RU2610707C1 - Способ приготовления жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов - Google Patents

Способ приготовления жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов Download PDF

Info

Publication number
RU2610707C1
RU2610707C1 RU2015140405A RU2015140405A RU2610707C1 RU 2610707 C1 RU2610707 C1 RU 2610707C1 RU 2015140405 A RU2015140405 A RU 2015140405A RU 2015140405 A RU2015140405 A RU 2015140405A RU 2610707 C1 RU2610707 C1 RU 2610707C1
Authority
RU
Russia
Prior art keywords
mycelium
liquid
cultivation
days
preparation
Prior art date
Application number
RU2015140405A
Other languages
English (en)
Inventor
Сергей Васильевич Копыльцов
Андрей Георгиевич Кощаев
Юлия Владимировна Пономарева
Original Assignee
Общество с ограниченной ответственностью малое инновационное предприятие "Биоориджин"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью малое инновационное предприятие "Биоориджин" filed Critical Общество с ограниченной ответственностью малое инновационное предприятие "Биоориджин"
Priority to RU2015140405A priority Critical patent/RU2610707C1/ru
Application granted granted Critical
Publication of RU2610707C1 publication Critical patent/RU2610707C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G18/00Cultivation of mushrooms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Mycology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Mushroom Cultivation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Изобретение относится к области биотехнологии и сельского хозяйства. Способ включает приготовление стерильной жидкой питательной среды, содержащей источник углерода, азота, калия дигидрофосфат и магния сульфат, засев чистой культурой гриба и его культивирование. При этом в качестве гриба используют представителей рода вешенка. В качестве источника углерода используют фруктозу в количестве 1-3% от массы среды. Культивирование осуществляют в течение 5-7 суток при температуре 26-28°С с перемешиванием со скоростью 100-140 об/мин. Затем добавляют глицерин до 24-26% по объему. Способ позволяет ускорить процесс приготовления посевного мицелия, увеличить срок хранения без снижения его жизнеспособности, формировать мицелий без образования плотных структур и стабилизировать агрегатное состояние. 2 табл., 5 пр.

