RU2625621C1 - Способ непрерывной переработки медных никельсодержащих сульфидных материалов на черновую медь, отвальный шлак и медно-никелевый сплав - Google Patents

Способ непрерывной переработки медных никельсодержащих сульфидных материалов на черновую медь, отвальный шлак и медно-никелевый сплав Download PDF

Info

Publication number
RU2625621C1
RU2625621C1 RU2015146716A RU2015146716A RU2625621C1 RU 2625621 C1 RU2625621 C1 RU 2625621C1 RU 2015146716 A RU2015146716 A RU 2015146716A RU 2015146716 A RU2015146716 A RU 2015146716A RU 2625621 C1 RU2625621 C1 RU 2625621C1
Authority
RU
Russia
Prior art keywords
copper
slag
nickel
vanyukov
coal
Prior art date
Application number
RU2015146716A
Other languages
English (en)
Inventor
Леонид Борисович Цымбулов
Михаил Викторович Князев
Виктор Михайлович Тозик
Сергей Петрович Пигарев
Владимир Борисович Фомичев
Владимир Ильич Лазарев
Сергей Юрьевич Ерошевич
Виктор Александрович Иванов
Original Assignee
Публичное акционерное общество "Горно-металлургическая компания "Норильский никель"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2015146716A priority Critical patent/RU2625621C1/ru
Application filed by Публичное акционерное общество "Горно-металлургическая компания "Норильский никель" filed Critical Публичное акционерное общество "Горно-металлургическая компания "Норильский никель"
Priority to SE1851205A priority patent/SE543101C2/en
Priority to FI20185910A priority patent/FI128347B/en
Priority to PCT/RU2016/000642 priority patent/WO2017171581A1/ru
Priority to US16/090,524 priority patent/US11441207B2/en
Priority to CA3019512A priority patent/CA3019512C/en
Priority to CN201680084140.9A priority patent/CN109477161B/zh
Priority to PE2018001902A priority patent/PE20190275A1/es
Application granted granted Critical
Publication of RU2625621C1 publication Critical patent/RU2625621C1/ru
Priority to ZA2018/06135A priority patent/ZA201806135B/en
Priority to CL2018002796A priority patent/CL2018002796A1/es

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/0052Reduction smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/003Bath smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/005Smelting or converting in a succession of furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0054Slag, slime, speiss, or dross treating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/06Alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

Изобретение используется для переработки медных никельсодержащих сульфидных материалов. Способ включает плавку материалов совместно с SiO2 и CaO-содержащими флюсами и углем в конвертерной печи Ванюкова с получением черновой меди, концентрированных по SO2 газов, шлака с соотношением концентраций SiO2/CaO в нем от 0,4/1 до 3/1 и суммы концентраций железа, никеля и кобальта не более 30 мас.%, при удельном расходе кислорода в пределах 150-240 нм3 на 1 т перерабатываемого сухого сульфидного материала. Далее ведут обеднение этого шлака в отдельной в восстановительной печи Ванюкова при использовании смеси кислородсодержащего газа и углеводородного топлива совместно с углем с получением отвального шлака и медно-никелевого сплава. Техническим результатом является получение черновой меди, отвального шлака и медно-никелевого сплава непрерывным способом, при разделении процессов конвертирования и восстановления по отдельным двум однозонным печам Ванюкова. 2 з.п. ф-лы, 5 ил., 1 табл.

