алюминиевого сплава 3XXX, содержащего, мас.%: Mn<2,0, Cu≤1,2, Fe≤1,0, Si≤1,0, Ti≤0,2, Mg≤2,5, Zr, Cr, V и/или Sc в сумме ≤0,2, остальное – Al и неизбежные примеси, каждая в количествах менее 0,05, а суммарное содержание примесей менее 0,2,
промежуточный слой выполнен из алюминиевого сплава, содержащего, мас.%: Mg 0,2-2,5, Mn<2,0, Cu≤1,2, Fe≤1,0, Si≤1,0, Ti≤0,2, Zn≤6, Sn≤0,1, In≤0,1, Zr, Cr, V и/или Sc в сумме ≤0,2, остальное – Al и неизбежные примеси, каждая в количествах менее 0,05, а суммарное содержание примесей менее 0,2,
припой выполнен из алюминиевого сплава, содержащего, мас.%: Si 5-14, Mg<0,02, Bi 0,05-0,2, Fe≤0,8, Zn≤6, Sn≤0,1, In≤0,1, Cu≤0,3, Mn≤0,15, Sr≤0,05, остальное – Al и неизбежные примеси, каждая в количествах менее 0,05, а суммарное содержание примесей менее 0,2,
при этом материал сердцевины и промежуточный слой имеют более высокую температуру плавления, чем припой, а промежуточный слой является протекторным по отношению к сердцевине,
суммарная толщина плакирующего слоя, состоящего из промежуточного слоя и слоя припоя, по отношению к общей толщине листа составляет 3-30%.
2. Лист по п. 1, отличающийся тем, что содержание магния в алюминиевом сплаве сердцевины составляет 0,03-2,0 мас.%.
3. Лист по п. 1, отличающийся тем, что содержание магния в алюминиевом сплаве промежуточного слоя составляет ≥0,2 мас.%, предпочтительно ≥0,3 мас.%, более предпочтительно 0,5-2,5 мас.%.
4. Лист по п. 1, отличающийся тем, что содержание висмута в припое составляет 0,07-0,2 мас.%.
5. Лист по п. 1, отличающийся тем, что содержание магния в припое составляет <0,01 мас.%.
6. Лист по п. 1, отличающийся тем, что содержание кремния в припое составляет 7-13 мас.%.
7. Лист по п. 1, отличающийся тем, что температура плавления промежуточного слоя и температура плавления сердцевины составляют >615°C.
8. Лист по п. 1, отличающийся тем, что температура плавления припоя составляет 550-590°C.
9. Лист по п. 1, отличающийся тем, что толщина промежуточного слоя по отношению к толщине слоя припоя составляет 25-250%, предпочтительно 50-150%.
10. Лист по п. 1, отличающийся тем, что толщина промежуточного слоя составляет 5-200 мкм.
11. Лист по п. 1, отличающийся тем, что он дополнительно содержит слой припоя или протекторный плакирующий слой, состоящий из промежуточного слоя и слоя припоя, на стороне сердцевины, противоположной стороне, включающей упомянутые промежуточный слой и припой.
12. Лист по п. 11, отличающийся тем, что протекторный плакирующий слой на противоположной стороне сердцевины покрыт слоем припоя.
13. Паяное изделие, содержащее многослойный лист для бесфлюсовой высокотемпературной пайки по любому из пп. 1-12.
14. Способ бесфлюсовой высокотемпературной пайки теплообменника, выполненного из алюминиевого сплава, включающий припаивание многослойного листа по любому из пп. 1-12 к по меньшей мере одной детали теплообменника, при этом высокотемпературную пайку осуществляют в инертной или восстановительной атмосфере путем линейного нагрева от комнатной температуры до 590-605°С в течение 10 минут, выдержки при этой температуре и последующего охлаждения на воздухе.
15. Способ по п. 14, отличающийся тем, что осуществляют пайку ребер или коллекторных пластин к поверхности трубки.
16. Применение многослойного листа по любому из пп. 1-12 в качестве материала для изготовления теплообменника бесфлюсовой высокотемпературной пайкой.
RU2014153559A 2012-05-31 2013-05-28 Многослойный алюминиевый лист для бесфлюсовой высокотемпературной пайки в регулируемой атмосфере RU2642245C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1250566 2012-05-31
SE1250566-5 2012-05-31
PCT/SE2013/050606 WO2013180630A1 (en) 2012-05-31 2013-05-28 Multilayer aluminium brazing sheet for fluxfree brazing in controlled atmosphere

