RU2636425C1 - Способ лазерной сварки материалов, имеющих разные толщины - Google Patents

Способ лазерной сварки материалов, имеющих разные толщины Download PDF

Info

Publication number
RU2636425C1
RU2636425C1 RU2017113075A RU2017113075A RU2636425C1 RU 2636425 C1 RU2636425 C1 RU 2636425C1 RU 2017113075 A RU2017113075 A RU 2017113075A RU 2017113075 A RU2017113075 A RU 2017113075A RU 2636425 C1 RU2636425 C1 RU 2636425C1
Authority
RU
Russia
Prior art keywords
laser beam
plate
thin plate
thick plate
welded
Prior art date
Application number
RU2017113075A
Other languages
English (en)
Inventor
Кадзуаки ХОСОМИ
Кендзи ОГАВА
Такефуми НАКАКО
Кеидзи ЯМАМОТО
Original Assignee
Ниссин Стил Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55580564&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2636425(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ниссин Стил Ко., Лтд. filed Critical Ниссин Стил Ко., Лтд.
Application granted granted Critical
Publication of RU2636425C1 publication Critical patent/RU2636425C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/242Fillet welding, i.e. involving a weld of substantially triangular cross section joining two parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Изобретение относится к способу лазерной сварки материалов, имеющих разные толщины. Располагают встык две пластины (10), (12), имеющие разные толщины так, что одна поверхность пластины (10) и одна поверхность пластины (12) расположены заподлицо друг с другом. Сваривают пластины (10), (12) посредством подведения лазерного пучка (14) к их стыкуемым поверхностям. Причем лазерный пучок (14) падает под наклоном от расположенной заподлицо поверхности тонкой пластины (10) к стыкуемой торцевой поверхности (12а) толстой пластины (12). Задают целевое положение (Р) лазерного пучка (14) на упомянутой стыкуемой торцевой поверхности (12а) толстой пластины (12). Глубину (D) целевого положения на пластине от ее поверхности со стороны падения лазерного пучка (14) задают в диапазоне по следующему выражению (1): t/3 ≤ D ≤ t, где t - толщина в плоскостном направлении стыкуемой торцевой поверхности тонкой пластины (10), и D и t заданы в мм. Изобретение позволяет получить превосходную прочность сварного соединения вне зависимости от толщины толстой пластины и сварной элемент, имеющий разные толщины. 2 з.п. ф-лы, 2 табл., 4 ил.