Description

Предлагаемое изобретение относится к области цветной металлургии, в частности, к способам переработки медных никельсодержащих сульфидных материалов.
Способ может быть использован для переработки медных никельсодержащих сульфидных материалов с получением черновой меди, отвального шлака и медно-никелевого сплава.
Способ непрерывной переработки медных никельсодержащих сульфидных материалов представляется в виде комплекса, состоящего из двух печей, например из двух печей Ванюкова. Окислительную плавку медного никельсодержащего сульфидного материала ведут в конвертерной печи Ванюкова совместно с SiO2 и CaO-содержащими флюсами с получением черновой меди, концентрированных по SO2 газов и богатого оксидами меди и никеля шлака, который непрерывно, по переточному желобу, поступает во вторую печь комплекса непрерывного конвертирования, в восстановительную печь Ванюкова, где проходит обработку восстановительной газовой смесью, при использовании для этого смеси кислородсодержащего газа, углеводородного топлива и угля при коэффициенте расхода кислорода (α) в пределах от 0,5 до 0,9 с получением отвального шлака и медно-никелевого сплава. Кроме медного никельсодержащего сульфидного материала в конвертерную и в восстановительную печи Ванюкова подают сопутствующие продукты, содержащие медь и никель.
Основными продуктами комплекса непрерывного конвертирования, состоящего из двух печей Ванюкова, являются: черновая медь, концентрированные по SO2 газы, отвальный шлак и медно-никелевый сплав. Химический состав отвального шлака таков, что позволяет использовать его в строительной индустрии или для закладки горных выработок, а состав медно-никелевого сплава является основой для получения товарной продукции.
Известен способ непрерывного конвертирования жидких и твердых сульфидных материалов (RU №2071982), включающий загрузку сульфидных материалов в печь, подачу кислородсодержащего дутья в слой штейно-металошлаковой эмульсии через горизонтальные дутьевые устройства, расположенные равномерно в боковых стенках печи, удаление жидких продуктов конвертирования из печи. Недостатком указанного способа является возможность периодического образования между слоями шлака и меди промежуточного слоя штейна. Наличие промежуточного слоя штейна неизбежно приводит к образованию не черновой, а получерновой меди. Поскольку допускается периодическое получение получерновой меди, данная технология непрерывного конвертирования должна предусматривать и обязательную в этом случае операцию финишного конвертирования. Недостатками такого способа конвертирования являются: образование свернутых никелевых шлаков и нецелесообразность утилизации серы на операции финишного конвертирования. В случае получения в печи не получерновой, а черновой меди недостатком технологии следует считать невысокое прямое извлечение меди в черновую медь, так как операция обеднения образующегося при окислительной плавке шлака этим способом не предусматривается.
Также известен способ (RU №2169202) переработки медного концентрата на черновую медь, включающий загрузку шихты, продувку расплава с образованием шлака и черновой меди и выпуск этих продуктов плавки. При этом окислительную плавку концентрата ведут при соотношении загрузки концентрата и подачи кислородсодержащего газа в пределах 1,0-1,3 от теоретически необходимого для окисления всей серы и примесей (Fe, Ni, Со) до оксидов, а перед выпуском шлака, который осуществляют периодически, проводят обеднение шлака, меняя соотношение загружаемого медного концентрата и кислородсодержащего дутья в пределах 0,3-1,0 от теоретически необходимого для окисления всей серы и примесей (Fe, Ni, Со) до оксидов. При этом добиваются снижения содержания оксидной меди в шлаке с 35 до 22%. Недостатками данного способа получения черновой меди является достаточно высокое остаточное содержание меди в шлаке после обеднения. Это связано с тем, что при восстановлении шлака сульфидным концентратом в шлак переходят по обменным реакциям железо, кобальт и никель концентрата, что на фоне снижения концентрации в шлаке меди приводит к заметному увеличению в шлаке концентраций железа и никеля. При попытках более глубокого восстановления шлака по меди концентрации железа и никеля в шлаке еще больше возрастают, и происходит выпадение из шлака твердой железо-никелевой шпинели в результате насыщения ею гомогенного силикатного расплава. Следствием нахождения в шлаке значительного количества твердой шпинели является, как известно, неизбежное вспенивание шлака и создание аварийной ситуации.
Совмещение в одном печном пространстве двух процессов (окислительного и восстановительного) приводит к непостоянству состава продуктов плавки (меди, шлака, отходящих газов) и делает весьма сложным автоматический контроль управления такой технологией.
Непостоянство уровней шлака и меди предполагает периодический контакт агрессивного, из-за высокого содержания оксидной меди (на окислительной стадии концентрация меди достигает 35 мас. %), шлакового расплава с огнеупорной футеровкой с быстрым износом последней.
