RU2626081C2 - Способ пенной флотации (варианты) - Google Patents

Способ пенной флотации (варианты) Download PDF

Info

Publication number
RU2626081C2
RU2626081C2 RU2014119889A RU2014119889A RU2626081C2 RU 2626081 C2 RU2626081 C2 RU 2626081C2 RU 2014119889 A RU2014119889 A RU 2014119889A RU 2014119889 A RU2014119889 A RU 2014119889A RU 2626081 C2 RU2626081 C2 RU 2626081C2
Authority
RU
Russia
Prior art keywords
acid
hydrocarbyl
foam flotation
salt
group
Prior art date
Application number
RU2014119889A
Other languages
English (en)
Other versions
RU2014119889A (ru
Inventor
Девараясамудрам Р. Нагарадж
Питер Риччо
Тарун Бхамбхани
Алан С. Ротенберг
Кармина Кинтанар
Бин Ван
Original Assignee
Сайтек Текнолоджи Корп.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сайтек Текнолоджи Корп. filed Critical Сайтек Текнолоджи Корп.
Publication of RU2014119889A publication Critical patent/RU2014119889A/ru
Application granted granted Critical
Publication of RU2626081C2 publication Critical patent/RU2626081C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/012Organic compounds containing sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/01Organic compounds containing nitrogen
    • B03D1/011Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0084Enhancing liquid-particle separation using the flotation principle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/014Organic compounds containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/08Subsequent treatment of concentrated product
    • B03D1/085Subsequent treatment of concentrated product of the feed, e.g. conditioning, de-sliming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • B03D2203/025Precious metal ores

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Предложенное изобретение относится к способам и составам, которые применяются для извлечения ценных минералов из минеральных рудных тел. Способ пенной флотации для извлечения по меньшей мере одного ценного минерала из минерального рудного тела, который включает: добавление обогащающего количества собирателя на по меньшей мере одном этапе процесса пенной флотации. Собиратель содержит первичную или вторичную органическую аммониевую соль органической серосодержащей кислоты, выбранной из группы, состоящей из гидрокарбил дитиофосфорных кислот, гидрокарбил монотиофосфорных кислот, меркаптобензотиазолов, гидрокарбил ксантогеновых кислот, гидрокарбил тиогликолевых кислот и гидрокарбил тритиоугольных кислот. По одному из вариантов осуществления способа используют собиратель, содержащий первичную или вторичную органическую аммониевую соль С15 гидрокарбил дитиокарбаминовой кислоты. Технический результат – повышение эффективности флотационного извлечения ценных минералов, а также снижение опасного воздействия на персонал и на окружающую среду. 2 н. и 23 з.п. ф-лы, 1 табл., 5 пр.