Description

Область изобретения
[0001] Настоящее изобретение относится к способу стыковой лазерной сварки материалов, имеющих разные толщины и демонстрирующих превосходную прочность сварного соединения, а также к сварному элементу, имеющему разные толщины.
Предпосылки изобретения
[0002] Лазер представляет собой источник теплоты с высокой плотностью энергии, и поэтому используется в различных областях. В частности, в области сварки лазер используется для сварки различных типов металлических материалов, например стальных материалов, благодаря тому, что он делает возможной сварку с высокой скоростью и низким уровнем ввода теплоты и, таким образом, вызывает меньшую температурную деформацию и меньшее изменение свойств материала, облучаемого с его использованием.
[0003] Лазерная сварка может обеспечить те же сварные соединения, например угловое соединение, тавровое соединение и стыковое соединение, что и при использовании других способов сварки, например электродуговой сварки. В случае получения стыкового соединения с использованием наряду с этими способами сварки способа лазерной сварки, в котором лазерный пучок подводят к свариваемой поверхности в вертикальном направлении, необходимо строго контролировать целевое положение лазерного пучка, а также стыковой зазор между материалами, которые сваривают вместе (свариваемыми материалами).
Это связано с тем, что диаметр лазерного пучка в основном составляет до 0,5 мм или меньше, хотя он меняется в зависимости от способа генерации лазерного излучения, линз и т.п. По этой причине, когда целевое положение лазерного пучка смещается, как будет описано ниже, на участке сварки возникает неполное проплавление, и, если стыковой зазор между материалами, которые сваривают вместе, шире диаметра лазерного пучка, то лазерный пучок, перемещающийся в вертикальном направлении, проходит через этот зазор и поэтому не может обеспечить сварку.
[0004] В частности, при так называемой «сварке разных толщин», при которой имеющие разные толщины материалы, т.е. свариваемые материалы, имеющие толщины, отличающиеся друг от друга, располагают встык и сваривают лазерным пучком, необходимо строго контролировать целевое положение лазерного пучка и стыковой зазор между свариваемыми материалами. В случае сочетания материалов, имеющих очень сильно различающиеся толщины, например, как показано, на Фиг.1, если положение фокуса лазерного пучка 3 смещено в сторону тонкой пластины 1, возникает дефект сварки, когда тонкая пластина 1 расплавляется с образованием расплавленного участка 4, но толстая пластина 2 не расплавляется из-за недостаточного подвода теплоты. В дополнение к этому в случае способов резки с использованием механических ножниц, дисковой пилы или ленточной пилы, которые используются для резки материалов, подлежащих сварке, трудно выполнить прямой рез с получением поверхности реза, которая будет служить свариваемой поверхностью, так чтобы она имела прямой угол с соседней поверхностью, в результате чего также возникают провисание или деформация. В таком случае, как показано на Фиг.2, стыкуемый участок 5 становится шире диаметра лазерного пучка 3, в результате чего лазерный пучок 3 проходит через промежуток между свариваемыми материалами, что приводит к возникновению дефекта сварки. Чтобы предотвратить такую проблему, необходимо уменьшить стыковой зазор путем выполнения механического чистового полирования на поверхности реза либо заполнить промежуток присадочным металлом, оба эти варианта приводят к увеличению стоимости.
[0005] Чтобы решить описанные выше проблемы, связанные со сваркой разных толщин, в указанных ниже Патентных документах 1 и 2 раскрывается способ сварки, в котором лазерный пучок подводят под наклоном относительно стыкуемых поверхностей свариваемых материалов. Он представляет собой способ лазерной сварки, в котором, как показано на Фиг.3, поверхности двух свариваемых материалов имеют разные толщины со стороны, к которой подводят лазерный пучок, а поверхности с противоположной стороны (нижние поверхности на Фиг.3) расположены заподлицо друг с другом, целевое положение лазерного пучка смещают внутрь от угла 6 толстой пластины 2, и лазерный пучок 3 подводят под наклоном со стороны толстой пластины 2, чтобы вызвать проплавление угла 6 толстой пластины 2 в сторону тонкой пластины 1. При таком способе вызывается расплавление, главным образом, участка угла 6 толстой пластины 2 или, другими словами, участка толстой пластины 2, имеющего толщину, отличающуюся от толщины тонкой пластины 1. Соответственно, нет необходимости точно задавать целевое положение лазерного пучка. Кроме того, можно с высокой эффективностью получить хорошее стыковое соединение, без выполнения механической обработки стыкуемых торцевых поверхностей свариваемых материалов или использования присадочного металла.
Список литературы
Патентная литература
[0006] Патентный документ 1: Выложенный японский патент № 7-132386
Патентный документ 2: Выложенный японский патент № 9-216078
Сущность изобретения
Техническая проблема
[0007] Однако при использовании описанной выше обычной сварки разных толщин, чтобы увеличить прочность сварного соединения, участок угла 6 толстой пластины 2 должен быть надежным образом расплавлен и доставлен к стыкуемым поверхностям (граница раздела) между толстой пластиной 2 и тонкой пластиной 1. Однако это может привести к следующей проблеме: избыточная часть из участка толстой пластины 2, которая расплавилась в стыкуемую поверхность, появляется в виде нежелательного обратного валика на поверхности соединения (на Фиг.3 - на нижней поверхности), что приводит к снижению качества сварки. Здесь «обратный валик» - это сваренный металл (валик), находящийся на поверхности, противоположной поверхности, облучаемой источником теплоты.
Если лазерный пучок 3 падает под наклоном от толстой пластины 2, теплота лазерного пучка 3 поглощается толстой пластиной 2, которая изготовлена из металлического материала, имеющего высокую удельную теплопроводность. Соответственно, имеется значительная потеря теплоты лазерного пучка 3, в результате чего вряд ли можно утверждать, что сварка выполняется эффективным образом, даже если участок угла 6 толстой пластины 2 успешно расплавляется.
