RU2616668C1 - Способ выращивания монокристаллической пленки FeBO3 на диамагнитной подложке - Google Patents

Способ выращивания монокристаллической пленки FeBO3 на диамагнитной подложке Download PDF

Info

Publication number
RU2616668C1
RU2616668C1 RU2015147078A RU2015147078A RU2616668C1 RU 2616668 C1 RU2616668 C1 RU 2616668C1 RU 2015147078 A RU2015147078 A RU 2015147078A RU 2015147078 A RU2015147078 A RU 2015147078A RU 2616668 C1 RU2616668 C1 RU 2616668C1
Authority
RU
Russia
Prior art keywords
temperature
stirring
diamagnetic
crystal
gabo
Prior art date
Application number
RU2015147078A
Other languages
English (en)
Inventor
Сергей Владимирович Ягупов
Марк Борисович Стругацкий
Юлия Александровна Могилец
Кира Андреевна Селезнева
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского"
Priority to RU2015147078A priority Critical patent/RU2616668C1/ru
Application granted granted Critical
Publication of RU2616668C1 publication Critical patent/RU2616668C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/28Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids by liquid phase epitaxy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Изобретение относится к области получения монокристаллических пленок на подложках для магнитных, оптических, магнитооптических и резонансных исследований. Шихту наплавляют в платиновый тигель, компоненты берут в соотношении, мас.%: Fe2O3 - 5,37, В2О3 - 51,23, PbO - 29,31, PbF2 - 13,73. После этого тигель с раствором-расплавом помещают в ростовую печь, нагревают до 900-950°С и выдерживают с перемешиванием при этой температуре в течение суток. Затем температуру быстро снижают до 820-830°С, опускают в раствор-расплав закрепленный на кристаллодержателе диамагнитный кристалл GaBO3 и выдерживают в течение 0,5-3 часа с перемешиванием. Затем температуру медленно понижают со скоростью 3-40°С/ч до 800°С и извлекают кристаллодержатель из печи. Изобретение позволяет получать монокристаллическую пленку FeBO3 на диамагнитной подложке GaBO3. 3 ил., 3 пр.