Description

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Область техники
[0001] В широком смысле раскрываемый объект изобретения относится к составам и способам, которые применяют для извлечения ценных минералов из минеральных рудных тел. В частности, раскрываемый объект изобретения относится к способам пенной флотации, в которых в качестве собирателя ценного минерала применяют органическую аммониевую соль серосодержащей кислоты.
Уровень техники
[0002] Пенная флотация является процессом, который широко используют для обогащения руд, содержащих полезные минералы, часто называемые “ценными минералами”. Ценным минералом(-ами) называют металл, металлы, минерал или минералы, которые являются первичным объектом процесса флотации, т.е. те металлы и минералы, из которых желательно удалить примеси.
[0003] Стандартный способ пенной флотации включает смешивание водного шлама, который содержит тонко измельченные частицы руды, с пенообразующим или вспенивающим веществом для получения пены. Частицы руды, которые содержат ценный минерал(-лы), преимущественно прилипают к пене, что обусловлено сродством между пеной и обнаженным минералом на поверхности частиц руды. Полученные в результате обогащенные минералы затем собирают путем их отделения от пены. Для проведения отделения в процесс пенной флотации обычно добавляют химические реагенты, называемые “собирателями”. Некоторые теоретические и практические результаты свидетельствуют о том, что успех способа флотации в случае сульфидных руд неблагородных металлов или руд драгоценных металлов зависит от собирателей, которые обеспечивают селективную гидрофобизацию ценного минерала, отделяемого от других минералов. Смотрите, например, Патент США No. 4584097, который в полном объеме включен в данный текст посредством ссылки.
[0004] Другие реагенты, такие как “пенообразователи”, можно добавлять в процесс для того, чтобы обеспечить подходящую основную пенную фазу для захвата гидрофобных ценных минералов и облегчения их отделения и извлечения. Некоторые другие реагенты, называемые “модификаторами”, можно применять для того, чтобы повысить отделение и извлечение нужных минералов и/или металлов. Модификаторы, которые могут содержать регуляторы pH, можно применять для изменения и регулирования уровня pH рудной пульпы с целью повышения отделения и извлечения нужных минералов и/или металлов. В некоторых случаях вещества, называемые “активаторами”, такие как сульфат меди, можно использовать для активации определенного ценного сульфидного минерала с целью повысить покрытие данного сульфидного минерала собирателем.
[0005] Пенная флотация особенно удобна для отделения тонко измельченных ценных минералов от пустой породы или для отделения ценных минералов друг от друга. По причине крупных масштабов, в которых обычно проводится добыча полезных ископаемых, и большой разницы между количеством нужных минералов и пустой руды даже относительно небольшое повышение эффективности отделения обеспечивает значительное увеличение продуктивности. Вдобавок, большое количество химических веществ, которые используются при добыче и обогащении полезных ископаемых, создают существенную проблему в отношении здоровья и безопасности человека и окружающей среды. Соответственно в данной отрасли постоянно ведется поиск эффективных альтернатив, в которых бы повышалась безопасность, и в то же время уменьшалось влияние на окружающую среду.
[0006] В настоящее время большое разнообразие органических серосодержащих веществ, таких как ксантогенаты, дитиофосфаты, дитиокарбаматы и т.д., применяют в качестве собирателей при флотационном извлечении ценных минералов из сульфидных руд и руд драгоценных металлов. Существующее мнение относительно подобных веществ состоит в том, что как свободную кислоту, так и любую соль этой кислоты можно применять для флотации, и что все соли и свободная кислота являются эквивалентными и приводят к практически одинаковому результату. Более того, большинство собирателей на основе органических серосодержащих солей являются водными и представляют собой натриевые или калиевые соли серосодержащей кислоты. Таким образом, упоминание названий собирателей, таких как ксантогенат или дитиофосфат, относится к натриевой или калиевой соли.
[0007] Широко используемый собиратель - ксантогеновая кислота - является ионным соединением, которое производят и транспортируют в виде твердых натриевых или калиевых солей ксантогеновой кислоты и применяют в виде водных растворов на промышленной площадке. Несмотря на то, что они оказались полезными в горнопромышленных процессах, ксантогенаты окисляются и гидролизируются в присутствии воды, высвобождая при этом вредные побочные продукты и приводя к снижению металлургической производительности, такой как снижение извлечения и/или содержания ценного минерала. Твердый ксантогенат может создать опасность возникновения пожара. Другие стандартные водорастворимые ионные собиратели в разной степени создают аналогичные опасности и приводят к снижению металлургической производительности. Дополнительная опасность возникает, когда подобные водные собиратели смешивают с другими собирателями, при этом могут образовываться некоторые токсичные газы или выделяться осадки, которые снижают активность наличествующего собирателя или образуют другие нежелательные продукты реакции, которые также приводят к снижению металлургической производительности.
[0008] Многие современные собиратели и их составы содержат воду, что уменьшает наличествующее количество активного собирателя и значительно повышает затраты на транспортировку. Учитывая недавнее повышение цен на топливо, затратоэффективная транспортировка и энергосбережение являются важными факторами в разработке альтернатив современным собирателям.
[0009] На основании вышеизложенного можно заключить, что в данной области техники существует потребность в разработке стабильных составов собирателей, которые обеспечивают улучшенную металлургическую производительность, снижение затрат, а также уменьшение опасности для человека и окружающей среды. Авторы настоящего изобретения полагают, что раскрытый и заявленный в данном тексте объект изобретения является решением этих потребностей.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0010] Описанные здесь собиратели ценных минералов на основе органических аминных солей органических серосодержащих кислот являются экономически целесообразными и экологически безопасными альтернативами по сравнению с водными ионными собирателями, такими как соли щелочных металлов или органические серосодержащие кислоты. Следовательно, составы собирателей согласно настоящему изобретению обладают многими преимуществами, включая более удобное обращение, а также снижение затрат на доставку составов на отдаленные металлургические предприятия. Как более детально показано ниже, составы собирателей согласно настоящему изобретению неожиданно привели к улучшенному извлечению ценных минералов.
[0011] Соответственно в одном из вариантов реализации настоящее изобретение относится к процессам пенной флотации для извлечения ценных минералов из минеральных рудных тел путем: добавления обогащающего количества собирателя на по меньшей мере одном этапе процесса пенной флотации, причем собиратель является органической первичной или вторичной аммониевой солью серосодержащей кислоты, выбранной из группы, состоящей из гидрокарбил дитиофосфорных кислот, гидрокарбил монотиофосфорных кислот, меркаптобензотиазолов, гидрокарбил ксантогеновых кислот, гидрокарбил дитиокарбаминовых кислот, гидрокарбил тиогликолевых кислот и гидрокарбил тритиоугольных кислот.
[0012] В дополнительном варианте реализации настоящее изобретение относится к способам пенной флотации для извлечения по меньшей мере одного ценного минерала из минерального рудного тела, при этом его этапы включают: измельчение руды, содержащей по меньшей мере один ценный минерал, для образования измельченной руды; образование шлама, содержащего измельченную руду; смешивание эффективного количества по меньшей мере одного собирателя ценного минерала, как описано в данном тексте, с по меньшей мере одной из измельченных руд, шламом, и их комбинации; образование пены со шламом и извлечение по меньшей мере одного ценного минерала из пены.
[0013] Эти и другие объекты, признаки и преимущества данного изобретения станут понятны из следующего детального описания некоторых вариантов реализации изобретения, приведенных в сочетании с прилагаемыми Примерами.
ПОДРОБНОЕ ОПИСАНИЕ НЕКОТОРЫХ ВАРИАНТОВ РЕАЛИЗАЦИИ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
[0014] В широком смысле раскрываемый объект изобретения относится к способам и собирателям, применяемым в извлечении ценных минералов из руды. В большинстве случаев руды содержат, среди прочего, как “ценные”, так и “неценные” минералы. В этом случае “ценным” минералом(-лами) называется металл, металлы, минерал или минералы, которые являются первичным объектом процесса флотации, т.е. это те металлы и минералы, из которых желательно удалить примеси. Примеры представляющих интерес металлов включают, но не ограничиваются этим, золото, серебро, медь, кобальт, никель, свинец, цинк, молибден и металлы группы платины, такие как платина и палладий, а также их комбинации. Термин “неценные” минералы относится к металлу, металлам, минералу или минералам, которые необходимо удалить из ценного минерала, то есть к примесям в ценном минерале. Неценные минералы не обязательно отбраковываются и могут считаться ценными минералами в последующем процессе.
[0015] Так как описанные здесь способы и собиратели можно применить к любой руде, раскрываемый объект изобретения, как правило, относится к сульфидным рудам основных металлов и рудам драгоценных металлов. Примеры таких руд включают, но не ограничиваются этим, Cu-Mo руды, Cu-Au руды, первичные Au руды, руды металлов группы платины (МГП), Cu руды, Ni руды и комплексные полиметаллические руды, содержащие Pb, Zn, Cu и Ag.