С учетом этих обстоятельств основной задачей настоящего изобретения является обеспечить способ лазерной сварки материалов, имеющих разные толщины, который позволяет эффективным образом получить превосходные прочность сварного соединения и состояние поверхности, вне зависимости от толщины толстой пластины.
Решение проблемы
[0008] В результате обширных исследований авторы изобретения обнаружили, что можно использовать способ лазерной сварки, в котором свариваемые поверхности двух листовых материалов, имеющих разные толщины, располагают встык так, чтобы смежные свариваемым поверхностям поверхности были расположены заподлицо друг с другом, и после этого лазерный пучок падает под наклоном на свариваемые поверхности со стороны поверхности тонкой пластины, которая является одной из упомянутых поверхностей, которые расположены заподлицо друг с другом, а также обнаружили, что можно получить превосходную прочность сварного соединения вне зависимости от толщины толстой пластины за счет управления целевым положением лазерного пучка, угла падения и стыкового зазора в нужном диапазоне, что привело к созданию настоящего изобретения.
В настоящем изобретении в сварном соединении, формируемом при последующей сварке, стыкуемые поверхности образованы посредством расположения встык одной поверхности каждого из двух свариваемых материалов, имеющих разные толщины, так чтобы они были расположенной заподлицо друг с другом, где расположенную заподлицо поверхность (на Фиг.4 - верхняя поверхность) можно называть «поверхностью сварного соединения», а поверхность, на которой получена разница по высоте (на Фиг.4 - нижняя поверхность), можно называть «обратной поверхностью сварного соединения».
[0009] А именно, настоящее изобретение характеризуется способом лазерной сварки материалов, имеющих разные толщины, включающим: расположение встык тонкой пластины 10 и толстой пластины 12, имеющих разные толщины, так что одна поверхность тонкой пластины 10 и одна поверхность толстой пластины 12 расположены заподлицо друг с другом; и после этого сваривание тонкой пластины 10 и толстой пластины 12 посредством подведения лазерного пучка 14 к стыкуемым поверхностям, причем лазерный пучок 14 падает под наклоном от расположенной заподлицо поверхности тонкой пластины 10 к стыкуемой торцевой поверхности 12а толстой пластины 12, задают целевое положение Р лазерного пучка 14 на упомянутой стыкуемой торцевой поверхности 12а толстой пластины 12, а глубину D целевого положения на пластине от ее поверхности со стороны падения лазерного пучка 14 задают в диапазоне по следующему выражению (1):
t/3 ≤ D ≤ t (1),
где t - толщина в плоскостном направлении стыкуемой торцевой поверхности 10а тонкой пластины (10), и D и t заданы в мм.
Согласно этому аспекту изобретения лазерный пучок 14 падает под наклоном от расположенной заподлицо поверхности тонкой пластины 10 к стыкуемой торцевой поверхности 12а толстой пластины 12. Соответственно, даже если на обратную поверхность сварного соединения в виде нежелательного обратного валика выходит избыточная часть расплавленного металла толстой пластины 12, которая расплавлена, обратный валик возникает на обратной поверхности сварного соединения, на которой имеется разница по высоте из-за разных толщин участка толстой пластины 12, в результате чего внешний вид не будет являться неудовлетворительным, и качество сварки не будет снижаться.
[0010] В настоящем изобретении предпочтительно, чтобы лазерный пучок 14 имел угол θ падения, который наклонен к тонкой пластине 10 на 5-30° относительно стыкуемой торцевой поверхности 12а толстой пластины 12, и предпочтительно, чтобы стыковой зазор С между толстой пластиной 12 и тонкой пластиной 10 составлял 1,0 мм или менее.
[0011] Другой аспект настоящего изобретения характеризуется сварным элементом, имеющим разные толщины, сваренные при помощи способа лазерной сварки из материалов, имеющих разные толщины, согласно настоящему изобретению, причем произошло проплавление на 50% или более от площади стыкуемых поверхностей.
Преимущества при применении изобретения
[0012] Согласно настоящему изобретению можно предложить способ лазерной сварки материалов, имеющих разные толщины, который позволяет эффективным образом получить превосходные прочность сварного соединения и состояние поверхности, вне зависимости от толщины толстой пластины, а также сварной элемент, имеющий разные толщины, изготавливаемый с использованием указанного выше способа, и который имеет превосходное качество сварки.
Краткое описание чертежей
[0013] На Фиг.1 приведено схематическое изображения сечения сварного участка в случае, если целевое положение лазерного пучка смещено в сторону тонкой пластины согласно известному на настоящий момент уровню техники.
На Фиг.2 приведено схематическое изображения сечения сварного участка в случае, если стыковой зазор является широким согласно известному на настоящий момент уровню техники.
На Фиг.3 приведено схематическое изображение известного на настоящий момент сечения сварного участка, имеющего разницу по высоте.
Фиг.4 схематично иллюстрирует способ лазерной сварки материалов, имеющих разные толщины, согласно настоящему изобретению, в котором задают целевое положение лазерного пучка, угол облучения лазерным пучком и стыковой зазор.
Подробное описание предпочтительных вариантов реализации
[0014] Далее настоящее изобретение будет описано со ссылкой на чертежи. Фиг.4 схематично иллюстрирует способ лазерной сварки материалов, имеющих разные толщины, согласно настоящему изобретению. Необходимо отметить, что на Фиг.4 неровность торцевой поверхности 10а тонкой пластины 10, неровность торцевой поверхности 12а толстой пластины 12 и стыковой зазор С между тонкой пластиной 10 и толстой пластиной 12 изображены в преувеличенном виде.