Description

Техническое решение относится к области получения монокристаллической пленки FeBO3 на диамагнитной подложке для магнитных, оптических, магнитооптических и резонансных исследований.
В качестве прототипа выбран способ выращивания монокристаллов FexGa1-xBO3 с заданной концентрацией ионов Fe и Ga (патент №73171, UA, 2012 г.).
В этом способе шихту массой 250 г ((Fe2O3 + Ga2O3) - 18,6 мас. %, В2О3 - 42,4 мас. %, PbO - 27,3 мас. %, PbF2 - 11,7 мас. %) наплавляют в платиновый тигель объемом 90 см3 при температуре 900°С. После наплавления шихты тигель устанавливают в печь электрического сопротивления. Температуру в печи за 3,5 часа поднимают до Т=900°С и выдерживают 24 ч с перемешиванием раствора-расплава при скорости вращения мешалки ω=60 об/мин. Затем мешалку отключают и понижают температуру за 20 мин до 800°C с последующей выдержкой и перемешиванием (ω=60 об/мин) в течение 2 ч. Затем температуру понижают до 760°С со скоростью 0,3°С/ч, при этой температуре мешалка, с выросшими на ней кристаллами, была поднята над тиглем, а печь отключена.
Способ не обеспечивает получение монокристаллической пленки FeBO3 на диамагнитной подложке.
В основу изобретения поставлена задача усовершенствовать способ выращивания монокристаллов. Техническим результатом является получение тонкой эпитаксиальной магнитной монокристаллической пленки FeBO3 на диамагнитной подложке GaBO3.
Поставленная цель достигается тем, что в способе выращивания монокристаллической пленки FeBO3 на диамагнитной подложке, включающем наплавление шихты, содержащей Fe2O3, В2О3, PbO, PbF2, нагрев и выдержку раствора-расплава при постоянном перемешивании, его охлаждение, компоненты берут в соотношении, мас. %: Fe2O3 - 5,73; В2О3 - 51,23; PbO - 29,31; PbF2 - 13,73, нагревают до 900-950°C с перемешиванием, охлаждают до 820-830°С, при этой температуре опускают держатель с диамагнитным кристаллом GaBO3 и выдерживают 0,5-3 часа с перемешиванием, затем температуру медленно понижают со скоростью 3-40°С/ч до 800°С и кристаллодержатель извлекают из печи.
Отличительными признаками заявленного технического решения являются: компоненты берут в соотношении: Fe2O3 - 5,37 мас. %, В2О3 - 51,23 мас. %, PbO - 29,31 мас. %, PbF2 - 13,73 мас. %; тигель с раствором-расплавом помещают в ростовую печь, нагревают до 900-950°С и выдерживают с перемешиванием при этой температуре в течение суток, затем температуру быстро снижают до 820-830°С и опускают в раствор-расплав кристалл GaBO3 закрепленный на мешалке, выдерживают в течение 0,5-3 часа, потом температуру со скоростью 3-40°С/ч снижают до 800°С, кристаллодержатель извлекают из печи.
Совокупность существенных признаков технического решения впервые обеспечивает получение тонкой эпитаксиальной магнитной монокристаллической пленки FeBO3 на диамагнитной подложке.
На фиг. 1 представлено ориентированное нарастание кристаллов FeBO3 на диамагнитной подложке GaBO3.
На фиг. 2 представлено слияние (коалесценция) объемного зародыша с уже образовавшейся пленкой FeBO3.
На фиг. 3 представлен скол синтезированного образца. Видна слоистая структура: верхний темный слой - FeBO3, нижний, более светлый - GaBO3.
Способ реализуется следующим образом.
Пример 1. Получение эпитаксиальной пленки FeBO3 на кристаллах GaBO3, наросших на платиновой мешалке в результате раствор-расплавного синтеза.
Шихту массой 300 г (Fe2O3 - 5,73 мас. %, B2O3 - 51,23 мас. %, PbO - 29,31 мас. %, PbF2 - 13,73 мас. %) наплавляют в платиновый тигель объемом 90 см3 при температуре 900°С. После наплавления шихты тигель устанавливают в ростовую печь с последующим разогревом до температуры Т=950°С и выдерживают 24 часа с перемешиванием раствора-расплава при скорости вращения мешалки ω=60 об/мин. Затем мешалку извлекают и понижают температуру за 30 мин до 825°С, при Т=835°С в раствор-расплав погружают мешалку-держатель с закрепленными (естественным образом, в процессе роста бората галлия) кристаллами GaBO3. Далее система выдерживается при Т=825°С и перемешиванием со скоростью ω=60 об/мин в течение 1 ч. Затем температуру понижают до 800°С со скоростью 3°С/ч, при этой температуре мешалку, с закрепленными на ней кристаллами, медленно извлекают из печи.
В результате наросшие на мешалке-держателе прозрачные кристаллы бората галлия приобрели зеленоватый оттенок, свойственный FeBO3. Толщина образовавшейся пленки бората железа порядка 6-10 мкм.
Пример 2. Получение эпитаксиальной пленки FeBO3 на кристаллах GaBO3, закрепленных в платиновой оправе.
Шихту массой 300 г (Fe2O3 - 5,73 мас. %, B2O3 - 51,23 мас. %, PbO - 29,31 мас. %, PbF2 - 13,73 мас. %) наплавляют в платиновый тигель объемом 90 см3 при температуре 900°С. После наплавления шихты тигель устанавливают в ростовую печь. Температуру в печи поднимают до Т=900°С и выдерживают 24 часа с перемешиванием раствора-расплава при скорости вращения мешалки ω=60 об/мин. Затем мешалку извлекают и понижают температуру за 30 мин до 830°С, при Т=835°С в раствор-расплав погружали мешалку-держатель с закрепленными в оправе шестиугольными пластинчатыми кристаллами GaBO3 размером 4 и 4,5 мм в поперечнике. Далее система выдерживается при Т=830°С и перемешиванием ω=60 об/мин в течение 3 ч. Затем температуру понижают до 800°С со скоростью 10°С/ч, при этой температуре мешалку, с закрепленными на ней кристаллами, медленно извлекают из печи.
В результате извлеченные из оправы-держателя два прозрачных кристалла бората галлия покрылись зеленоватой пленкой FeBO3. Толщина образовавшейся пленки бората железа порядка 5 мкм.
Пример 3. Получение эпитаксиальной пленки FeBO3 на кристалле GaBO3, помещенном в перфорированный конус.
Шихту массой 300 г (Fe2O3 - 5,73 мас. %, B2O3 - 51,23 мас. %, PbO - 29,31 мас. %, PbF2 - 13,73 мас. %) наплавляют в платиновый тигель объемом 90 см3 при температуре 900°С. После наплавления шихты тигель устанавливают в ростовую печь. Температуру в печи поднимают до Т=900°С и выдерживают 24 часа с перемешиванием раствора-расплава при скорость вращения мешалки ω=60 об/мин. Затем мешалку извлекают и понижают температуру за 30 мин до 820°С, при этой температуре в раствор-расплав погружают мешалку, с закрепленным на ней платиновым перфорированным конусом, содержащим шестиугольный пластинчатый кристалл GaBO3 размером 4 мм в поперечнике. Далее систему выдерживают при Т=820°C с перемешиванием со скоростью ω=60 об/мин в течение 0,5 ч. Затем температуру понижают до 800°С со скоростью 40°С/ч, при этой температуре мешалка, с закрепленным на ней конусом, была медленно извлечена из печи.
В результате находящийся в конусе кристалл бората галлия приобрел зеленоватый оттенок, что свидетельствует о наличии пленки FeBO3. Толщина образовавшейся пленки бората железа порядка 3 мкм.
Нагревание раствора-расплава до температуры 900-950°С определяется условиями его гомогенизации. Последующее быстрое охлаждение до температур 820-830°С обусловлено следующим: ниже 820°С происходит резкое переохлаждение и появление большого количества центров кристаллизации, выше 830°С появляются кристаллы Fe3BO6. Температурный режим определен экспериментальным путем. Дальнейшее понижение температуры до 800°С определяется тем, что при данной температуре раствор-расплав обладает оптимальной вязкостью для извлечения образца из ростовой печи.
Способ выращивания монокристаллической пленки FeBO3 на диамагнитной подложке GaBO3 дает возможность получить новый композитный магнитооптический материал.