Publications (2)

Publication Number Publication Date
RU2014153559A RU2014153559A (ru) 2016-07-27
RU2642245C2 true RU2642245C2 (ru) 2018-01-24

Family

ID=48700674

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014153559A RU2642245C2 (ru) 2012-05-31 2013-05-28 Многослойный алюминиевый лист для бесфлюсовой высокотемпературной пайки в регулируемой атмосфере

Country Status (12)

Country Link
US (1) US20150165564A1 (ru)
EP (1) EP2855063B2 (ru)
JP (1) JP6415429B2 (ru)
KR (1) KR102131153B1 (ru)
CN (1) CN104395028B (ru)
BR (1) BR112014029796B1 (ru)
HU (1) HUE028924T2 (ru)
IN (1) IN2014DN09944A (ru)
MX (1) MX2014014444A (ru)
PL (1) PL2855063T5 (ru)
RU (1) RU2642245C2 (ru)
WO (1) WO2013180630A1 (ru)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2015001174A (es) 2012-07-27 2015-11-23 Gränges Sweden Ab Material en forma de cinta con excelente resistencia contra la corrosion despues del latonado.
DE112014006121T5 (de) * 2014-01-07 2016-09-22 Uacj Corporation Plattierter Aluminiumlegierungswerkstoff und Herstellungsverfahren dafür sowie den plattierten Aluminiumlegierungswerkstoff verwendender Wärmetauscher und Herstellungsverfahren dafür
CN105814219B (zh) * 2014-01-10 2018-09-11 株式会社Uacj 铝合金包层材料及其制造方法、以及使用该铝合金包层材料的热交换器及其制造方法
FR3018213B1 (fr) 2014-03-06 2016-10-21 Constellium France Tole de brasage a placages multiples
JP6418714B2 (ja) * 2014-03-19 2018-11-07 株式会社Uacj アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
CN104005833B (zh) * 2014-05-20 2016-08-17 宁波申江科技股份有限公司 铝油冷器
JP6649889B2 (ja) * 2014-07-30 2020-02-19 株式会社Uacj アルミニウム合金ブレージングシート
CN107107273B (zh) * 2014-09-25 2020-09-18 爱励轧制产品德国有限责任公司 多层铝钎焊片材材料
CN104532089B (zh) * 2014-12-26 2016-08-24 中国石油天然气股份有限公司 一种防腐合金组合物及其装置、制备和应用
CA3000886C (en) * 2015-10-05 2019-03-26 Hydro Aluminium Rolled Products Gmbh Aluminum composite material for use in thermal flux-free joining methods and method for producing same
CN105624479B (zh) * 2015-11-26 2017-10-03 新疆众和股份有限公司 一种焊接用铝硅系合金杆及其生产方法
JP6463262B2 (ja) * 2015-12-28 2019-01-30 株式会社Uacj アルミニウム合金ブレージングシート及びアルミニウム合金製熱交換器の製造方法
CN109070278B (zh) 2016-04-12 2021-09-21 格伦格斯有限公司 钎焊板
JP6263574B2 (ja) * 2016-05-30 2018-01-17 株式会社Uacj ブレージングシート及びその製造方法並びにアルミニウム構造体のろう付方法
JP6055573B1 (ja) * 2016-06-23 2016-12-27 三菱アルミニウム株式会社 フラックスフリーろう付用のブレージングシート、フラックスフリーろう付方法および熱交換器のフラックスフリーろう付方法
DE102016008490A1 (de) * 2016-07-14 2018-01-18 Modine Manufacturing Company Flussmittelarmes CAB-Löten bei Wärmeübertragern
JP6942449B2 (ja) 2016-08-30 2021-09-29 株式会社Uacj アルミニウム合金ブレージングシート
JP6312968B1 (ja) 2016-11-29 2018-04-18 株式会社Uacj ブレージングシート及びその製造方法
CN106636811B (zh) * 2016-12-13 2018-06-29 佛山市三水凤铝铝业有限公司 一种高速列车车体用铝合金型材及其制造方法
US20180169798A1 (en) * 2016-12-16 2018-06-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Brazing method for aluminum alloy brazing sheet
US20180169797A1 (en) * 2016-12-16 2018-06-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy brazing sheet
JP6561081B2 (ja) * 2016-12-27 2019-08-14 三菱アルミニウム株式会社 フラックスフリーろう付用のブレージングシート、フラックスフリーろう付方法および熱交換器の製造方法
US11229978B2 (en) 2016-12-27 2022-01-25 Mitsubishi Aluminum Co., Ltd. Brazing sheet for flux-free brazing, method for flux-free brazing and method for manufacturing heat exchanger