Задача настоящего изобретения направлена на способ лазерной сварки материалов, имеющих разные толщины, включающий: расположение встык тонкой пластины 10 и толстой пластины 12 так, что одна поверхность тонкой пластины 10 и одна поверхность толстой пластины 12 расположены заподлицо друг с другом; и после этого сваривание тонкой пластины 10 и толстой пластины 12 посредством подведения лазерного пучка 14 к стыкуемым поверхностям. В частности, настоящее изобретение отличается тем, что лазерный пучок 14 падает под наклоном от расположенной заподлицо поверхности тонкой пластины 10 к стыкуемой торцевой поверхности 12а толстой пластины 12, задают целевое положение Р лазерного пучка 14 на упомянутой стыкуемой торцевой поверхности 12а толстой пластины 12, а глубину D целевого положения на пластине от ее поверхности со стороны падения пучка 14, задают в диапазоне, описанном ниже.
Далее будут подробно описаны условия лазерной сварки встык согласно настоящему изобретению.
[0015] В настоящем изобретении, как показано на Фиг.4, тонкую пластину 10 и толстую пластину 12 располагают встык так, что одна поверхность тонкой пластины 10 и одна поверхность толстой пластины 12 расположены заподлицо друг с другом, и после этого подводят лазерный пучок14 под наклоном от поверхности тонкой пластины 10 к стыкуемой торцевой поверхности 12а толстой пластины 12. Таким образом, толщина толстой пластины 12 не ограничивается.
В настоящем изобретении, так как целевое положение Р лазерного пучка 14 задают на стыкуемой торцевой поверхности 12а толстой пластины 12, то изменение положения стыкуемой торцевой поверхности 10а тонкой пластины 10 мало влияет на проплавление. В то же время, в случае, когда задают целевое положение Р лазерного пучка на стыкуемой торцевой поверхности 10а тонкой пластины 10 или на угловом участке 10b торцевой поверхности 10а, требуется детектор целевого положения. Соответственно, будет увеличиваться стоимость производственной установки и, более того, проплавление станет неустойчивым, если расстояние 16 до стыкуемого участка изменяется.
[0016] Глубина D целевого положения представляет собой глубину от поверхности пластины со стороны, где лазерный пучок 14 падает (т.е. от расположенной заподлицо поверхности тонкой пластины 10) на целевое положения Р лазерного пучка 14 на торцевой поверхности 12а толстой пластины 12, в предпочтительном случае она находится в диапазоне, представленном следующим выражением (1):
t/3 ≤ D ≤ t (1),
где t - толщина в плоскостном направлении стыкуемой торцевой поверхности 10а тонкой пластины (10), и D и t заданы в мм.
Если глубина D целевого положения меньше 1/3 толщины t тонкой пластины 10, степень проплавления свариваемых материалов уменьшается. И наоборот, если глубина D целевого положения больше t, расплавляется только тонкая пластина 10, а расплавление толстой пластины 12 становится недостаточным.
[0017] Как показано на Фиг. 4, угол θ падения лазерного пучка 14 определяется как угол между вертикальной линией от угла 12b на верхней поверхности толстой пластины 12 и осью лазерного пучка 14. Если говорить конкретно, этот угол в предпочтительном случае наклонен в сторону тонкой пластины 10 на 5-30° относительно стыкуемой торцевой поверхности 12а толстой пластины 12. Причина является следующей. Если угол θ падения лазерного пучка 14 меньше 5°, при увеличении стыкового зазора С увеличивается часть лазерного пучка 14, проходящая через этот зазор, что приводит к недостаточному вводу теплоты. И, наоборот, если угол θ падения лазерного пучка 14 превышает 30°, лазерный пучок 14 подается только на тонкую пластину 10, что приводит к недостаточному расплавлению толстой пластины 12.
[0018] Стыковой зазор С в настоящем изобретении относится к промежутку, образованному между стыкуемой торцевой поверхностью 10а тонкой пластины 10 и стыкуемой торцевой поверхностью 12а толстой пластины 12, и в предпочтительном случае максимальная величина стыкового зазора С между положения начала сварки до положения окончания сварки ограничена до 1,0 мм или менее. Причина является следующей. Если стыковой зазор С превышает 1,0 мм, сварной участок является узким и крупнозернистым, что приводит к недостаточной прочности сварного соединения. Если угол θ падения лазерного пучка 14 является небольшим, лазерный пучок 14 проходит через зазор, в результате чего выполнение сварки может оказаться невозможным.
[0019] В способе лазерной сварки материалов, имеющих разные толщины, соответствующем настоящему изобретению, другие условия лазерной сварки, чем те, которые описаны выше, например, включающие длину волны лазерного излучения, мощность лазера, диаметр лазерного пучка и скорость сварки, конкретным образом не ограничиваются. Эти условия выбираются подходящим образом в соответствии с типом, толщиной и прочими параметрами свариваемых материалов, что будет описано ниже.
[0020] В настоящем изобретении типы свариваемых материалов, а именно тонкой пластины 10 и толстой пластины 12, используемых в качестве материалов, имеющих разные толщины, конкретным образом не ограничиваются. Примеры свариваемых материалов включают в себя низкоуглеродистую сталь, нержавеющую сталь и любую из них с плакированием на основе Zn, плакированием на основе Al, плакированием на основе сплава Zn-Al, плакированием на основе сплава Al-Si, плакированием на основе сплава Zn-Al-Si, плакированием на основе сплава Zn-Al-Mg, плакированием на основе сплава Zn-Al-Mg-Si или тому подобного. Настоящее изобретение также применимо к сварке деталей разной толщины не только из упомянутыми выше стальных материалов, но также из цветных металлов, например Al, а также из стальных материалов и цветных металлов. Помимо этого, не ограничивается способ резки свариваемых материалов. Можно применять обычный способ резки с использованием механических ножниц, дисковой пилы, ленточной пилы или тому подобного. После резки можно улучшить состояние поверхности за счет ее механического полирования.
[0021] В настоящем изобретении толщина толстой пластины 12 не ограничивается, как описано выше. Форма толстой детали 12 не ограничивается пластинчатой формой, и она может иметь форму бруса.
С другой стороны, толщина t тонкой пластины 10 предпочтительно составляет 6 мм или менее. Причина является следующей. Если толщина t тонкой пластины 10 больше 6 мм, необходима машина для лазерной сварки с большой мощностью, что приводит к увеличению стоимости производственной установки. Кроме того, если тонкая пластина 10 становится толще, снижается скорость сварки, что приводит к ухудшению производительности.