Description

Изобретение относится к биотехнологии и сельскому хозяйству, в частности к способам приготовления посевного мицелия базидиомицетов, используемых для получения плодовых тел.
Известен способ получения зернового посевного мицелия, включающий подготовку субстрата путем смешивания зерна с водой, удаление избытка воды, внесение добавок, стерилизацию с последующим встряхиванием, при этом зерно помещают в емкость с горловиной, после смешивания с водой зерно выдерживают в течение суток, а после удаления избытка воды его инкубируют в течение следующих суток и перед стерилизацией горловину емкости закрывают алюминиевой фольгой, стерилизуют при 121°C и давлении 1 атм в течение 2,0-2,5 ч. Затем зерно инокулируют мицелием и инкубируют в течение 10 суток, а затем перетаривают в пакеты (Патент РФ №2101914, 20.01.1998).
Недостатком описанного способа является длительность процесса приготовления посевного мицелия, трудоемкий процесс подготовки зернового субстрата. Кроме того, используется большая норма ввода маточного мицелия на зерновом носителе в инокулируемый лигноцеллюлозный субстрат (1,5-3,0%).
Известен способ получения посевного мицелия базидиомицетов, предусматривающий приготовление стерильной жидкой питательной среды, содержащей, г/л воды: пшеничную муку - 10-40, картофельный отвар - 50-200 и стимулятор роста, в качестве которого используют суточную культуру бактерий Azospirillum. Приготовленную питательную среду засевают базидиомицетом, культивируют при 26°C в течение 3-х дней, а затем в полученную мицелиальную биомассу вносят суспензию бактерий Azospirillum из расчета 10 мл суспензии на 200 мл среды и затем осуществляют совместное культивирование базидиомицета и вышеуказанных бактерий в течение 14 дней (Патент РФ №2249614, 21.03.2003).
Недостатком описанного способа является длительность процесса приготовления посевного мицелия (17 дней) и его трудоемкость, поскольку необходимо дополнительно готовить питательную среду для бактерий и осуществлять их культивирование и подсев бактерий в среду, используемую для приготовления посевного мицелия.
Наиболее близким к заявляемому является способ получения посевного мицелия съедобных грибов, включающий приготовление стерильной жидкой питательной среды, содержащей источник углерода, азота, дигидрофосфат калия и сульфат магния, засев приготовленной среды и культивирование базидиомицета. При этом в среду дополнительно вносят стимулятор роста - арахидоновую кислоту в количестве 1,0-5,0×10-5 г/л воды (Патент РФ №2430155, 27.09.2011 г. - прототип).
Недостатком описанного способа является формирование мицелием плотных образований - пеллет, что не позволяет осуществить равномерное внесение мицелия в лигноцеллюлозный субстрат, например, методом пневматического распыления. Добавление стимулятора роста приводит к удорожанию получаемой продукции. Кроме того, полученный посевной мицелий не имеет стабильного агрегатного состояния, что приводит к его седиментации, фракционированию на твердую и жидкую фракции.
Техническим результатом заявленного способа является ускорение процесса приготовления посевного мицелия, увеличения срока хранения без снижения его жизнеспособности, формирование мицелия без образования плотных структур - пеллет, а также стабилизация агрегатного состояния, что позволяет осуществлять инокуляцию лигноцеллюлозных субстратов методом пневматического распыления.
Технический результат достигается тем, что в способе приготовления жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов, включающий приготовление стерильной жидкой питательной среды, содержащей источник углерода, азота, дигидрофосфат калия и сульфат магния, засев чистой культурой гриба и его культивирование, причем в качестве гриба используют представителей рода вешенка, в качестве источника углерода используют фруктозу в количестве 1-3% от массы среды, культивирование осуществляют в течение 5-7 суток, при температуре 26-28°C с перемешиванием со скоростью 100-140 об/мин в мин, затем добавляют глицерин до 24-26% по объему.
Заявленный способ приготовления маточного мицелия базидиомицета отличается иным источником углерода и введением дополнительно стабилизатора агрегатного состояния - глицерина, обеспечивая гомогенный рост мицелиальной биомассы без образования плотных образований - пеллет, стабильное агрегатное состояние без разделения суспензии на фракции, более длительный срок хранения без снижения жизнеспособности, сокращение производственного цикла культивирования вешенки.
Эти отличия позволяют сделать вывод о соответствии заявляемых технических решений критерию «новизна».
Признаки, отличающие заявляемое техническое решение от прототипа, направлены на достижение поставленной задачи и не выявлены при изучении данной и смежной областей науки и техники и, следовательно, соответствуют критерию «изобретательский уровень».
Способ осуществлялся следующим образом. Готовили жидкую питательную среду в следующих соотношениях компонентов, мас.%: кукурузный экстракт - 2; фруктоза - 1-3; калия дигидрофосфат - 0,2; магний сернокислый - 0,03; кальция хлорид - 0,08; вода - остальное, при этом проводят термическую стерилизацию при температуре 110°C, после охлаждения до температуры 25°C вносят чистую культуру базидиомицета в количестве 0,5% от массы состава и осуществляют культивирование в течение 5-7 суток при температуре 26-28°C с перемешиванием со скоростью 100-140 об/мин, затем добавляют глицерин до 24-26% по объему.
Из культивируемых базидиальных грибов целесообразно использовать грибы ботанического рода Pleurotus, например, Pleurotus eringii (DC.:Fr.) Quel., Pleurotus djamor (Rumphius ex Fries) Boedjin, Pleurotus ostreatus (Jacg.:Fr.) Kumm., Pleurotus saju-cajor (Fries) Singer.
К факторам, обуславливающим получение жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов, относится процентное содержание компонентов источника углеводов - фруктозы.
При этом содержание фруктозы в питательной среде должно составлять 1-3% от общей массы компонентов. Если внести в композицию меньше 1% фруктозы, то не будет обеспечен углеводный состав питательной среды, что приведет к снижению концентрации образующейся мицелиальной массы. Если внести более 3%, то это приведет к накоплению мицелия с тонкой клеточной стенкой и лизису мицелиальной биомассы, поэтому нет необходимости вводить больше этого компонента. Для того чтобы была получена гомогенная биомасса заданного параметра содержание фруктозы в питательной среде должно составлять 2% от общей массы.