[0016] В одном из вариантов реализации изобретения собиратель содержит соединение органической аммониевой соли согласно Формуле I:
Figure 00000001
Формула I
где:
AN- является анионом органической серосодержащей кислоты, выбранной из группы, состоящей из гидрокарбил дитиофосфорных кислот, гидрокарбил монотиофосфорных кислот, меркаптобензотиазолов, гидрокарбил ксантогеновых кислот, гидрокарбил дитиокарбаминовых кислот, гидрокарбил тиогликолевых кислот и гидрокарбил тритиоугольных кислот; Ra является гидрокарбильной группой, содержащей от 1 до 16 атомов углерода, в некоторых случаях замещенной -OH группой и/или одной или более -(YR')n-YR'' группами, где n=0 до 3, Y является O, NR''' или S, R' является алкиленовой или ариленовой группой, содержащей от 1 до 12 атомов углерода, R'' и R''' являются независимо друг от друга водородом или гидрокарбильной группой, содержащей от 1 до 12 атомов углерода; а Rb является водородом или гидрокарбильной группой, содержащей от 1 до 16 атомов углерода, в некоторых случаях замещенной -OH группой и/или одной или более -(YR')n-YR'' группами, где n=0 до 3, Y является O, NR''' или S, R' является алкиленовой или ариленовой группой, содержащей от 1 до 12 атомов углерода, R'' и R''' являются независимо друг от друга водородом или гидрокарбильной группой, содержащей от 1 до 12 атомов углерода; и где Ra и Rb могут быть связаны и образовывать циклическое соединение.
[0017] Органический серосодержащий собиратель получен из серосодержащих органических кислот, которые содержат по меньшей мере одну ионогенную -SH или -OH группу, которая присоединена к атому углерода или атому фосфора. Аммониевая соль является первичной или вторичной органической аммониевой солью.
[0018] В одном предпочтительном варианте реализации изобретения собиратель является в значительной степени свободным от воды и в значительной степени свободным от неорганических солей. Фраза “в значительной степени свободные от воды” включает в себя составы, которые содержат менее чем 10% воды по массе. Например, составы, которые считаются в значительной степени свободными от воды, могут содержать менее чем 10% воды по массе, например 7 масс. %; 5 масс. %; 4 масс. %; 3,5 масс. %, 3,0 масс. %, 2,75 масс. %, 2,5 масс. %, 2,0 масс. %, 1,5 масс. %, 1,0 масс. %, 0,5 масс. %, 0,1 масс. %, 100 м.д. и так далее.
[0019] Употребляемая здесь фраза “в значительной степени свободные от неорганических солей” включает в себя составы собирателей, которые содержат менее чем 5% неорганической соли по массе. Например, составы собирателей, которые считаются в значительной степени свободными от неорганической соли, могут содержать менее чем 5% неорганической соли по массе, например 4 масс. %; 3,5 мас.%, 3,0 масс. %, 2,75 масс. %, 2,5 масс. %, 2,0 масс. %, 1,5 масс. %, 1,0 масс. %, 0,5 масс. %, 0,1 масс. %, 100 м.д. и так далее.
[0020] Употребляемые здесь термины “гидрокарбильная группа”, “углеводородная группа”, “гидрокарбил” и “углеводород” включают в себя соединения, содержащие атомы водорода и углерода, в некоторых случаях замещенные одной или более группами, такими как -OH группы и/или одной или более -(YR')n-YR'' группами, где n=0 до 3, Y является O, NR''' или S, R' является алкиленовой или ариленовой группой, содержащей от 1 до 12 атомов углерода, R'' и R''' являются независимо друг от друга Н или гидрокарбильной группой, содержащей от 1 до 12 атомов углерода. При употреблении здесь множественное число термина кислота, т.е. кислоты, указывает на то, что соединение может быть замещенным или незамещенным. Употребляемый здесь термин “замещенный” включает в себя замещение элемента, такого как водород, другим атомом или группой, содержащей один или более атомов, или гетероатомом, или группой, содержащей один или более гетероатомов.
[0021] В некоторых вариантах реализации органического аммониевого катиона собирателя согласно Формуле I группа Ra является гидрокарбильной группой, содержащей 1-16 атомов углерода, в некоторых случаях замещенной -OH группой. Вместе с тем предполагается, что группа Ra также может являться гидрокарбильной группой, содержащей 1-10 атомов углерода, или гидрокарбильной группой, содержащей 1-6 атомов углерода, в некоторых случаях замещенной -OH группой. Ra предпочтительно является алкильной группой или арильной группой и более предпочтительно - алкильной группой. Более предпочтительно, когда Ra является алкильной группой, содержащей от 1 до 6, наиболее предпочтительно - от 1 до 4 атомов углерода.
[0022] Rb группа органического аммониевого катиона может являться водородом или гидрокарбильной группой, содержащей 1-16 атомов углерода, в некоторых случаях замещенной одной или более группами, такими как -OH группы и/или одной или более -(YR')n-YR'' группами, где n=0 до 3, Y является O, NR''' или S, R' является алкиленовой или ариленовой группой, содержащей от 1 до 12 атомов углерода, R'' и R''' являются независимо друг от друга Н или гидрокарбильной группой, содержащей от 1 до 12 атомов углерода.
[0023] В некоторых вариантах реализации изобретения Rb является водородом.
[0024] В другом варианте реализации Rb является гидрокарбильной группой, содержащей 1-10 атомов углерода, более предпочтительно - содержащей 1-6 атомов углерода. Rb предпочтительно является алкильной группой, содержащей от 1 до 10, более предпочтительно - от 1 до 6 и наиболее предпочтительно - от 1 до 4 атомов углерода.
[0025] Органический катион аммония (N+Н2RaRb) по Формуле I может быть выбран из дигидрокарбил аминов и моногидрокарбил аминов, а также их смеси. Органический катион аммония (N+Н2RaRb) по Формуле I предпочтительно имеет молекулярную массу, которая не превышает 200, более предпочтительно - не превышающую 150 и наиболее предпочтительно - не превышающую 130. Органический катион аммония (N+Н2RaRb) по Формуле I предпочтительно имеет молекулярную массу, составляющую по меньшей мере 32.
[0026] Конкретные примеры аммониевых солей включают, но не ограничиваются этим, соли метиламмония, этиламмония, пропиламмония, бутиламмония, этаноламмония, диэтаноламмония, пропаноламмония, дипропаноламмония, диметиламмония, диэтиламмония, дипропиламмония, дибутиламмония, этилендиаммония, 1,3-диаммония пропана, гексаметилендиаммония, диэтилентриаммония, дифениламмония и их смеси.
[0027] В некоторых вариантах реализации изобретения органическая серосодержащая кислота собирателя выбрана из гидрокарбил дитиофосфорных кислот, гидрокарбил монотиофосфорных кислот, гидрокарбил ксантогеновых кислот, гидрокарбил тиогликолевых кислот и гидрокарбил тритиоугольных кислот.
[0028] Гидрокарбил дитиофосфорные кислоты, как правило, соответствуют общей формуле:
Figure 00000002
где R1 и R2 являются гидрокарбильными группами с условием, что R1 и R2 могут быть связанными и образовывать циклическое соединение. R1 и R2 предпочтительно являются независимо друг от друга C2-C12 гидрокарбильными группами. Предпочтительно R1 и R2 независимо являются C2-C8 гидрокарбильными группами, более предпочтительно - C2-C4 гидрокарбильными группами. Примеры конкретных дигидрокарбил дитиофосфорных кислот включают диизобутил дитиофосфорную кислоту, диэтил дитиофосфорную кислоту, диизоамил дитиофосфорную кислоту, диизопропил дитиофосфорную кислоту, дикрезил дитиофосфорную кислоту, ди-втор-бутил дитиофосфорную кислоту, ди-2-этилгексил дитиофосфорную кислоту, этил втор-бутил дитиофосфорную кислоту и этиламилдитиофосфорную кислоту.
[0029] Гидрокарбил монотиофосфорные кислоты, как правило, соответствуют общей формуле:
Figure 00000003
где R1 и R2 являются независимо друг от друга C2-C12 гидрокарбильными группами с условием, что R1 и R2 могут быть связанными и образовывать циклическое соединение. Предпочтительно R1 и R2 являются независимо друг от друга C2-C8 гидрокарбильной группой, более предпочтительно - C2-C4 гидрокарбильной группой. Примеры конкретных гидрокарбил монотиофосфорных кислот включают диизобутил монотиофосфорную кислоту, диэтилмонотиофосфорную кислоту, диизоамил монотиофосфорную кислоту, диизопропил монотиофосфорную кислоту, дикрезил монотиофосфорную кислоту, ди-втор-бутил монотиофосфорную кислоту, ди-2-этилгексил монотиофосфорную кислоту и этил втор-бутил монотиофосфорную кислоту.
[0030] Гидрокарбил дитиокарбаминовые кислоты обычно выбраны из группы дигидрокарбил дитиокарбаминовых кислот и моногидрокарбил дитиокарбаминовых кислот и соответствуют общей формуле:
Figure 00000004
где R1 является H или C1-C12 гидрокарбильной группой, а R2 независимо от нее - C1-C12 гидрокарбильной группой с условием, что R1 и R2 могут быть связанными и образовывать циклическое соединение. Предпочтительно R1 и R2 независимо являются Н или C2-C8 гидрокарбильной группой. Более предпочтительно R1 и R2 являются независимо друг от друга Н или C2-C4 гидрокарбильной группой. Примеры включают диизобутил дитиокарбаминовую кислоту, ди-н-бутил дитиокарбаминовую кислоту, диэтил дитиокарбаминовую кислоту, диизопропил дитиокарбаминовую кислоту, дибензил дитиокарбаминовую кислоту, дифенил дитиокарбаминовую кислоту, диоктил дитиокарбаминовую кислоту, монобутил дитиокарбаминовую кислоту, моноэтил дитиокарбаминовую кислоту, бутилфенил дитиокарбаминовую кислоту, этилбутил дитиокарбаминовую кислоту и им подобные.
[0031] Гидрокарбил ксантогеновые кислоты, как правило, соответствуют общей формуле:
Figure 00000005
где R1 является C2-C12 гидрокарбильной группой. Предпочтительно R1 является от C2 до C5 гидрокарбильной группой. Примеры конкретных гидрокарбил ксантогеновых кислот включают этил ксантогеновую кислоту, н-бутил ксантогеновую кислоту, изобутил ксантогеновую кислоту, н-пропил ксантогеновую кислоту, изопропил ксантогеновую кислоту, втор-бутил ксантогеновую кислоту, н-амил ксантогеновую кислоту, изоамил ксантогеновую кислоту, 2-этилгексил ксантогеновую кислоту, фенил ксантогеновую кислоту, бензил ксантогеновую кислоту.