EP3573781B1 (en) * 2017-01-30 2021-07-21 Arconic Technologies LLC Aluminum material for fluxfree cab brazing
JP2018196896A (ja) * 2017-05-24 2018-12-13 株式会社神戸製鋼所 アルミニウム合金ブレージングシート
CN107299262B (zh) * 2017-06-21 2019-02-15 乳源东阳光优艾希杰精箔有限公司 一种Si含量高的3XXX系铝合金及其制造方法
JP6916715B2 (ja) 2017-11-08 2021-08-11 株式会社Uacj ブレージングシート及びその製造方法
JP6909744B2 (ja) * 2018-03-07 2021-07-28 株式会社Uacj フラックスフリーろう付用アルミニウム合金ブレージングシート
CN108568617A (zh) * 2018-03-16 2018-09-25 江苏常铝铝业股份有限公司 一种无钎剂的钎焊材料
ES2733747B2 (es) * 2018-05-31 2021-10-07 Valeo Termico Sa Intercambiador de calor para gases, en especial de los gases de escape de un motor
US11571769B2 (en) 2018-09-11 2023-02-07 Uacj Corporation Method of manufacturing a brazing sheet
US20210379705A1 (en) * 2018-10-26 2021-12-09 Uacj Corporation Aluminum alloy brazing sheet and manufacturing method thereof
CN112955281B (zh) * 2018-10-26 2022-12-27 株式会社Uacj 铝合金硬钎焊板及其制造方法
WO2020129268A1 (ja) 2019-01-23 2020-06-25 三菱アルミニウム株式会社 ろう付用アルミニウム合金およびアルミニウムブレージングシート
FR3093450A1 (fr) * 2019-03-04 2020-09-11 Constellium Neuf-Brisach Bande en alliage d’aluminium pour la fabrication d’échangeurs de chaleur brasés
MX2021010903A (es) * 2019-03-13 2021-10-01 Novelis Inc Aleaciones de aluminio endurecibles por envejecimiento y altamente formables y metodos para hacer las mismas.
KR20220003083A (ko) * 2019-05-19 2022-01-07 노벨리스 인크. 무용제 경납땜 적용을 위한 알루미늄 합금, 이의 제조 방법 및 이의 용도
JP7252079B2 (ja) * 2019-07-03 2023-04-04 Maアルミニウム株式会社 アルミニウム合金クラッド材
CA3148817C (en) 2019-09-30 2024-04-02 Arconic Technologies Llc Improved aluminum alloy brazing sheets for fluxless brazing
JP7282468B2 (ja) * 2019-10-04 2023-05-29 Maアルミニウム株式会社 アルミニウムブレージングシートおよびアルミニウム部材のフラックスフリーろう付方法
MX2022009310A (es) * 2020-01-29 2022-08-22 Novelis Koblenz Gmbh Material de hoja de soldadura fuerte de multiples capas de aleacion de aluminio para soldadura fuerte libre de fundente.
EP3875211A1 (en) * 2020-03-02 2021-09-08 Aleris Rolled Products Germany GmbH Aluminium alloy multi-layered brazing sheet material for fluxfree brazing
EP4083246A4 (en) * 2020-02-04 2023-05-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) ALUMINUM ALLOY BRAZING PLATE
CN117355634A (zh) * 2021-04-28 2024-01-05 松下知识产权经营株式会社 层叠体的制造方法、电容器的制造方法、层叠体、电容器、电路、电路基板以及设备
CN114589430B (zh) * 2022-04-21 2022-11-15 中南大学 一种Al-Mg合金焊丝及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962760A1 (de) * 1969-12-15 1971-07-29 Vaw Ver Aluminium Werke Ag Verfahren zum Loeten von Aluminiumwerkstoffen
DE2129460A1 (de) * 1971-06-14 1972-12-21 Vaw Ver Aluminium Werke Ag Vorzugsweise plattierter Werkstoff zum insbesondere flussmittellosen Loeten von Aluminium-Legierungen hoeherer Festigkeit
SU806327A1 (ru) * 1978-11-14 1981-02-23 Предприятие П/Я А-3605 Материал дл изготовлени па ныхКОНСТРуКций
EP0823305A2 (en) * 1996-08-08 1998-02-11 Denso Corporation A brazing sheet having an excellent corrosion resistance for use in a heat exchanger, and a heat exchanger using the same
JPH1088266A (ja) * 1996-09-06 1998-04-07 Sky Alum Co Ltd アルミニウム合金製ブレージングシート
US7255932B1 (en) * 2002-04-18 2007-08-14 Alcoa Inc. Ultra-longlife, high formability brazing sheet
RU2312020C2 (ru) * 2002-04-18 2007-12-10 Алкоа Инк. Лист для пайки твердым припоем с сверхдлительным сроком службы и высокой формуемостью