Наиболее близким к предлагаемому изобретению по технической и технологической сущности является способ непрерывной переработки медных никельсодержащих сульфидных материалов совместно с SiO2 и CaO-содержащими флюсами (RU №2359046) с получением черновой меди, оборотного шлака, концентрированных по SO2 газов, в печи с двумя зонами - окислительную плавку ведут в окислительной зоне, а обеднение шлака ведут непрерывно в восстановительной зоне печи при использовании для этого смеси кислородсодержащего газа и углеводородного топлива при коэффициенте расхода кислорода (α) в пределах от 0,5 до 0,9. На окислительную плавку совместно с SiO2-содержащим флюсом подают CaO-содержащий флюс из расчета получения шлаков с отношением SiO2/CaO в нем от 3/1 до 1/1, причем суммарный расход флюсов на окислительную плавку определяют из условий поддержания в шлаке суммы концентраций железа, никеля и кобальта не более 30 масс. %. На стадию восстановления шлака, совместно с углеводородным топливом, подают твердое топливо, например уголь. Данный способ имеет следующий существенный недостаток: шлак окислительной плавки, без изменения кондиционных качеств черновой меди по никелю, нельзя подвергнуть глубокому восстановлению, поскольку на определенной стадии процесса начинает активно восстанавливаться из шлака никель и железо с переходом в черновую медь и, тем самым, делая ее некондиционной для последующего огневого рафинирования. Таким образом, полученный шлак двухзонной печи Ванюкова, богатый оксидами меди (выше 11%) и никеля (выше 6%), является богатым продуктом, который должен проходить дополнительную стадию его обработки с целью доизвлечения из него меди и никеля. Переработка такого шлака оказывает дополнительную нагрузку на пирометаллургический передел никелевого производства, куда отправляется шлак для доизвлечения меди и никеля. Способ принят за ближайший аналог.
Задачей изобретения является разработка способа непрерывной переработки медных никельсодержащих сульфидных материалов с получением черновой меди, шлака, соответствующего по своему составу шлаку отвальных кондиций, т.е. отвальному шлаку и медно-никелевого сплава. Для достижения поставленной цели процессы конвертирования и восстановления необходимо разделить по отдельным агрегатам, по двум однозонным печам Ванюкова, соединенным между собой переточным желобом.
Техническим результатом является получение черновой меди, отвального шлака и медно-никелевого сплава непрерывным способом, при разделении процессов конвертирования и восстановления по отдельным агрегатам, по двум однозонным печам Ванюкова.
Указанный технический результат достигается тем, что в способе непрерывной переработки медных никельсодержащих сульфидных материалов на черновую медь, отвальный шлак и медно-никелевый сплав, включающем окислительную плавку совместно с SiO2 и CaO-содержащими флюсами и углем, с получением черновой меди, концентрированных по SO2 газов, шлака с соотношением концентрации SiO2/CaO в нем от 3/1 до 1/1 и суммы концентраций железа, никеля и кобальта не более 30 масс. %, при удельном расходе кислорода в пределах 150-240 нм3 на 1 т перерабатываемого сухого сульфидного материала и обеднение этого шлака при использовании для этого смеси кислородсодержащего газа и углеводородного топлива при коэффициенте расхода кислорода (α) в пределах от 0,5 до 0,9 совместно с углем, в отличие от ближайшего аналога обеднение шлака ведут в отдельном агрегате, в восстановительной печи Ванюкова, при этом получают отвальный шлак и медно-никелевый сплав.
Способ может характеризоваться тем, что при обеднении шлакового расплава получают медно-никелевый сплав, являющийся основой для получения товарной продукции.
Также способ может характеризоваться тем, что на окислительную плавку совместно с SiO2-содержащими флюсами подают CaO-содержащий флюс из расчета получения шлака с отношением концентраций SiO2/CaO от 0,4/1 до 3/1.
Кроме этого способ может характеризоваться тем, что на восстановление подают уголь в расчете до 15% от массы получаемого шлака стадии окисления.
Способ может характеризоваться еще и тем, что в конвертерную и восстановительную печи Ванюкова подают сопутствующие продукты.
Способ может характеризоваться также тем, что сопутствующие продукты содержат медь и никель.
Заявляемый способ непрерывной переработки медных никельсодержащих сульфидных материалов в комплексе, состоящего из двух печей, в частности из двух печей Ванюкова, представляется следующим образом (см. фигуру 1). В конвертерную печь Ванюкова, комплекса непрерывного конвертирования, подают медные никельсодержащие сульфидные материалы совместно с SiO2 и CaO-содержащими флюсами. Через фурмы печи подается кислородно-воздушная смесь и газообразное топливо. Образующиеся в процессе плавки в конвертерной печи Ванюкова черновая медь выпускается непрерывно в миксер-накопитель, а шлак с высоким содержанием меди, никеля и железа, поступает во вторую печь комплекса непрерывного конвертирования, в восстановительную печь Ванюкова, где происходит его обеднение восстановительной газо-воздушной смесью совместно с каменным углем с получением отвального шлака и медно-никелевого сплава. Восстановительная газо-воздушная смесь формируется в результате сжигания природного газа в кислородно-воздушной смеси, в условиях дефицита кислорода. Температуру окислительного и восстановительного процессов поддерживают на уровне 1350°C.