[0022] Для сварного элемента, имеющего разные толщины, который изготовлен с использованием описанного выше способа лазерной сварки материалов, имеющих разные толщины, предпочтительно, чтобы произошло проплавление на 50% или более от площади стыкуемой поверхности. Причина является следующей. Участок, который заставляют расплавиться во время сварки, упрочняется за счет большого количества теплоты от лазерного пучка 14 и поэтому имеет повышенные твердость и прочность на растяжение. В результате, если произошло проплавление на 50% или более от площади стыкуемой поверхности, можно достичь прочности сварного соединения, которая может быть обусловлена разрушением тонкой пластины, когда сила приложена в направлении, перемещающем тонкую пластину 10 и толстую пластину 12 сварного элемента, имеющие разные толщины, друг от друга.
Примеры
[0023] Далее настоящее изобретение будет описано более конкретно со ссылкой на примеры, но настоящее изобретение ими не ограничено.
[0024] Сначала были приготовлены образцы из низкоуглеродистых сталей, SUS 304 и Al-сплава (алюминиевого сплава), приведенные в Таблице 1. Из них в качестве низкоуглеродистых сталей были приготовлены низкоуглеродистая сталь без плакирования, низкоуглеродистая сталь, покрытая плакирующим слоем расплава, содержащего Zn с 6 мас.% Al и 3 мас.% Mg, нанесенного в количестве 90 г/м2 на каждую сторону. Затем образцы, имеющие толщину 6 мм или менее, были разрезаны с использованием механических ножниц, дисковой пилы или ленточной пилы, а образцы, имеющие толщину 10 мм или более, были разрезаны с использованием ленточной пилы, чтобы получить образцы шириной 100 мм и длиной 100 мм. В дополнение к этому, было улучшено состояние полученных при разрезании торцевых поверхностей некоторых образцов за счет механического полирования.
При этом условные обозначения типов материалов, приведенные в Таблице 1, используются для указания типов материалов тонких пластин и толстых пластин в Таблицах с 2-1 по 2-3.
[0025] Таблица 1
Классификация Тип Толщина, мм Плакирование Условное обозначение типа материала
Толстая пластина Низкоуглеродистая сталь 2-50
Нет
А1
Низкоуглеродистая сталь
2-50
Есть (плакирование из расплава Zn с Al 6 мас.%, Mg 3 мас.%) А1М
SUS304 2-50 Нет А2
Al-сплав 2-50 Нет А3
Тонкая пластина Низкоуглеродистая сталь 1-6
Нет
U1
Низкоуглеродистая сталь
1-6
Есть (плакирование из расплава Zn с Al 6 мас.%, Mg 3 мас.%) U1M
SUS304 1-6 Нет U2
Al-сплав 1-6 Нет U3
[0026] Затем, перед лазерной сваркой, щупом был измерен максимальный стыковой зазор у стыкуемого участка на ширине 100 мм. Если щуп, имевший толщину 0,1 мм, нельзя было ввести в стыкуемый участок, максимальный стыковой зазор считался равным 0,1 мм или менее. Полученные результаты приведены в Таблицах с 2-1 по 2-3.
После этого выполнялась лазерная сварка встык с использованием машины для сварки на основе волоконного лазера с максимальной выходной мощностью 7 кВт при различных условиях, которые описаны ниже.
Из каждого образца, сваренного встык лазерной сваркой, был взят образец для испытания на растяжение, имеющий ширину 30 мм, который был подвергнут испытанию на растяжение в соответствии со стандартом JIS Z-2241. Кроме того, с использованием оптического микроскопа было изучено поперечное сечение сварного промежуточного участка в каждом из образцов, сваренных встык лазерной сваркой, и было оценено его проплавление. На основе результатов испытания на растяжение и результатов изучения проплавления была сделана окончательная оценка участка лазерной сварки. Критерии этой окончательной оценки приведены ниже.
Превосходно: Во время испытания на растяжение основной материал разрушался на стороне тонкой пластины 1, а толщина расплавленного участка в области сварки составляла 70-100% от толщины тонкой пластины.
Хорошо: Во время испытания на растяжение основной материал разрушался на стороне тонкой пластины 1, а толщина расплавленного участка в области сварки составляла 60-69% от толщины тонкой пластины.
Удовлетворительно: Во время испытания на растяжение основной материал разрушался на стороне тонкой пластины 1, а толщина расплавленного участка в области сварки составляла 45-59% от толщины тонкой пластины.
Плохо: Во время испытания на растяжение разрушение происходило в области сварки.
На основе этой окончательной оценки стало ясно, что предпочтительным является как можно большее увеличение толщины расплавленного участка, так как увеличиваются прочность на растяжение и усталостная прочность и уменьшается расхождение частей, когда область сварки деформируется при растяжении.
[0027] В Таблицах с 2-1 по 2-3 приведены условия лазерной сварки, максимальный стыковой зазор и результаты окончательной оценки. Необходимо отметить, что «t» в столбце «Глубина D целевого положения лазерного пучка» представляет собой толщину тонкой пластины 10.
Figure 00000001
Figure 00000002
Figure 00000003
[0031] №№ 1-5 и №№ 16-20 в Таблице 2-1 и №№ 31, 32, 37, 38 в Таблице 2-2, представляющие собой примеры, в которых глубина D целевого положения лазерного пучка, угол падения лазерного пучка и стыковой зазор находились в диапазоне, соответствующем настоящему изобретению, имели характеристику «Превосходно» при окончательной оценке и обеспечили хорошие прочность сварного соединения и проплавление. Кроме того, в других примерах была обеспечена хорошая прочность сварного соединения, хотя проплавление было неглубоким.
[0032] В отличие от этого в сравнительных примерах с №№ 43-54 в Таблице 2-3, в которых глубина D целевого положения лазерного пучка, угол падения лазерного пучка и стыковой зазор выходили за пределы диапазона, соответствующего настоящему изобретению, разрушение во время испытания на растяжение происходило в области сварки из-за недостаточного проплавления.
Список ссылочных обозначений
[0033] 10 - тонкая пластина
10а – стыкуемая торцевая поверхность (тонкой пластины)
12 - толстая пластина
12а - стыкуемая торцевая поверхность (толстой пластины)
14 - лазерный пучок
С - стыковой зазор (между толстой пластиной и тонкой пластиной)
D - глубина целевого положения
Р - целевое положение лазерного пучка
t - толщина тонкой пластины в плоскостном направлении стыкуемой торцевой поверхности
θ - угол падения лазерного пучка