Claims (1)

  1. Способ выращивания монокристаллической пленки FeBO3 на диамагнитной подложке, включающий наплавление шихты, содержащей Fе2О3, В2О3, PbO, PbF2, нагрев и выдержку раствора-расплава при постоянном перемешивании, его охлаждение, отличающийся тем, что компоненты берут в соотношении, мас. %: Fе2О3 - 5,73; В2O3 - 51,23; РbО - 29,31; PbF2 - 13,73, нагревают до 900-950°С с перемешиванием, охлаждают до 820-830°С, при этой температуре опускают держатель с диамагнитным кристаллом GaBO3 и выдерживают 0,5-3 часа с перемешиванием, затем температуру медленно понижают со скоростью 3-40°С/ч до 800°С, кристаллодержатель извлекают из печи.
RU2015147078A 2015-11-02 2015-11-02 Способ выращивания монокристаллической пленки FeBO3 на диамагнитной подложке RU2616668C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015147078A RU2616668C1 (ru) 2015-11-02 2015-11-02 Способ выращивания монокристаллической пленки FeBO3 на диамагнитной подложке

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015147078A RU2616668C1 (ru) 2015-11-02 2015-11-02 Способ выращивания монокристаллической пленки FeBO3 на диамагнитной подложке

Publications (1)