Продукты плавки конвертерной печи Ванюкова (черновая медь) и печи восстановления (отвальный шлак и медно-никелевый сплав) предполагается выпускать непрерывно. Для выпуска продуктов плавки предусматриваются сифонные устройства, размещенные в противоположных торцах печей. Непрерывность предлагаемого процесса в виде комплекса из двух печей Ванюкова создает предпосылки для поддержания постоянства уровней шлака и черновой меди в конвертерной печи Ванюкова и, шлака и медно-никелевого сплава в восстановительной печи Ванюкова, что является важным преимуществом данного процесса. Черновая медь непрерывно выпускается через сифонное устройство в предназначенный для нее миксер-накопитель и далее отправляется на анодное рафинирование с получением медных анодов. Специфика состава шлака окислительной стадии нового способа такова, что в нем содержатся медь и никель в соотношении 4/1-5/1 благоприятного для получения ценного медно-никелевого сплава, например сплав «мельхиор». В результате глубокого восстановления такого шлака до отвальных кондиций образуется медно-никелевый сплав с некоторым содержанием железа, который и является основой для получения товарной продукции. Этот медно-никелевый сплав может быть переработан либо в пирометаллургическом никелевом производстве, либо направлен на стадию окислительного рафинирования для удаления железа и получения товарной продукции, состав которой для условий России определен Государственным стандартом (сплав «мельхиор», «нейзильбер» и пр.).
Важной особенностью разработанного способа является то, что в случае переработки в конвертерной печи Ванюкова материалов, содержащих драгоценные, платиновые металлы и их спутники, эти металлы практически полностью извлекаются в черновую медь и не переходят в шлак, поступающий в восстановительную печь Ванюкова. Это обеспечивает получение в восстановительной печи Ванюкова медно-никелевого сплава практически не содержащего драгоценные, платиновые металлы и их спутники.
Очевидно, что сплав восстановительной печи Ванюкова предпочтительнее после операции рафинирования и розлива направлять потребителю как товарную продукцию.
Шлак, полученный в восстановительной печи Ванюкова, является отвальным. Химический состав шлака таков, что позволяет использовать его в строительной индустрии или для закладки горных выработок.
Вся сера, содержащаяся в медном никельсодержащем сульфидном материале, переходит в газовую фазу конвертерной печи Ванюкова.
Поскольку стадия окисления, реализованная в конвертерной печи Ванюкова, процесса непрерывного конвертирования с получением черновой меди прошла всесторонние исследования и в настоящее время достаточно изучена (Цымбулов Л.Б., Князев М.В., Цемехман Л.Ш. Способ переработки медных сульфидных материалов на черновую медь // Патент РФ №2359046 от 09.01.2008. Пигарев. С.П. Строение и свойства шлаковых расплавов непрерывного конвертирования медных никельсодержащих штейнов и концентратов. Автореф. дисс. к.т.н. С.-Петербург. 2013. 21 с.), предлагаемое изобретение основывается на данных экспериментальных исследований восстановительной стадии нового способа с поиском условий, обеспечивающих получение отвального шлака и медно-никелевого сплава, являющегося основой для получения товарной продукции, например - сплав «мельхиор», нашедший в настоящее время широкое применение в промышленном производстве как сплав с высокими антикоррозийными свойствами, а также для производства бытовых и ювелирных изделий.
Методика проведения экспериментальных исследований заключалась в следующем. В индукционную печь помещали алундовый реактор, в котором находился алундовый тигель с исходным шлаком, который представлял собой шлак окислительной стадии процесса, следующего состава, % масс: Cu - 17,9; Ni - 5,6; Fe - 23,1; Со - 0,135; SiO2 - 27,5; CaO - 11,9; Al2O3 - 3,1; MgO - 0,79. Далее запускали печь в работу, изменяя напряжение на индукторе, разогревали печь до рабочей температуры 1350°C.
После проплавления шлака через трубку из оксида бериллия проводилась продувка расплава восстановительной газовой смесью следующего состава % об.: СО - 44; CO2 - 38; H2 - 18. Парциальное давление кислорода в восстановительной газовой смеси соответствовало парциальному давлению кислорода в смеси, образующейся при сжигании природного газа при величине "альфа" (α)=0,6.
В лабораторных экспериментах варьировали время продувки расплава газовой смесью от 0 до 50 минут. Расход газовой смеси составлял 0,8 л/мин. По окончании продувки, расплав отстаивали в течение 15 минут, далее отключали печь. Затем тигель с расплавом вынимали из печи, охлаждали и отделяли шлак от металлического сплава.
Шлак и металлический сплав, пройдя соответствующую пробоподготовку, анализировали методами атомно-абсорбционной спектрометрии и атомно-эмиссионной спектрометрии с индуктивно связанной плазмой.