[0032] Гидрокарбил тритиоугольные кислоты, как правило, соответствуют общей формуле
Figure 00000006
где R1 является C2-C12 гидрокарбильной группой. Предпочтительно R1 является C4-C12 гидрокарбильной группой. Примеры конкретных гидрокарбил тритиоугольных кислот включают бутил тритиоугольную кислоту и додецил тритиоугольную кислоту.
[0033] Гидрокарбил тиогликолевые кислоты, как правило, соответствуют общей формуле
Figure 00000007
где R1 является C2-C12 гидрокарбильной группой. Предпочтительно R1 является от C4 до C8 гидрокарбильной группой. Примеры конкретных гидрокарбил тиогликолевых кислот включают бутил тиогликолевую кислоту, октил тиогликолевую и додецил тиогликолевую кислоту.
[0034] Меркаптобензотиазолы, как правило, соответствуют общей формуле
Figure 00000008
где R1 является H или -O-(C1-C12 гидрокарбильной) группой или C1-C12 гидрокарбильной группой. Предпочтительно R1 является Н или от C1 до C6 гидрокарбильной группой. Примеры конкретных меркаптобензотиазолов включают 6-гексил 2-меркаптобензотиазол и 6-этокси 2-меркаптобензотиазол. Предпочтительные меркаптобензотиазолы выбраны из 2-меркаптобензотиазола и 6-гидрокарбил-2-меркаптобензотиазолов.
[0035] В предпочтительном варианте реализации изобретения органический серосодержащий собиратель выбран из группы, состоящей из первичных и вторичных аммониевых солей гидрокарбил дитиофосфорных кислот, гидрокарбил монотиофосфорных кислот и гидрокарбил ксантогеновых кислот. Особенно предпочтительными являются первичные и вторичные аммониевые соли гидрокарбил дитиофосфорных кислот.
[0036] Примеры собирателей, состоящих из органической аммониевой соли органической серосодержащей кислоты, включают, но не ограничиваются этим, диметиламмониевую соль диизобутил дитиофосфорной кислоты, этиламмониевую соль диизобутил дитиофосфорной кислоты, диэтиламмониевую соль диизобутил дитиофосфорной кислоты, диэтаноламмониевую соль диизобутил дитиофосфорной кислоты, диэтиламмониевую соль изобутил ксантогеновой кислоты, метиламмониевую соль монотиофосфорной кислоты, диметиламмониевую соль диизобутил монотиофосфорной кислоты, метиламмониевую соль этил ксантогеновой кислоты, метиламмониевую соль изоамил ксантогеновой кислоты, этиламмониевую соль бутил тритиоугольной кислоты, диметиламмониевую соль бутил тритиоугольной кислоты, метиламмониевую соль бутил тиогликолевой кислоты, диметиламмониевую соль изопропил ксантогеновой кислоты, диметиламмониевую соль меркаптобензотиазола, этиламмониевую соль меркаптобензотиазола, гексаметилен диаммониевую соль меркаптобензотиазола, диэтаноламмониевую соль меркаптобензотиазола, диметиламмониевую соль диэтил дитиокарбаминовой кислоты, диэтиламмониевую соль диэтил дитиокарбаминовой кислоты, этиламмониевую соль диэтил дитиокарбаминовой кислоты, гексаметилен диаммониевую соль N-пропил N-этил дитиокарбаминовой кислоты и диэтаноламмониевую соль N-аллил N-этил дитиокарбаминовой кислоты.
[0037] Описанные здесь соединения органической аммониевой соли органической серосодержащей кислоты оказались полезными в качестве собирателей ценного минерала и могут использоваться в способах извлечения по меньшей мере одного ценного минерала из руды. В общем случае органические аммониевые соли органических серосодержащих кислот используют в качестве собирателей в способах пенной флотации путем добавления обогащающего количества собирателя (т.е. количества собирателя, достаточного для эффективного отделения ценных минералов от неценных минералов) на одном или более этапах процесса пенной флотации.
[0038] Описанные здесь составы собирателей можно добавлять в процесс пенной флотации в виде органической аммониевой соли органической серосодержащей кислоты либо они могут быть частью состава, дополнительно содержащего одно или более соединений, полезных для пенной флотации. В общем случае собиратели согласно настоящему изобретению, как описано в данном тексте, присутствуют в составе собирателя в количествах и пропорциях, которые являются экономически целесообразными, а также эффективными для извлечения ценных материалов. Как описано в данном тексте, количество собирателя, которое присутствует в составе собирателя, может варьироваться от 1 масс. % до 99 масс. % относительно общей массы состава собирателя. В одном из вариантов реализации изобретения количество собирателей, как описано в данном тексте, присутствует в составе собирателя в количестве между около 30 масс. % и около 70 масс. % относительно общей массы состава собирателя.
[0039] Кроме описанных здесь собирателей в некоторых вариантах реализации изобретения составы собирателей в некоторых случаях могут содержать один или более собирателей, отличных от первичных и вторичных аммониевых солей органических серосодержащих кислот согласно изобретению, как описано в данном тексте. Подобные дополнительные собиратели могут являться любыми известными собирателями, такими как анионные собиратели и нейтральные собиратели.
[0040] В общем случае описанные выше первичные и вторичные аммониевые соли серосодержащих собирателей демонстрируют прекрасную физическую совместимость с нейтральными (так называемыми масляными собирателями) собирателями. Физическая стабильность составов собирателей, которые содержат собиратель согласно изобретению, как описано в данном тексте, совместно с нейтральным собирателем, делает возможным простое обращение с ними. Более того, такие составы собирателей являются химически стабильными и не выделяют токсичных газов или испарений, а также не требуют применения опасных разбавителей и связующих веществ.
[0041] Ссылаясь на вышесказанное, в некоторых вариантах реализации составы собирателей согласно настоящему изобретению в некоторых случаях могут содержать одну или более добавок. Многие из таких добавок известны специалистам в области техники пенной флотации и не нуждаются в дополнительном детальном описании в данном тексте. Отдельные добавки могут содержать, к примеру, одно или более углеводородных масел, поверхностно-активных веществ, алифатических спиртов, гликолей, гликольэфиров и неводных растворителей. Также предусматриваются комбинации вышеупомянутых добавок.
[0042] Количество и тип добавок, присутствующих в составе собирателя, будет варьироваться в зависимости от одной или более следующих переменных: типа собирателей, количества собирателей, типа руды, ценного минерала и тому подобного, а также их комбинаций. Специалист в данной области техники сможет определить эти величины на основе проведения стандартных экспериментов. В одном из вариантов реализаций изобретения общее количество добавок, присутствующих в составе собирателя, составляет между около 1 масс. % и около 95 масс. % относительно общей массы состава собирателя. В другом варианте реализации изобретения общее количество добавок, присутствующих в составе собирателя, составляет между около 1 масс. % и около 50 масс. % относительно общей массы состава собирателя.
[0043] Один из примеров способа пенной флотации включает дробление руды до образования дробленой руды (называемое здесь этапом “предварительного измельчения” или “первичного измельчения”) и дальнейшее измельчение частиц дробленой руды на мельнице до образования измельченной руды. Образуется шлам из воды и измельченной руды. Совместно этапы измельчения руды и образования шлама можно назвать “этапом измельчения”. Далее содержащий измельченную руду шлам проходит “этап кондиционирования”, во время которого измельченную руду кондиционируют в контактном чане. Измельченную руду подвергают процессу флотации путем прохождения воздуха через шлам во флотационной машине или ряде флотационных машин для осуществления флотации нужных минералов в пене. Нужные минералы, т.е. ценные минералы, выбирают (“извлекают”) из пены в желобах флотомашин (что называется “этапом флотации”).
[0044] Как это понятно специалисту в данной области техники, способ пенной флотации может включать более одного этапа измельчения, кондиционирования и флотации. Таким образом, флотационный концентрат, полученный на первом этапе (связанном с “машинами предварительной флотации” или “машинами первичной флотации”), можно дополнительно измельчить и повторно флотировать в цикле, который связан с “очищающими машинами”. В очищающих машинах концентрат, полученный на первом этапе, можно подвергать этапам дополнительного измельчения, кондиционирования и флотации. Как вариант, концентрат, полученный на первом этапе, можно повторно флотировать без дополнительного измельчения.
[0045] Остатки из очищающих машин можно повторно флотировать в цикле, связанном с “машинами вторичной флотации”. Предусматривается, что раскрываемый объект изобретения включает добавление модификаторов пенной фазы, одновалентных ионных модифицирующих усиливающих веществ и составов собирателей на любом этапе процесса, т.е. добавление модификатора пенной фазы (и/или одновалентного ионного модифицирующего усиливающего вещества и/или состава собирателя) в отдельных случаях можно проводить перед вторым (или третьим) этапом измельчения, этапом кондиционирования или этапом флотации.
[0046] Флотационные реагенты, которые содержат органические аммониевые соли описанных здесь органических серосодержащих собирателей, а также, к примеру, пенообразователи, регуляторы pH, модификаторы пенной фазы, дисперсанты, депрессоры и им подобные вещества, можно добавлять в дробленую руду, измельченную руду и/или шлам во время процесса на любом этапе процесса пенной флотации. Обычно описанные здесь флотационные реагенты, такие как органические аммониевые соли серосодержащих собирателей, в особенности те, которые соответствуют Формуле I, добавляют в процесс пенной флотации на одном или более этапах процесса. Например, органическую аммониевую соль серосодержащего собирателя можно добавлять на этапе измельчения, этапе кондиционирования или в комбинации. Используемый здесь термин “добавлять” или любая его вариация означает любой способ, который можно применить для того, чтобы совместить два или более элементов или соединений, и включает в себя перемешивание, смешивание, комбинирование, включение, сопряжение и тому подобное. Аналогично, используемый здесь термин “перемешивать” или любая его вариация означает любой способ, который можно применить для того, чтобы совместить два или более элементов или соединений, и включает в себя добавление, перемешивание, смешивание, комбинирование, включение, сопряжение и тому подобное.