Claims (5)

1. Способ лазерной сварки материалов, имеющих разные толщины, включающий расположение встык тонкой пластины (10) и толстой пластины (12), имеющих разные толщины, заподлицо друг с другом одной поверхностью тонкой пластины (10) и одной поверхностью толстой пластины (12) и сваривание тонкой пластины (10) и толстой пластины (12) посредством подведения лазерного пучка (14) к стыкуемым поверхностям, отличающийся тем, что лазерный пучок (14) подают под наклоном от расположенной заподлицо поверхности тонкой пластины (10) к стыкуемой торцевой поверхности (12а) толстой пластины (12), задают положение (Р) лазерного пучка (14) на упомянутой стыкуемой торцевой поверхности (12а) толстой пластины (12), при этом глубину D положения на пластине от ее поверхности со стороны падения лазерного пучка (14) задают по следующему соотношению (1):
t/3 ≤ D ≤ t (1),
где t - толщина в плоскостном направлении стыкуемой торцевой поверхности (10а) тонкой пластины (10), мм; D - глубина положения на пластине от ее поверхности со стороны падения лазерного пучка (14), мм.
2. Способ лазерной сварки материалов по п.1, отличающийся тем, что лазерный пучок (14) подают под углом (θ) наклона к тонкой пластине (10) на 5-30° относительно стыкуемой торцевой поверхности (12а) толстой пластины (12).
3. Способ лазерной сварки материалов по п.1 или 2, отличающийся тем, что стыковой зазор (С) между толстой пластиной (12) и тонкой пластиной (10) составляет 1,0 мм или менее.
RU2017113075A 2014-09-26 2015-06-01 Способ лазерной сварки материалов, имеющих разные толщины RU2636425C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014197162A JP6089323B2 (ja) 2014-09-26 2014-09-26 差厚材のレーザ溶接方法
JP2014-197162 2014-09-26
PCT/JP2015/002761 WO2016047008A1 (ja) 2014-09-26 2015-06-01 差厚材のレーザ溶接方法及び該方法を用いた差厚溶接部材

Publications (1)

Publication Number Publication Date
RU2636425C1 true RU2636425C1 (ru) 2017-11-23

Family

ID=55580564

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017113075A RU2636425C1 (ru) 2014-09-26 2015-06-01 Способ лазерной сварки материалов, имеющих разные толщины