Химические составы металлического сплава и шлака, полученные в результате проведенных экспериментальных исследований, представлены в таблице 1 (фигура 2).
Первоначально рассмотрим изменение состава шлака по меди и никелю при изменении времени продувки шлакового расплава восстановительной газовой смесью. Данная зависимость представлена на фигуре 3.
Как видно из фигуры 3, с увеличением времени продувки шлакового расплава восстановительной газовой смесью, наблюдается резкое снижение содержания меди в шлаке, а, начиная с 17-ой минуты продувки, на фоне снижения содержания меди наблюдается и существенное снижение содержания никеля в шлаковом расплаве. После 35-й минуты продувки шлакового расплава снижение концентрации меди и никеля в шлаке становится крайне незначительным.
Из графика, представленного на фигуре 4, видно, что снижение содержания меди (фигура 4-а) и никеля (фигура 4-б) в шлаке сопровождается ростом содержания никеля в металлическом сплаве, достигая максимального значения его содержания на уровне 21,5%, при концентрации меди и никеля в шлаке на уровне 0,8% и 0,4% соответственно. Дальнейшее снижение меди и никеля в шлаковом расплаве до кондиционных значений характеризуется снижением содержания никеля в металлическом сплаве, что связано с началом активного восстановления железа и переходом его в металлический сплав. Подробнее об этом будет сказано ниже.
Поскольку предложенный нами новый способ непрерывной переработки медных никельсодержащих сульфидных материалов подразумевает одновременное получение сплава с определенным соотношением меди к никелю и с определенным кондиционным содержанием в нем железа, с одной стороны, и отвального шлака, с другой стороны, необходимо произвести выбор оптимальных технологических параметров, на которые и следует ориентироваться при его реализации.
Рассмотрим динамику изменения состава шлака и медно-никелевого сплава в процессе продувки восстановительной газовой смесью (см. фигуру 5).
На фигуре 5 представлен график, характеризующий изменение содержания никеля и железа в металлическом сплаве от времени продувки шлакового расплава восстановительной газовой смесью. На рассматриваемый график, также нанесены зависимости изменения содержаний меди и никеля в шлаке от времени продувки шлакового расплава газовой смесью.
На указанных графиках следует обратить внимание, прежде всего, на взаимосвязь содержания меди и никеля в отвальном шлаке с содержанием никеля и железа в образующемся в результате восстановления металлическом сплаве. В период активного восстановления никеля с 5 до 30 минут продувки наблюдается существенное снижение концентраций, как меди, так и никеля в шлаке, но эти остаточные содержания еще достаточно высоки (Cu - 0,8%; Ni - 0,4%) и не позволяют считать шлак отвальным.
Только тогда, когда начинается активное восстановление железа, становится возможным снижение концентраций меди и никеля до отвальных содержаний.
Таким образом, с одной стороны, для получения кондиционного содержания железа в медно-никелевом сплаве, в частности в мельхиоре (Fe≤0,5%) необходимо стремиться к минимальной степени восстановления железа в процессе обеднения. С другой стороны, глубокое обеднение шлака по меди и никелю возможно только при получении сплава с концентрацией железа 5% и более, что потребует дополнительных затрат на стадии рафинирования, при получении медно-никелевых сплавов товарных марок. В связи с этим рекомендуется проводить процесс обеднения до достижения концентрации железа в медно-никелевом сплаве ~6%. При этом будет получен отвальный шлак следующего состава, % масс: Cu - 0,45; Ni - 0,17; Fe - 30,3; SiO2 - 37,5; CaO - 16,2; Al2O3 - 5; MgO - 1. Состав медно-никелевого сплава будет следующим, % масс.: Cu - 73,2; Ni - 20,5; Fe - 6,1.
Для получения из этого сплава товарной продукции, например в виде сплава «мельхиор», необходимо провести стадию окислительного рафинирования, при котором содержание железа в медно-никелевом сплаве может быть снижено до кондиционных значений. Соотношение Cu/Ni в полученном рафинированном металлическом сплаве будет находиться в пределах 4/1-5/1, т.е. соответствовать составу товарной продукции. Шлак, образующийся в процессе окислительного рафинирования, основой которого будут оксиды железа, направляется в комплекс непрерывного конвертирования - на окислительную стадию процесса, в конвертерную печь Ванюкова. Возможно производство и других видов товарной продукции, состав которой для условий России определен Государственным стандартом. Специфической особенностью разработанного способа, как это отмечено выше, является то, что драгоценные, платиновые металлы и их спутники, присутствующие в сырье, практически полностью переходят в черновую медь на стадии конвертирования и получение нового вида товарной продукции не приведет к дополнительным потерям этих металлов.
Разработанный способ имеет важное преимущество - возможность получения новой товарной продукции по короткой технологической схеме, что существенно сокращает затраты на производство товарной продукции металлургического предприятия в целом.