[0047] Органическую аммониевую соль описанных здесь серосодержащих собирателей добавляют в процессы извлечения ценного минерала из руды в количестве, которое является эффективным (“эффективное количество” или “обогащающее количество”) для извлечения ценного минерала. Эффективное количество органической аммониевой соли серосодержащего собирателя может зависеть от множества факторов, включая применяемый способ, используемую руду, состав органической аммониевой соли серосодержащего собирателя и тому подобное. В одном из вариантов реализации изобретения эффективное количество органической аммониевой соли серосодержащего собирателя, которое добавляют в процесс, составляет от около 0,5 грамм на тонну (г/т) до около 500 г/т. В другом варианте реализации изобретения эффективное количество органической аммониевой соли серосодержащего собирателя, которое добавляют в процесс, составляет от около 1 г/т до около 200 г/т. В еще одном варианте реализации изобретения эффективное количество органической аммониевой соли серосодержащего собирателя, которое добавляют в процесс, составляет от около 2 г/т до около 100 г/т. В дополнительном варианте реализации изобретения эффективное количество органической аммониевой соли серосодержащего собирателя, которое добавляют в процесс, составляет от около 5 г/т до около 50 г/т. В другом варианте реализации изобретения эффективное количество органической аммониевой соли серосодержащего собирателя составляет от около 5 г/т до около 20 г/т.
[0048] Описанные здесь органические аммониевые соли серосодержащих собирателей или содержащие их составы собирателей обычно добавляют в процесс в жидком состоянии. При производстве некоторые из составов могут находиться в твердом состоянии, но их можно легко перевести в жидкое состояние путем растворения в подходящем растворителе или разбавителе.
[0049] Кроме органических аммониевых солей описанных здесь серосодержащих собирателей или содержащих их составов собирателей в процесс пенной флотации можно по отдельности или одновременно добавлять другие собиратели.
ПРИМЕРЫ
[0050] Следующие примеры приведены для того, чтобы помочь специалисту в данной области техники более глубоко понять некоторые варианты реализации настоящего изобретения. Эти примеры предназначены для иллюстративных целей и не должны трактоваться как такие, которые ограничивают объем различных вариантов реализации настоящего изобретения.
[0051] Если другое специально не оговорено, в приведенных ниже Примерах используются следующие условные обозначения: “процент”, “%”, “массовый %” и “масс. %” обозначают массовые проценты, “г” обозначает грамм, “°C” обозначает градусы по Цельсию, “г/т” обозначает грамм на тонну, “мин” обозначает минуты, “изв” и “Изв” обозначают извлечение ценного минерала в концентрате, “С изв” обозначает сквозное извлечение всех сульфидных минералов, “соб” обозначает собиратель, “об/мин” означает обороты в минуту, “кг” - килограмм, “м.д.” - миллионные доли относительно массы (также является эквивалентом г/т), “мл” - миллилитр и “л” - литр.
Пример 1. Приготовление этиламмониевой соли диизобутил дитиофосфорной кислоты
[0052] Приготовление этиламмониевой соли диизобутил дитиофосфорной кислоты проводят следующим образом: 130 граммов (0,54 моля) диизобутил дитиофосфорной кислоты помещают в реактор высокого давления с рубашкой. Систему газируют азотом на протяжении 20 мин и в капельную воронку добавляют 26 граммов (0,58 моля) разжиженного этиламина, и затем всю систему герметизируют в азотной среде. Потом, контролируя состояние системы с помощью измерителя давления и термометра, по капле добавляют этиламин. Температуру реакции поддерживают ниже 50°C, а давление - ниже 10 фунтов на квадратный дюйм (“psi”). После того, как добавление завершено, систему нагревают через рубашку до 50°C с помощью нагревающего термостата. Температуру реакции поддерживают на уровне 50°C на протяжении 1 часа. После этого продукт сливают. Для того чтобы определить кислотность и процентное содержание дитиофосфорной кислоты, измеряли кислотное число (в норме - до 30) и йодный индекс (между 40-44). Чистоту продукта (в диапазоне между 88-95%) измеряют с помощью жидкостной хроматографии с масс-спектроскопией (“ЖХ-МС”) и ядерного магнитного резонанса (“ЯМР”).
Пример 2. Приготовление диэтиламмониевой соли диизобутил дитиофосфорной кислоты
[0053] Приготовление диэтиламмониевой соли диизобутил дитиофосфорной кислоты проводят следующим образом: 130 граммов (0,54 моля) диизобутил дитиофосфорной кислоты помещают в реактор высокого давления с рубашкой. Систему газируют азотом на протяжении 20 мин и в капельную воронку добавляют 43 грамма (0,58 моля) диэтиламина, и затем всю систему герметизируют в азотной среде. Потом, контролируя состояние системы с помощью измерителя давления и термометра, по капле добавляют диэтиламин и поддерживают температуру реакции ниже 50°C, а давление - ниже 10 фунт/кв. дюйм. После того, как добавление завершено, систему нагревают через рубашку до 50°C с помощью нагревающего термостата. Температуру реакции поддерживают на уровне 50°C на протяжении 1 часа. После этого продукт сливают. Для того чтобы определить кислотность и процентное содержание дитиофосфорной кислоты, измеряли кислотное число (в норме - до 30) и йодный индекс (между 40-44). Чистоту продукта (в диапазоне между 88-95%) измеряют с помощью ЖХ-МС и НМР.
Примеры 3-5: Извлечение ценных минералов из рудного тела, содержащего основной металл (медь)
[0054] Рудное тело, содержащее Cu (0,56%), обогащают путем пенной флотации. В каждом испытании 1000 г рудного образца измельчают на протяжении 8,5 мин в мельнице со стержнем из мягкой стали с 10 кг стержневой нагрузки и приблизительно 667 мл воды, что приводит к образованию шлама из измельченной руды с гранулометрическим составом, в котором размер приблизительно 80% частиц не превышает 106 микронов. Для достижения требуемого уровня pH приблизительно в 10,5 на этапе флотации в мельницу добавляют известь. После измельчения шлам перемещают в 2,5 л флотационную машину Денвер и добавляют воду, чтобы довести плотность твердой фазы до 33%. Шлам перемешивают в машине при 1200 об/мин. Собиратель добавляют одноразово в пропорции 5 г активного собирателя на тонну руды на этапе кондиционирования. Во всех испытаниях применяемым пенообразователем является пенообразователь PBM 604, который производит Cytec Industries Inc., США, и который добавляют в дозировке 30 г/т. Флотацию проводят на протяжении 9 минут. Результаты представлены в Таблице 1.
Таблица 1
Cu руда
Пример №* Дозировка, г/т Тип собирателя Cu Изв., %
3C 5 Na-ДИБДТФ 83,1
4 5 ЭА-ДИБДТФ 84,5
5 5 ДЭА-ДИБДТФ 85,3
*С: Сравнительный
Na-ДИБДТФ: Натриевая соль диизобутил дитиофосфорной кислоты
ЭА-ДИБДТФ: Этил аминная соль диизобутил дитиофосфорной кислоты
ДЭА-ДИБДТФ: Диэтил аминная соль диизобутил дитиофосфорной кислоты
[0055] Различные термины, которые были употреблены выше и по всему тексту раскрытия сущности изобретения, приведены для того, чтобы помочь читателю. Если не указано иное, все употребляемые здесь термины данной области техники, обозначения и другая научная терминология имеют те значения, которые обычно подразумеваются специалистами в области минеральной и/или горнопромышленной химии. При употреблении в тексте и в прилагаемой формуле изобретения формы единственного числа включают ссылки на множественное число, если другое четко не предусмотрено контекстом. Все используемые в описании и формуле изобретения числа, выражающие количество ингредиентов, условия реакций и так далее, нужно понимать как такие, что во всех возможных случаях могут меняться в пределах, заданных термином “около”. Аналогично все числа, приведенные в диапазоне, на который указывает слово “между”, включают верхнюю и нижнюю границы этого диапазона. Соответственно, если не указано иное, все числовые параметры, приведенные в описании и прилагаемой формуле изобретения, являются приблизительными и могут варьироваться в зависимости от тех свойств, которые требуется получить с помощью настоящего изобретения. Каждый числовой параметр, по меньшей мере, должен трактоваться в свете количества значащих цифр и стандартных методов округления, что не ограничивает доктрину эквивалентов объемом формулы изобретения.
[0056] В тексте данной заявки были приведены ссылки на различные патенты и/или научную литературу. Раскрытие сущности этих публикаций включено в данный текст посредством ссылки в полном объеме, как если бы это было прописано здесь. В случае противоречивых терминов предпочтение отдается терминам данного документа. На основании вышеприведенных описания и примеров специалист в данной области техники сможет практически использовать изобретение заявленным образом без проведения ненужных экспериментов.
[0057] Хотя в вышеизложенном описании были описаны и отмечены основные отличительные признаки предмета настоящего изобретения, понятно, что специалистом в данной области техники могут быть сделаны различные исключения, замещения и изменения как в содержании составов, так и в их применении, без отступления от объема предмета настоящего изобретения. Следовательно, объем настоящего изобретения не должен ограничиваться вышеизложенным описанием, но должен определяться прилагаемой формулой изобретения.