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2143965C3 (de) 1971-09-02 1981-11-26 Vereinigte Aluminium-Werke Ag, 5300 Bonn Verwendung eines Lotes zum flußmittelfreien Hartlöten von Aluminiumwerkstoffen in Schutzgas, Inertgas oder Vakuum
US3811177A (en) 1969-12-15 1974-05-21 Vaw Ver Aluminium Werke Ag Process for brazing workpieces of aluminum containing material
JPH04198448A (ja) * 1990-11-29 1992-07-17 Sumitomo Light Metal Ind Ltd 熱交換器用高強度高耐食性アルミニウム合金クラッド材
JP3863595B2 (ja) * 1996-05-23 2006-12-27 古河スカイ株式会社 アルミニウム合金製ブレージングシート
JP3494591B2 (ja) 1999-06-23 2004-02-09 株式会社デンソー 耐食性が良好な真空ろう付け用アルミニウム合金ブレージングシート及びこれを使用した熱交換器
EP1430988B1 (en) * 2001-09-28 2013-11-20 Furukawa-Sky Aluminum Corporation Method for brazing of aluminum or aluminum alloy material and aluminum alloy brazing sheet
JP4107931B2 (ja) * 2001-09-28 2008-06-25 古河スカイ株式会社 アルミニウム又はアルミニウム合金材のろう付け方法およびアルミニウム合金製ブレージングシート
ATE350217T1 (de) 2001-10-26 2007-01-15 Furukawa Sky Aluminum Corp Flussmittelfreies verfahren zum hartlöten unter schutzgas
DE602004013327T2 (de) * 2003-07-18 2009-07-23 Aleris Aluminum Koblenz Gmbh Hochfestes aluminiumlegierungshartlötblech
FR2862984B1 (fr) 2003-11-28 2006-11-03 Pechiney Rhenalu Bande en alliage d'aluminium pour brasage
HUE034136T2 (en) * 2007-06-20 2018-02-28 Aleris Rolled Prod Germany Gmbh Aluminum alloy solder board product
EP2323805B1 (en) * 2008-07-02 2012-02-08 Aleris Aluminum Koblenz GmbH Aluminium brazing sheet material
CN102209629A (zh) 2008-11-10 2011-10-05 阿勒里斯铝业科布伦茨有限公司 对铝进行无钎剂钎焊的方法以及用于该方法的钎焊板
JP5506280B2 (ja) * 2009-08-13 2014-05-28 株式会社Uacj 熱交換器用アルミニウムクラッド材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962760A1 (de) * 1969-12-15 1971-07-29 Vaw Ver Aluminium Werke Ag Verfahren zum Loeten von Aluminiumwerkstoffen
DE2129460A1 (de) * 1971-06-14 1972-12-21 Vaw Ver Aluminium Werke Ag Vorzugsweise plattierter Werkstoff zum insbesondere flussmittellosen Loeten von Aluminium-Legierungen hoeherer Festigkeit
SU806327A1 (ru) * 1978-11-14 1981-02-23 Предприятие П/Я А-3605 Материал дл изготовлени па ныхКОНСТРуКций
EP0823305A2 (en) * 1996-08-08 1998-02-11 Denso Corporation A brazing sheet having an excellent corrosion resistance for use in a heat exchanger, and a heat exchanger using the same
JPH1088266A (ja) * 1996-09-06 1998-04-07 Sky Alum Co Ltd アルミニウム合金製ブレージングシート
US7255932B1 (en) * 2002-04-18 2007-08-14 Alcoa Inc. Ultra-longlife, high formability brazing sheet
RU2312020C2 (ru) * 2002-04-18 2007-12-10 Алкоа Инк. Лист для пайки твердым припоем с сверхдлительным сроком службы и высокой формуемостью