Country Status (14)

Country Link
US (1) US9993896B2 (ru)
EP (1) EP3184231B1 (ru)
JP (1) JP6089323B2 (ru)
KR (1) KR101831584B1 (ru)
CN (1) CN107073649B (ru)
AU (1) AU2015323262B2 (ru)
BR (1) BR112017005389A2 (ru)
CA (1) CA2962720C (ru)
MX (1) MX2017003094A (ru)
MY (1) MY165597A (ru)
NZ (1) NZ730053A (ru)
PH (1) PH12017500565A1 (ru)
RU (1) RU2636425C1 (ru)
WO (1) WO2016047008A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819479B2 (ja) 2017-06-21 2021-01-27 トヨタ自動車株式会社 金属部材及びその製造方法
CN110238511B (zh) * 2018-03-09 2021-05-07 上海海立电器有限公司 一种激光焊接方法
WO2019188431A1 (ja) * 2018-03-29 2019-10-03 日鉄日新製鋼株式会社 金属材料の複合溶接方法および金属材料の突合せ溶接部材
DE102018220445A1 (de) * 2018-11-28 2020-05-28 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Stoßschweißen zweier Werkstücke mittels eines UKP-Laserstrahls sowie zugehöriges optisches Element
WO2020175573A1 (ja) * 2019-02-27 2020-09-03 Jfeスチール株式会社 組立スラブおよびその製造方法ならびにクラッド鋼材の製造方法
JP6989549B2 (ja) * 2019-03-13 2022-01-05 フタバ産業株式会社 接合体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445633A1 (en) * 1990-03-05 1991-09-11 Prima Cimolai Srl Method to weld metallic beams and metallic beams thus produced
JPH08300008A (ja) * 1995-04-28 1996-11-19 Nippon Steel Corp 全連続熱間圧延のシートバーの溶接装置
RU2104137C1 (ru) * 1996-10-29 1998-02-10 Акционерное общество закрытого типа "Технолазер" Способ лазерной сварки стыковых соединений
JP2000263262A (ja) * 1999-03-19 2000-09-26 Nippon Steel Corp 鋼帯の接合方法
RU2264901C1 (ru) * 2004-03-09 2005-11-27 Воронежский государственный технический университет Способ лучевой сварки световым лучом

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135886U (ja) * 1983-02-28 1984-09-11 川崎製鉄株式会社 レ−ザ−溶接機
DE3684331D1 (de) * 1986-12-22 1992-04-16 Thyssen Stahl Ag Verfahren zum herstellen eines formkoerpers aus blechteilen unterschiedlicher dicke.
DE4022062C1 (en) * 1990-07-11 1991-11-14 Thyssen Stahl Ag, 4100 Duisburg, De Strip guide for butt welding along edge - uses sensors along length for control changing axial position of deflection rollers
JPH04367304A (ja) * 1991-06-14 1992-12-18 Nippon Steel Corp 圧延用板のレーザーによる溶接方法
JPH05131283A (ja) * 1991-11-13 1993-05-28 Sekisui Chem Co Ltd レーザによる突合せ溶接方法
CA2108761A1 (en) * 1992-10-23 1994-04-24 Koichi Haruta Method and apparatus for welding material by laser beam
JPH07132386A (ja) 1993-11-11 1995-05-23 Nissan Motor Co Ltd 板厚の異なる板材の突合せ溶接方法
JP3230228B2 (ja) 1994-12-22 2001-11-19 日産自動車株式会社 レーザ溶接方法
JP3293401B2 (ja) * 1995-03-20 2002-06-17 トヨタ自動車株式会社 レーザ溶接方法
JPH09216078A (ja) * 1996-02-06 1997-08-19 Sanyo Mach Works Ltd レーザ溶接方法及びレーザ溶接装置
JPH1015680A (ja) * 1996-07-05 1998-01-20 Nissan Motor Co Ltd レーザ差厚突合せ溶接装置、溶接システム及び溶接方法
JPH1133760A (ja) * 1997-07-18 1999-02-09 Nissan Motor Co Ltd ブランク材の突き合わせ溶接装置
JPH11167904A (ja) 1997-09-30 1999-06-22 Matsushita Electric Ind Co Ltd 角形電池の製造方法
JP3456424B2 (ja) * 1998-09-30 2003-10-14 スズキ株式会社 レーザ溶接方法及びレーザ溶接装置
ES2237162T3 (es) * 1998-11-18 2005-07-16 Elpatronic Ag Procedimiento y dispositivo para la soldadura de chapas con un laser.
JP3971525B2 (ja) * 1998-11-27 2007-09-05 新日本製鐵株式会社 鋼帯の接合方法
US6204469B1 (en) * 1999-03-04 2001-03-20 Honda Giken Kogyo Kabushiki Kaisha Laser welding system
JP2001030089A (ja) * 1999-07-19 2001-02-06 Sumitomo Electric Ind Ltd レーザ溶接方法
JP2001353587A (ja) * 2000-06-13 2001-12-25 Nissan Motor Co Ltd 高炭素鋼と低炭素鋼との溶接方法
JP3854490B2 (ja) * 2001-10-25 2006-12-06 日立建機株式会社 差厚材のレーザ溶接方法
JP2007237216A (ja) * 2006-03-07 2007-09-20 Kobe Steel Ltd レーザ溶接方法およびレーザ溶接装置
JP5219959B2 (ja) * 2009-08-11 2013-06-26 三菱電機株式会社 T字継手の溶接方法及び装置
CN103182403A (zh) * 2011-12-31 2013-07-03 上海和达汽车配件有限公司 基于高强度不等厚板材制管的激光焊接方法
JP6162397B2 (ja) * 2012-12-20 2017-07-12 株式会社エフテック 差厚材及びそれを用いた筒状部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445633A1 (en) * 1990-03-05 1991-09-11 Prima Cimolai Srl Method to weld metallic beams and metallic beams thus produced
JPH08300008A (ja) * 1995-04-28 1996-11-19 Nippon Steel Corp 全連続熱間圧延のシートバーの溶接装置
RU2104137C1 (ru) * 1996-10-29 1998-02-10 Акционерное общество закрытого типа "Технолазер" Способ лазерной сварки стыковых соединений
JP2000263262A (ja) * 1999-03-19 2000-09-26 Nippon Steel Corp 鋼帯の接合方法
RU2264901C1 (ru) * 2004-03-09 2005-11-27 Воронежский государственный технический университет Способ лучевой сварки световым лучом