Claims (32)

1. Способ пенной флотации для извлечения по меньшей мере одного ценного минерала из минерального рудного тела, который включает:
добавление обогащающего количества собирателя на по меньшей мере одном этапе процесса пенной флотации, причем собиратель содержит первичную или вторичную органическую аммониевую соль органической серосодержащей кислоты, выбранной из группы, состоящей из гидрокарбил дитиофосфорных кислот, гидрокарбил монотиофосфорных кислот, меркаптобензотиазолов, гидрокарбил ксантогеновых кислот, гидрокарбил тиогликолевых кислот и гидрокарбил тритиоугольных кислот.
2. Способ пенной флотации по п.1, отличающийся тем, что первичная или вторичная органическая аммониевая соль органической серосодержащей кислоты имеет Формулу I:
Figure 00000009
Формула I
где:
AN- является анионом органической серосодержащей кислоты, выбранной из группы, состоящей из гидрокарбил дитиофосфорных кислот, гидрокарбил монотиофосфорных кислот, меркаптобензотиазолов, гидрокарбил ксантогеновых кислот, гидрокарбил тиогликолевых кислот и гидрокарбил тритиоугольных кислот;
Ra является гидрокарбильной группой, содержащей от 1 до 16 атомов углерода, необязательно замещенной -OH группой и/или одной или более -(YR')n-YRʺ группами; а Rb является водородом или гидрокарбильной группой, содержащей от 1 до 16 атомов углерода, необязательно замещенной -OH группой и/или одной или более -(YR')n-YRʺ группами, где для упомянутых одной или нескольких групп -(YR')n-YRʺ в Ra и Rb n= от 0 до 3; Y является O, NRʺ' или S; R' является алкиленовой или ариленовой группой, содержащей от 1 до 12 атомов углерода; каждый из Rʺ и Rʺ' независимо друг от друга выбирают из водорода или гидрокарбильной группы, содержащей от 1 до 12 атомов углерода; и где Ra и Rb могут быть связаны и образовывать циклическое соединение.
3. Способ пенной флотации по п.2, отличающийся тем, что Ra является алкильной группой, содержащей от 1 до 10 атомов углерода.
4. Способ пенной флотации по п.2, отличающийся тем, что Rb является водородом или алкильной группой, содержащей от 1 до 10 атомов углерода.
5. Способ пенной флотации по п.2, отличающийся тем, что каждая из групп Ra и Rb независимо выбрана из алкильной группы, содержащей от 1 до 4 атомов углерода.
6. Способ пенной флотации по п.1, отличающийся тем, что органическая серосодержащая кислота выбрана из группы, состоящей из гидрокарбил дитиофосфорных кислот, гидрокарбил монотиофосфорных кислот и гидрокарбил ксантогеновых кислот.
7. Способ пенной флотации по п.6, отличающийся тем, что органическая серосодержащая кислота является гидрокарбил дитиофосфорной кислотой.
8. Способ пенной флотации по п.1, отличающийся тем, что органическая аммониевая соль выбрана из группы, состоящей из солей метиламмония, этиламмония, пропиламмония, бутиламмония, этаноламмония, диэтаноламмония, пропаноламмония, дипропаноламмония, диметиламмония, диэтиламмония, дипропиламмония, дибутиламмония, этилендиаммония, 1,3-диаммония пропана, гексаметилендиаммония, диэтилентриаммония, дифениламмония.
9. Способ пенной флотации по п.1, отличающийся тем, что собиратель, содержащий первичную или вторичную органическую аммониевую соль серосодержащей органической кислоты, выбирают из группы, состоящей из диметиламмониевой соли диизобутил дитиофосфорной кислоты, этиламмониевой соли диизобутил дитиофосфорной кислоты, диэтиламмониевой соли диизобутил дитиофосфорной кислоты, диэтаноламмониевой соли диизобутил дитиофосфорной кислоты, диэтиламмониевой соли изобутил ксантогеновой кислоты, метиламмониевой соли монотиофосфорной кислоты, диметиламмониевой соли диизобутил монотиофосфорной кислоты, метиламмониевой соли этил ксантогеновой кислоты, метиламмониевой соли изоамил ксантогеновой кислоты, этиламмониевой соли бутил тритиоугольной кислоты, диметиламмониевой соли бутил тритиоугольной кислоты, метиламмониевой соли бутил тиогликолевой кислоты, диметиламмониевой соли изопропил ксантогеновой кислоты, диметиламмониевой соли меркаптобензотиазола, этиламмониевой соли меркаптобензотиазола, гексаметилен диаммониевой соли меркаптобензотиазола и диэтаноламмониевой соли меркаптобензотиазола.
10. Способ пенной флотации по п. 1, отличающийся тем, что собиратель является в значительной степени свободным от воды.
11. Способ пенной флотации по п.1, отличающийся тем, что обогащающее количество собирателя добавляют в количестве между 0,5 и 500 граммами на тонну руды, включая верхний и нижний пределы диапазона.
12. Способ пенной флотации по п.11, отличающийся тем, что обогащающее количество собирателя добавляют в количестве между 1 и 200 граммами на тонну руды, включая верхний и нижний пределы диапазона.
13. Способ пенной флотации по п. 1, который дополнительно включает смешивание одной или более добавок, выбранных из группы, состоящей из углеводородных масел, поверхностно-активных веществ, алифатических спиртов, гликолей, гликольэфиров и неводных растворителей.
14. Способ пенной флотации по п. 1, отличающийся тем, что по меньшей мере один этап процесса пенной флотации выбран из группы, состоящей из этапа флотации, этапа измельчения, этапа кондиционирования и этапа предварительного измельчения.
15. Способ пенной флотации по п. 1, отличающийся тем, что по меньшей мере один ценный минерал выбран из группы, состоящей из меди, кобальта, свинца, цинка, никеля, молибдена, золота, серебра и металлов группы платины.
16. Способ пенной флотации по п.15, отличающийся тем, что металл группы платины является платиной или палладием.
17. Способ пенной флотации для извлечения по меньшей мере одного ценного минерала из минерального рудного тела, который включает:
добавление обогащающего количества собирателя на по меньшей мере одном этапе процесса пенной флотации, причем собиратель содержит первичную или вторичную органическую аммониевую соль C1-C5 гидрокарбил дитиокарбаминовой кислоты.
18. Способ пенной флотации по п.17, отличающийся тем, что органическая серосодержащая кислота является C2-C5 гидрокарбил дитиокарбаминовой кислотой.
19. Способ пенной флотации по п.17, отличающийся тем, что органическая аммониевая соль выбрана из группы, состоящей из солей метиламмония, этиламмония, пропиламмония, бутиламмония, этаноламмония, диэтаноламмония, пропаноламмония, дипропаноламмония, диметиламмония, диэтиламмония, дипропиламмония, дибутиламмония, этилендиаммония, 1,3-диаммония пропана, гексаметилендиаммония, диэтилентриаммония и дифениламмония.
20. Способ пенной флотации по п.17, отличающийся тем, что собиратель, содержащий первичную или вторичную органическую аммониевую соль органической серосодержащей кислоты, выбирают из группы, состоящей из диметиламмониевой соли диэтил дитиокарбаминовой кислоты, диэтиламмониевой соли диэтил дитиокарбаминовой кислоты, этиламмониевой соли диэтил дитиокарбаминовой кислоты, гексаметилен диаммониевой соли N-пропил N-этил дитиокарбаминовой кислоты и диэтаноламмониевой соли N-аллил N-этил дитиокарбаминовой кислоты.
21. Способ пенной флотации по п. 17, отличающийся тем, что собиратель является в значительной степени свободным от воды.
22. Способ пенной флотации по п. 17, отличающийся тем, что обогащающее количество собирателя добавляют в количестве между 0,5 и 500 граммами на тонну руды, включая верхний и нижний пределы диапазона.
23. Способ пенной флотации по п. 17, который дополнительно включает смешивание одной или более добавок, выбранных из группы, состоящей из углеводородных масел, поверхностно-активных веществ, алифатических спиртов, гликолей, гликольэфиров и неводных растворителей.
24. Способ пенной флотации по п. 17, отличающийся тем, что по меньшей мере один этап процесса пенной флотации выбран из группы, состоящей из этапа флотации, этапа измельчения, этапа кондиционирования и этапа предварительного измельчения.
25. Способ пенной флотации по п. 17, отличающийся тем, что по меньшей мере один ценный минерал выбран из группы, состоящей из меди, кобальта, свинца, цинка, никеля, молибдена, золота, серебра и металлов группы платины.
RU2014119889A 2011-10-18 2012-10-17 Способ пенной флотации (варианты) RU2626081C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161548417P 2011-10-18 2011-10-18
US61/548,417 2011-10-18
PCT/US2012/060527 WO2013059260A2 (en) 2011-10-18 2012-10-17 Froth flotation processes