Claims (3)

1. Способ непрерывной переработки медных никельсодержащих сульфидных материалов, включающий окислительную плавку совместно с SiO2- и СаО-содержащими флюсами и углем при удельном расходе кислорода в пределах 150-240 нм3 на 1 т перерабатываемого сухого сульфидного материала с получением черновой меди, концентрированных по SO2 газов и шлака с суммой концентраций железа, никеля и кобальта не более 30 мас.% и обеднение полученного шлака восстановлением при использовании смеси кислородсодержащего газа и углеводородного топлива при коэффициенте расхода кислорода (α) в пределах от 0,5 до 0,9 совместно с углем, отличающийся тем, что окислительную плавку и обеднение шлака ведут в отдельных однозонных окислительной и восстановительной печах Ванюкова, при этом на окислительную плавку подают флюсы из расчета получения шлака с соотношением концентраций SiO2/CaO от 0,4/1 до 3/1, а при обеднении шлака подают уголь в расчете до 15% от массы получаемого шлака окислительной плавки, причем обеднение шлака проводят путем продувки в течение от 17 до 35 минут с получением отвального шлака и медно-никелевого сплава.
2. Способ по п. 1, отличающийся тем, что в окислительную и восстановительную печи Ванюкова подают сопутствующие продукты.
3. Способ по п. 2, отличающийся тем, что сопутствующие продукты содержат медь и никель.
RU2015146716A 2016-04-01 2016-04-01 Способ непрерывной переработки медных никельсодержащих сульфидных материалов на черновую медь, отвальный шлак и медно-никелевый сплав RU2625621C1 (ru)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2015146716A RU2625621C1 (ru) 2016-04-01 2016-04-01 Способ непрерывной переработки медных никельсодержащих сульфидных материалов на черновую медь, отвальный шлак и медно-никелевый сплав
FI20185910A FI128347B (en) 2016-04-01 2016-09-26 Method for continuous conversion of nickel-containing copper sulphide material
PCT/RU2016/000642 WO2017171581A1 (ru) 2016-04-01 2016-09-26 Способ непрерывной переработки медных никельсодержащих сульфидных материалов
US16/090,524 US11441207B2 (en) 2016-04-01 2016-09-26 Method of continuously processing nickel-containing copper sulphide materials
SE1851205A SE543101C2 (en) 2016-04-01 2016-09-26 Method for continuously converting nickel-containing copper sulphide materials
CA3019512A CA3019512C (en) 2016-04-01 2016-09-26 Method for continuously converting nickel-containing copper sulphide materials
CN201680084140.9A CN109477161B (zh) 2016-04-01 2016-09-26 连续吹炼含镍的硫化铜材料的方法
PE2018001902A PE20190275A1 (es) 2016-04-01 2016-09-26 Metodo para convertir de manera continua materiales de sulfuro de cobre que contienen niquel
ZA2018/06135A ZA201806135B (en) 2016-04-01 2018-09-13 Method for continuously converting nickel-containing copper sulphide materials
CL2018002796A CL2018002796A1 (es) 2016-04-01 2018-10-01 Método para convertir de manera continua materiales de sulfuro de cobre que contienen níquel.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015146716A RU2625621C1 (ru) 2016-04-01 2016-04-01 Способ непрерывной переработки медных никельсодержащих сульфидных материалов на черновую медь, отвальный шлак и медно-никелевый сплав