Also Published As

Publication number Publication date
KR20170049603A (ko) 2017-05-10
CN107073649B (zh) 2018-07-10
JP6089323B2 (ja) 2017-03-08
MY165597A (en) 2018-04-16
JP2016068092A (ja) 2016-05-09
EP3184231A1 (en) 2017-06-28
EP3184231B1 (en) 2018-09-19
BR112017005389A2 (pt) 2018-01-23
PH12017500565B1 (en) 2017-08-30
US20170297145A1 (en) 2017-10-19
PH12017500565A1 (en) 2017-08-30
CN107073649A (zh) 2017-08-18
MX2017003094A (es) 2017-10-12
AU2015323262B2 (en) 2017-04-13
CA2962720C (en) 2019-01-08
US9993896B2 (en) 2018-06-12
EP3184231A4 (en) 2017-08-23
NZ730053A (en) 2018-09-28
KR101831584B1 (ko) 2018-02-23
WO2016047008A1 (ja) 2016-03-31
CA2962720A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
RU2636425C1 (ru) Способ лазерной сварки материалов, имеющих разные толщины
Thomy et al. Laser-MIG hybrid welding of aluminium to steel—effect of process parameters on joint properties
Schultz et al. Gap bridging ability in laser beam welding of thin aluminum sheets
JPS6332554B2 (ru)
CN112620856A (zh) 一种异种金属材料焊接前的预处理方法、异种金属材料焊接产品及其焊接方法
JP5954009B2 (ja) 溶接鋼管の製造方法
JP4797659B2 (ja) レーザー溶接方法
Mittelstädt et al. Two-beam laser brazing of thin sheet steel for automotive industry using Cu-base filler material
JP5030540B2 (ja) 金属板材のレーザ溶接方法
JP6495987B2 (ja) 板材の突合せレーザ溶接法およびレーザ溶接部材
JP6213332B2 (ja) 厚鋼板のホットワイヤ・レーザ複合溶接方法
EP0471738A1 (en) Joining method
Victor et al. Custom beam shaping for high-power fiber laser welding
JP5803160B2 (ja) レーザ溶接鋼管の製造方法
JPH10328861A (ja) レーザ重ね溶接方法
Lahdo et al. Investigations on in-process control of penetration depth for high-power laser welding of thick steel-aluminum joints
EA028399B1 (ru) Способ лазерной сварки деталей из разнородных металлов
Mukherjee et al. Effect of processing parameters on the interface characteristics and joint strengths of aluminium-on-steel lap joints produced using conduction mode laser welding
EP1870194A1 (en) Method of producing a continuous metal strip by laser butt welding, with a laser having a multimodal welding power distribution
Vollertsen Developments and trends in laser welding of sheet metal
JP7160090B2 (ja) 金属材料の複合溶接方法および金属材料の突合せ溶接部材
RU2678110C1 (ru) Способ гибридной лазерно-дуговой сварки толстостенных труб большого диаметра из высокопрочных марок стали
WO2020179029A1 (ja) 板材の突合せレーザ溶接法およびレーザ溶接部材
Woizeschke et al. Laser edge forming to increase the bending radius in hemming
Naeem et al. High power Nd: YAG laser welding of automotive materials