Publications (2)

Publication Number Publication Date
RU2014119889A RU2014119889A (ru) 2015-11-27
RU2626081C2 true RU2626081C2 (ru) 2017-07-21

Family

ID=47080871

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014119889A RU2626081C2 (ru) 2011-10-18 2012-10-17 Способ пенной флотации (варианты)

Country Status (12)

Country Link
US (1) US9302273B2 (ru)
EP (1) EP2768617A2 (ru)
CN (1) CN103945948B (ru)
AU (1) AU2012326313B2 (ru)
BR (1) BR112014009564A2 (ru)
CA (1) CA2852686A1 (ru)
CL (1) CL2014000987A1 (ru)
IN (1) IN2014CN02934A (ru)
MX (1) MX2014004720A (ru)
PE (2) PE20141733A1 (ru)
RU (1) RU2626081C2 (ru)
WO (1) WO2013059260A2 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103433144B (zh) * 2013-09-09 2015-04-01 福建省政和县源鑫矿业有限公司 浮选金银矿的浮选剂及浮选方法
CN103706486B (zh) * 2013-11-07 2016-09-07 湖南华麒资源环境科技发展有限公司 一种湿法炼锌酸浸矿浆浮选银的捕收剂及其配制方法
EP3025786A1 (en) * 2014-11-28 2016-06-01 Omya International AG Apparatus for simultaneous grinding and froth flotation
WO2019075169A2 (en) * 2017-10-12 2019-04-18 Cytec Industries Inc. METHODS OF RECOVERING BY FLOTATION OF VALUE MATERIAL FROM PARTICLES OF RUGGED SIZE
CN110665645A (zh) * 2019-10-14 2020-01-10 彝良驰宏矿业有限公司 一种细粒级闪锌矿选别的高效浮选药剂及其制备方法与应用
CN113333178B (zh) * 2021-06-02 2022-09-02 矿冶科技集团有限公司 一种金矿浮选捕收剂及其制备方法
CN114618686A (zh) * 2022-02-16 2022-06-14 武汉工程大学 一种正丁基硫代磷酸三胺的应用及微细粒辉钼矿的浮选方法
CL2022000850A1 (es) * 2022-04-04 2022-10-21 Oxiquim S A Composiciones de xantatos iónicos estables en solución acuosa, útiles como colectores en el proceso de flotación por espuma y su proceso de preparación.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601818A (en) * 1983-03-30 1986-07-22 Phillips Petroleum Company Ore flotation
SU1273170A1 (ru) * 1985-07-25 1986-11-30 Институт минеральных ресурсов Способ флотационного обогащени железных руд
US4879022A (en) * 1987-07-14 1989-11-07 The Lubrizol Corporation Ore flotation process and use of mixed hydrocarbyl dithiophosphoric acids and salts thereof
SU1582978A3 (ru) * 1985-05-31 1990-07-30 Дзе Дау Кемикал Компани (Фирма) Способ извлечени металлсодержащих сульфидных минералов или сульфидизированных металлсодержащих окисленных минералов из руд
EA007352B1 (ru) * 2001-12-12 2006-10-27 Владимир Раич Флотореагент для селективной флотации и способ флотации
WO2008019451A1 (en) * 2006-08-17 2008-02-21 Ab Tall (Holdings) Pty Ltd Collectors and flotation methods
WO2010011552A2 (en) * 2008-07-25 2010-01-28 Cytec Technology Corp. Flotation reagents and flotation processes utilizing same