Publications (1)

Publication Number Publication Date
RU2625621C1 true RU2625621C1 (ru) 2017-07-17

Family

ID=59495636

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015146716A RU2625621C1 (ru) 2016-04-01 2016-04-01 Способ непрерывной переработки медных никельсодержащих сульфидных материалов на черновую медь, отвальный шлак и медно-никелевый сплав

Country Status (10)

Country Link
US (1) US11441207B2 (ru)
CN (1) CN109477161B (ru)
CA (1) CA3019512C (ru)
CL (1) CL2018002796A1 (ru)
FI (1) FI128347B (ru)
PE (1) PE20190275A1 (ru)
RU (1) RU2625621C1 (ru)
SE (1) SE543101C2 (ru)
WO (1) WO2017171581A1 (ru)
ZA (1) ZA201806135B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763128C1 (ru) * 2017-12-14 2021-12-27 Металло Белджиум Способ для производства сырого припойного продукта и медного продукта

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136560A (zh) * 2018-06-27 2019-01-04 东营方圆有色金属有限公司 利用底吹炉处理热态铜渣生产铜基抑菌合金材料的方法
CN111961881B (zh) * 2020-08-27 2022-05-24 西安建筑科技大学 一种应用于镍闪速炉熔炼过程中的添加剂及其使用方法
CN114875245A (zh) * 2022-05-30 2022-08-09 金川镍钴研究设计院有限责任公司 一种镍钴渣生产4j29合金原料的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133205A (ru) * 1972-10-26 1974-12-20
GB2099457A (en) * 1981-06-01 1982-12-08 Kennecott Corp Blister copper production by converting particulate matter
CA1225527A (en) * 1983-06-15 1987-08-18 Bengt T. Andersson Method for producing blister copper
US4802916A (en) * 1985-03-20 1989-02-07 Inco Limited Copper smelting combined with slag cleaning
RU2169202C1 (ru) * 2000-10-04 2001-06-20 Открытое акционерное общество "Кольская горно-металлургическая компания" Способ непрерывной переработки медного концентрата на черновую медь
RU2359046C1 (ru) * 2008-01-09 2009-06-20 ООО "Институт Гипроникель" Способ переработки медных сульфидных материалов на черновую медь