Publication Number Publication Date
RU2616668C1 true RU2616668C1 (ru) 2017-04-18

Family

ID=58642774

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015147078A RU2616668C1 (ru) 2015-11-02 2015-11-02 Способ выращивания монокристаллической пленки FeBO3 на диамагнитной подложке

Country Status (1)

Country Link
RU (1) RU2616668C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1267817A (en) * 1969-03-26 1972-03-22 Mullard Ltd Improvements in or relating to crystal growing
SU1059029A1 (ru) * 1982-02-15 1983-12-07 Институт Физики Им.П.В.Киренского Способ получени монокристаллов @ из раствора-расплава
UA73171U (ru) * 2012-03-26 2012-09-10 Таврический Национальный Университет Им. В.И. Вернадского СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ FeXGa1-XBO3 С ЗАДАННОЙ КОНЦЕНТРАЦИЕЙ ИОНОВ Fe И Ga

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1267817A (en) * 1969-03-26 1972-03-22 Mullard Ltd Improvements in or relating to crystal growing
SU1059029A1 (ru) * 1982-02-15 1983-12-07 Институт Физики Им.П.В.Киренского Способ получени монокристаллов @ из раствора-расплава
UA73171U (ru) * 2012-03-26 2012-09-10 Таврический Национальный Университет Им. В.И. Вернадского СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ FeXGa1-XBO3 С ЗАДАННОЙ КОНЦЕНТРАЦИЕЙ ИОНОВ Fe И Ga

Similar Documents

Publication Publication Date Title
JP5304793B2 (ja) 炭化珪素単結晶の製造方法
JP2011190127A (ja) 酸化ガリウム単結晶及びその製造方法
WO2017022535A1 (ja) SiC単結晶の製造方法
Yang et al. Growth of ZnTe single crystals from Te solution by vertical Bridgman method with ACRT
Hughes et al. Quaternary adamantine selenides and tellurides of the form I III IV VI4
RU2616668C1 (ru) Способ выращивания монокристаллической пленки FeBO3 на диамагнитной подложке
Feigelson Crystal growth History: Theory and melt growth processes
CN101942694A (zh) 一种导模提拉法生长铁酸钇晶体的方法
Armour et al. Effect of a static magnetic field on silicon transport in liquid phase diffusion growth of SiGe
Simonova et al. Growth of bulk β-BaB2O4 crystals from solution in LiF-Li2O melt and study of phase equilibria
CN102689928B (zh) 一种近化学计量比钽酸锂晶体的制备方法
CN113061971B (zh) 温差定位诱导钙钛矿单晶的可控生长方法
Chen et al. Growth of lead molybdate crystals by vertical Bridgman method
Carvalho et al. Crystal growth of Bi2TeO5 by a double crucible Czochralski method
RU2602123C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЁВ CdxHg(1-x)Te p-ТИПА ПРОВОДИМОСТИ
RU2740126C1 (ru) Способ выращивания монокристаллов 57FeBO3 высокого структурного совершенства
Chani et al. Evaporation induced diameter control in fiber crystal growth by micro‐pulling‐down technique: Bi4Ge3O12
JPH06136467A (ja) 金属ガリウムの精製方法
Niwa et al. Growth and photoluminescence spectra of high quality AgGaS2 single crystals
CN114250514A (zh) 一种β-三氧化二镓晶体生长的助熔剂及基于该类助熔剂的晶体生长方法
Kokh et al. Incorporation of alkali impurities into single crystals of barium metaborate β-BaB 2 O 4
RU2778808C1 (ru) Тепловой узел установки для выращивания фторидных кристаллов с близкими температурами плавления методами вертикальной направленной кристаллизации
Mitani et al. Control of void formation in 4H-SiC solution growth
Goeking et al. Temperature gradient transport growth of potassium tantalate niobate, KTa1-x Nb x O3, single crystals
RU2519428C2 (ru) Способ выращивания монокристаллов литий-висмутового молибдата

Legal Events

Date Code Title Description
TC4A Change in inventorship

Effective date: 20170830

MM4A The patent is invalid due to non-payment of fees

Effective date: 20191103