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA808222A (en) 1969-03-11 Du Pont Of Canada Limited Ore flotation process and collector agents
CA771181A (en) 1967-11-07 Du Pont Of Canada Limited Dithiocarbamate ore collector agents
US1497699A (en) * 1923-11-28 1924-06-17 Metals Recovery Co Concentration of ores
US2134706A (en) * 1931-02-24 1938-11-01 Peter C Reilly Process of flotation and agent therefor
US1949956A (en) * 1931-03-02 1934-03-06 Peter C Reilly Ore flotation and flotation reagent
US2043192A (en) * 1934-05-09 1936-06-02 American Cyanamid Co Flotation reagent
US2074699A (en) 1934-06-02 1937-03-23 Du Pont Flotation process
US2063629A (en) 1935-02-19 1936-12-08 Du Pont Esters of the thio acids of phosphorus
US2267307A (en) 1936-12-17 1941-12-23 Armour & Co Concentrating ores
US2201535A (en) * 1937-08-07 1940-05-21 Benjamin R Harris Lipophilic-hydrophilic derivatives of thio compounds
US2185968A (en) 1937-11-01 1940-01-02 Armour & Co Process of concentrating ores and flotation agents therefor
US2120217A (en) * 1937-12-18 1938-06-07 Benjamin R Harris Ore flotation
US2221377A (en) * 1938-10-10 1940-11-12 Emulsol Corp Substituted ammonium salts of sulphocarboxylic acid esters
US2278020A (en) 1939-11-03 1942-03-31 Armour & Co Process of separating chalcocite ore
US2330587A (en) 1940-11-06 1943-09-28 American Cyanamid Co Flotation reagent and process
US2389718A (en) 1943-01-07 1945-11-27 American Cyanamid Co Disubstituted dithiophosphates
US2812332A (en) 1955-04-01 1957-11-05 Goodrich Co B F Quaternary ammonium xanthates
US2919025A (en) * 1956-04-04 1959-12-29 American Cyanamid Co Flotation reagent composition
US3103492A (en) 1958-07-30 1963-09-10 Lubricating composition
US3203968A (en) * 1959-06-03 1965-08-31 Sebba Felix Ion flotation method
US2991430A (en) 1959-06-03 1961-07-04 Charles M Allred Automatic r-f level control
FR1352145A (fr) * 1961-10-03 1964-05-13 Armour & Co Procédé de flottation d'ions
US3737458A (en) * 1963-03-13 1973-06-05 Exxon Product of alpha monolithiated amine and carbonyl compounds
SE302754B (ru) * 1963-12-06 1968-08-05 American Cyanamid Co
US3476553A (en) * 1965-02-10 1969-11-04 Armour & Co Precipitate flotation process
US3425550A (en) 1966-07-22 1969-02-04 Armour Ind Chem Co Flotation separation of metallic sulfide ores
US3671612A (en) 1968-04-05 1972-06-20 Knapsack Ag Process for the manufacture of ammonium dialkyldithiophosphates
GB1051269A (ru) * 1969-05-16
US3570772A (en) * 1969-08-22 1971-03-16 American Cyanamid Co Di(4-5 carbon branched primary alkyl) dithiophosphate promoters for the flotation of copper middlings
GB1295914A (ru) * 1970-01-16 1972-11-08
FI56216C (fi) 1971-03-25 1981-10-02 Tampella Oy Ab Siktanordning
GB1353976A (en) 1971-08-27 1974-05-22 Exxon Research Engineering Co Lubricating oil compositions
US3788467A (en) 1972-04-27 1974-01-29 American Cyanamid Co Flotation process for recovering molybdenum
US3845862A (en) 1973-01-04 1974-11-05 Continental Oil Co Concentration of oxide copper ores by flotation separation
US4040950A (en) 1974-08-01 1977-08-09 American Cyanamid Company Concentration of ore by flotation with solutions of aqueous dithiophosphates and thionocarbamate as collector
US3925218A (en) 1974-08-01 1975-12-09 American Cyanamid Co Concentration of ore by flotation with solutions of aqueous dithiophosphates and thionocarbamate as collector
US4036746A (en) * 1974-08-16 1977-07-19 Minerec Corporation Flotation with amine-stabilized dialkyl dithiophosphates
US3971836A (en) 1974-08-16 1976-07-27 Minerec Corporation Amine-stabilized dialkyl dithiophosphates
US4022686A (en) * 1975-03-13 1977-05-10 Sumitomo Metal Mining Co., Limited Flotation process for copper ores and copper smelter slags
CA1062818A (en) 1976-01-30 1979-09-18 Reichel A.G. Tenbergen Flotation process
CA1105156A (en) 1978-10-11 1981-07-14 William A. Rickelton Flotation of sulfide minerals
US4215067A (en) * 1978-12-29 1980-07-29 Standard Oil Company (Indiana) Process for the preparation of zinc salts of dihydrocarbyldithiophosphoric acids
US4472288A (en) 1980-08-29 1984-09-18 Chevron Research Company Lubricant composition containing alkali metal borate and an oil-soluble amine salt of a phosphorus compound
US4530758A (en) 1982-05-17 1985-07-23 Thiotech, Inc. Ore flotation method
ZA832287B (en) 1982-05-17 1983-12-28 Thiotech Inc Ore flotation method
US4575431A (en) 1984-05-30 1986-03-11 Chevron Research Company Lubricant composition containing a mixture of neutralized phosphates
US4699712A (en) 1984-06-20 1987-10-13 Thiotech, Inc. Ore dressing method
US4595493A (en) * 1984-08-17 1986-06-17 American Cyanamid Company Process for the flotation of base metal sulfide minerals in acid, neutral or mildly alkaline circuits
US4584097A (en) 1984-08-17 1986-04-22 American Cyanamid Company Neutral hydrocarboxycarbonyl thionocarbamate sulfide collectors
US4684459A (en) 1985-11-29 1987-08-04 The Dow Chemical Company Collector compositions for the froth flotation of mineral values
US4830739A (en) 1985-02-20 1989-05-16 Berol Kemi Ab Process and composition for the froth flotation beneficiation of iron minerals from iron ores
DE3517154A1 (de) 1985-05-11 1986-11-13 Henkel KGaA, 4000 Düsseldorf Verwendung von tensidgemischen als hilfsmittel fuer die flotation von nichtsulfidischen erzen
US4793852A (en) * 1985-10-28 1988-12-27 The Dow Chemical Company Process for the recovery of non-ferrous metal sulfides
US4853110A (en) * 1986-10-31 1989-08-01 Exxon Research And Engineering Company Method for separating arsenic and/or selenium from shale oil
CA1299777C (en) 1986-11-21 1992-04-28 Elias M. Klein Recovery of platinum-group metals and other metal valuables
EP0298392A3 (de) * 1987-07-07 1991-01-09 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Gewinnung von Mineralen aus sulfidischen aus Erzen durch Flotation und Mittel zu seiner Durchführung
US5147572A (en) 1990-06-15 1992-09-15 The Lubrizol Corporation Flotation composition using a mixture of collectors
ZA95390B (en) * 1994-01-18 1996-07-18 Du Pont Crosslinked polymeric ammonium salts
GB9403604D0 (en) * 1994-02-25 1994-04-13 Exxon Chemical Patents Inc Manufacture of dihydrocarbyl dithiophosphates
US5929408A (en) * 1996-09-26 1999-07-27 Cytec Technology Corp. Compositions and methods for ore beneficiation
CN1222593C (zh) 1998-08-20 2005-10-12 国际壳牌研究有限公司 可用于液压液中的润滑油组合物
JP4565529B2 (ja) 2000-03-08 2010-10-20 ミヨシ油脂株式会社 金属捕集剤
JP2003064347A (ja) 2001-08-24 2003-03-05 Sanken:Kk 有害金属捕捉剤
US6732867B2 (en) 2002-10-15 2004-05-11 Cytec Technology Corp. Beneficiation of sulfide minerals
US6820746B2 (en) 2002-10-15 2004-11-23 Cytec Technology Corp. Process for the beneficiation of sulfide minerals
JP2004217797A (ja) 2003-01-15 2004-08-05 Ethyl Japan Kk 長寿命で熱安定性に優れたギア油組成物
PE20050917A1 (es) 2003-11-27 2005-10-26 Procesos Mineros E Ind Conosur S A Agente colector que comprende compuestos amoniacales (aminas primarias, secundarias, terciarias), para procesos de molienda y/o flotacion de minerales de cobre, molibdenos, zinc y otros metales contenidos
ES2637138T3 (es) * 2007-02-07 2017-10-11 Cytec Technology Corp. Novedosos colectores de ditiocarbamato y su uso en el enriquecimiento de yacimientos de minerales
CN101455996B (zh) * 2007-12-10 2012-04-25 北京有色金属研究总院 单斜磁黄铁矿与方铅矿浮选分离工艺
CN101234363B (zh) * 2008-03-04 2011-11-16 昆明理工大学 一种用低品位硫铁矿矿石生产高品位硫精矿的方法
CN101879479B (zh) * 2010-06-08 2012-09-05 西北有色地质研究院 一种榴辉岩型金红石矿的选矿方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601818A (en) * 1983-03-30 1986-07-22 Phillips Petroleum Company Ore flotation
SU1582978A3 (ru) * 1985-05-31 1990-07-30 Дзе Дау Кемикал Компани (Фирма) Способ извлечени металлсодержащих сульфидных минералов или сульфидизированных металлсодержащих окисленных минералов из руд
SU1273170A1 (ru) * 1985-07-25 1986-11-30 Институт минеральных ресурсов Способ флотационного обогащени железных руд
US4879022A (en) * 1987-07-14 1989-11-07 The Lubrizol Corporation Ore flotation process and use of mixed hydrocarbyl dithiophosphoric acids and salts thereof
EA007352B1 (ru) * 2001-12-12 2006-10-27 Владимир Раич Флотореагент для селективной флотации и способ флотации
WO2008019451A1 (en) * 2006-08-17 2008-02-21 Ab Tall (Holdings) Pty Ltd Collectors and flotation methods
WO2010011552A2 (en) * 2008-07-25 2010-01-28 Cytec Technology Corp. Flotation reagents and flotation processes utilizing same

Also Published As

Publication number Publication date
CL2014000987A1 (es) 2014-08-08
RU2014119889A (ru) 2015-11-27
AU2012326313B2 (en) 2016-09-22
CN103945948B (zh) 2017-08-25
BR112014009564A2 (pt) 2017-06-13
IN2014CN02934A (ru) 2015-07-03
PE20190557A1 (es) 2019-04-17
US20130092605A1 (en) 2013-04-18
AU2012326313A1 (en) 2014-04-24
CN103945948A (zh) 2014-07-23
WO2013059260A2 (en) 2013-04-25
CA2852686A1 (en) 2013-04-25
WO2013059260A3 (en) 2013-08-29
EP2768617A2 (en) 2014-08-27
US9302273B2 (en) 2016-04-05
PE20141733A1 (es) 2014-11-13
MX2014004720A (es) 2014-11-26

Similar Documents

Publication Publication Date Title
RU2626081C2 (ru) Способ пенной флотации (варианты)
EA034500B1 (ru) Составы собирателей и способы их применения
AU2007284003B2 (en) Collectors and flotation methods
AU2013293041B2 (en) Monothiophosphate containing collectors and methods
RU2563012C2 (ru) Способ улучшения извлечения продукта
US9675980B2 (en) Flotation process for recovering feldspar from a feldspar ore
US4908125A (en) Froth flotation process for the recovery of minerals and a collector composition for use therein
EA033798B1 (ru) Способы пенной флотации
PL202110B1 (pl) Sposób flotacji pianowej do wzbogacania rud
JPH0566182B2 (ru)
Talan Beneficiation of oxide lead and zinc minerals by selective flotation and ammonia leaching
TR2022005014A2 (tr) Zn-Pb CEVHERLERİNDEN Zn VE Pb METALLERİNİN ELDESİ İÇİN BİR YÖNTEM
Nikiforov et al. On perspectives of mineral deposit mining in the Ozerny ore knot

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201018