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449395A (en) * 1994-07-18 1995-09-12 Kennecott Corporation Apparatus and process for the production of fire-refined blister copper
US6270554B1 (en) * 2000-03-14 2001-08-07 Inco Limited Continuous nickel matte converter for production of low iron containing nickel-rich matte with improved cobalt recovery
CN103205567A (zh) * 2013-04-19 2013-07-17 金川集团股份有限公司 一种硫化铜镍矿冶炼过程中的富集金和铂族金属的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133205A (ru) * 1972-10-26 1974-12-20
GB2099457A (en) * 1981-06-01 1982-12-08 Kennecott Corp Blister copper production by converting particulate matter
CA1225527A (en) * 1983-06-15 1987-08-18 Bengt T. Andersson Method for producing blister copper
US4802916A (en) * 1985-03-20 1989-02-07 Inco Limited Copper smelting combined with slag cleaning
RU2169202C1 (ru) * 2000-10-04 2001-06-20 Открытое акционерное общество "Кольская горно-металлургическая компания" Способ непрерывной переработки медного концентрата на черновую медь
RU2359046C1 (ru) * 2008-01-09 2009-06-20 ООО "Институт Гипроникель" Способ переработки медных сульфидных материалов на черновую медь

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763128C1 (ru) * 2017-12-14 2021-12-27 Металло Белджиум Способ для производства сырого припойного продукта и медного продукта

Also Published As

Publication number Publication date
US20190119783A1 (en) 2019-04-25
CN109477161A (zh) 2019-03-15
FI128347B (en) 2020-03-31
FI20185910A1 (en) 2018-10-30
SE543101C2 (en) 2020-10-06
CA3019512C (en) 2020-11-03
WO2017171581A1 (ru) 2017-10-05
CN109477161B (zh) 2020-12-01
PE20190275A1 (es) 2019-02-25
CA3019512A1 (en) 2017-10-05
CL2018002796A1 (es) 2019-04-22
US11441207B2 (en) 2022-09-13
ZA201806135B (en) 2023-01-25
SE1851205A1 (en) 2018-10-05

Similar Documents

Publication Publication Date Title
RU2625621C1 (ru) Способ непрерывной переработки медных никельсодержащих сульфидных материалов на черновую медь, отвальный шлак и медно-никелевый сплав
TWI402356B (zh) 回收具有高含量鋅及硫酸鹽之殘餘物的方法
CA2579579C (en) Method for continuous fire refining of copper
JP2019536892A (ja) 改良された半田及び高純度の鉛を製造する方法
CN115637368A (zh) 改进的火法冶金方法
CN106332549B (zh) 吹炼含铜材料的方法
ES2964992T3 (es) Procedimiento de fundición de cobre mejorado
RU2401873C1 (ru) Способ переработки окисленной никелевой руды
RU2359046C1 (ru) Способ переработки медных сульфидных материалов на черновую медь
FR2501720A1 (fr) Reduction selective de metaux lourds
Dosmukhamedov et al. The solubility of Cu, Pb, As, Sb of copper-lead matte in the slag
AU727954B2 (en) Process for refining high-impurity copper to anode copper
WO2022248436A1 (en) Energy-efficient pyrometallurgical process for treating li-ion batteries
JPH0633156A (ja) 硫化原料からの亜鉛、鉛、カドミウム等の揮発容易性金属の製法
RU2639396C1 (ru) Способ пирометаллургической переработки окисленной никелевой руды
RU2347994C2 (ru) Печь для непрерывной плавки сульфидных материалов в жидкой ванне
SU1735408A1 (ru) Способ переработки шлаков производства т желых цветных металлов
RU2354710C2 (ru) Способ комплексной переработки концентрата металлического железа, содержащего цветные и драгоценные металлы
RU2359047C2 (ru) Способ переработки медно-кобальтового окисленного сырья с получением черновой меди и сплава на основе кобальта
FR2496125A1 (fr) Procede de recuperation d'un metal a partir d'une matiere contenant un sulfure dudit metal
US4300949A (en) Method for treating sulfide raw materials
BE890872A (fr) Procede de fusion en presence d'oxygene de sulfures contenant des metaux de base et produits ainsi obtenus
JP2024014004A (ja) 含ニッケル酸化鉱石の製錬方法
KR102276542B1 (ko) 높은 황 고체의 처리
US789648A (en) Method of continuously producing matte by dissolving ores.