Also Published As

Publication number Publication date
KR102131153B1 (ko) 2020-07-07
KR20150021085A (ko) 2015-02-27
CN104395028A (zh) 2015-03-04
US20150165564A1 (en) 2015-06-18
PL2855063T5 (pl) 2023-02-20
BR112014029796A2 (pt) 2017-08-08
EP2855063B1 (en) 2016-03-23
HUE028924T2 (en) 2017-01-30
PL2855063T3 (pl) 2016-10-31
CN104395028B (zh) 2018-01-02
EP2855063B2 (en) 2022-09-07
JP6415429B2 (ja) 2018-10-31
IN2014DN09944A (ru) 2015-08-14
EP2855063A1 (en) 2015-04-08
RU2014153559A (ru) 2016-07-27
JP2015528852A (ja) 2015-10-01
MX2014014444A (es) 2015-09-08
BR112014029796B1 (pt) 2019-04-02
WO2013180630A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
RU2642245C2 (ru) Многослойный алюминиевый лист для бесфлюсовой высокотемпературной пайки в регулируемой атмосфере
JP6426587B2 (ja) アルミニウムブレージングシート
EP3459676B1 (en) Brazing sheet for flux-free brazing, flux-free brazing method and method for producing heat exchanger
EP2670559B1 (en) Aluminium brazing sheet material for fluxless brazing
EP2382087B1 (en) Process for fluxless brazing of aluminium and brazing sheet for use therein
TWI504460B (zh) Welding method of aluminum alloy element
JP2024059788A (ja) フラックスレスろう付け用途向けのアルミニウム合金、その製造方法、及びその使用
JP5713451B2 (ja) アルミニウム合金ブレージングシートとその製造方法、およびアルミニウム製熱交換器のろう付け方法
JP3533434B2 (ja) アルミニウム合金製熱交換器用ブレージングシート
CN111331962A (zh) 一种复合板材及其制备方法
JP5713452B2 (ja) アルミニウム合金ブレージングシートとその製造方法、およびアルミニウム製熱交換器のろう付け方法
JP2013086103A (ja) アルミニウム合金ブレージングシート
JP7164498B2 (ja) アルミニウム合金材、フラックスレスろう付構造体、および、フラックスレスろう付方法
JP2012052160A (ja) ろう付性に優れるフラックスレスろう付用部材およびアルミニウム材のフラックスレスろう付け方法