Эффективность процесса получения жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов с заданными свойствами обеспечивается путем культивирования продуцента на питательной среде в течение 5-7 суток, при температуре 26-28°C с перемешиванием со скоростью 100-140 об/мин.
Если время культивирования базидиомицета составит менее 5 суток, то количество мицелиальной биомассы будет низкое, что снизит сроки хранения препарата, а кроме того, низкое содержание биомассы диктует увеличение засевной дозы гриба при получении плодовых тел. Если время культивирования базидиомицета составит более 7 суток, то увеличивает время технологического процесса, а кроме того, количество биомассы продуцента увеличится незначительно. Таким образом, оптимальным временем культивирования базидиомицета является 6 суток.
Температурой культивирования базидиомицета является интервал 26-28°C. Если температуру снизить ниже 26°C, то рост гриба будет медленный, биосинтез будет снижен, и он не достигнет необходимого количества биомассы за 6 суток ферментации. Если температура культивирования окажется выше 28°C, то рост базидиомицета также будет снижаться, а ее дальнейшее повышение может привести к гибели гриба. Поэтому для достижения необходимой биомассы гриба оптимальной температурой культивирования является температура 27°C.
Если скорость перемешивания питательной среды при культивировании базидиомицета составит менее 100 об/мин, то из-за низкого содержания в среде кислорода количество мицелиальной биомассы будет низкое, в составе питательной среды будут не израсходованы элементы питания, а кроме того, низкое содержание биомассы диктует увеличение засевной дозы гриба при получении плодовых тел. Если скорость перемешивания питательной среды при культивировании базидиомицета составит более 140 об/мин, то количество биомассы продуцента увеличится незначительно, приведет к частичному повреждению мицелия и перерасходу энергоносителей. Таким образом, оптимальной скоростью перемешивания питательной среды при культивировании базидиомицета является 120 об/мин.
По окончании культивирования в питательную среду, содержащую биомассу гриба базидиомицета, дополнительно вносится стабилизатор агрегатного состояния - глицерин.
Содержание глицерина должно составлять 24-26% от общей массы полученной композиции. Если в композиции будет меньше 24% глицерина от общей массы, то не обеспечивается стабильность агрегатного состояния - происходит разделение жидкой фазы и мицелиальной биомассы, что не позволяет осуществлять инокуляцию лигноцеллюлозных субстратов методом пневматического распыления. Если в композиции будет больше 26% глицерина от общей массы, то это приведет к удорожанию, снизит относительное содержание мицелиальной биомассы и не приведет к увеличению ее эффективности при использовании, поэтому нет необходимости вводить больше этого компонента. Для достижения оптимального агрегатного состояния количество глицерина в смеси должно составлять 25% от общей массы.
Пример конкретного осуществления способа приготовления жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов в ООО МИП «Биоориджин», г. Краснодара Краснодарского края.
Получение мицелия базидиомицета проводили в производственной лаборатории на примере получения мицелиальной массы вешенки Pleurotus ostreatus в несколько этапов. На первом этапе проводили приготовление питательной среды. Для этого в стеклянную емкость, содержащую 3600 мл водопроводной воды, вносили минеральные соли в следующих количествах:
- калий фосфорнокислый однозамещенный 7,2 г
- магний сернокислый семиводный 1,1 г
- кальций хлористый 2,9 г
Затем в этот же объем вводили источники азота и углеводов:
- экстракт кукурузный 72 г
- фруктоза 72 г
После полного растворения питательных веществ в воде с помощью 0,1 М раствор соляной кислоты либо гидроксида натрия устанавливали pH питательной среды в диапазоне 6,5-7,0. Для этого к среде добавляют. Далее питательную среду разливали в восемь штук 1-литровых колб по 450 мл питательной среды, закрывали ватно-марлевыми пробками и стерилизовали при 110°C атм в течение 30 минут. После снижения температуры среды до 27°C в асептических условиях (ламинар-боксе) вносили чистую культуру вешенки Pleurotus ostreatus в виде мицелиальной суспензии в количестве 2,25 мл.
На втором этапе колбы с инокулированной средой помещали на ротационные качалки, где осуществляли культивирование при 120 об/мин и температуре 27°C. Через шесть суток культивирования в среде накапливалась гомогенная мицелиальная биомасса, культивирование прекращали. В асептических условиях в среду добавляли стабилизатор агрегатного состояния - глицерин в количестве 150 мл на колбу, содержащую 450 мл среды.
Получаемая при этом культуральная жидкость содержала мицелиальную массу гриба Pleurotus ostreatus, равномерно распределенную по всему объему среды, причем без сформированных плотных мицелиальных структур - пеллет. Объем полученного жидкого продукта составил 3594 мл, который в дальнейшем использовался при получении плодовых тел гриба как маточный мицелий.
Промышленная эффективность предлагаемого способа приготовления жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов иллюстрируется следующими примерами.
Пример 1. Готовят стерильную питательную среду следующего состава в соотношениях компонентов, мас.%: кукурузный экстракт - 2; фруктоза - 2; калия дигидрофосфат - 0,2; магний сернокислый - 0,03; кальция хлорид - 0,08; вода - остальное, при этом проводят термическую стерилизацию при температуре 110°C, после охлаждения до температуры 25°C вносят чистую культуру базидиомицета Pleurotus ostreatus в количестве 0,5% от массы состава и осуществляют культивирование в течение 6 суток при температуре 27°C с перемешиванием со скоростью 120 об/мин, затем добавляют глицерин до 25% по объему. По результатам культивирования получали в жидкой культуре однородный концентрированный маточный мицелий, не содержащий пеллет.
Готовили лигноцеллюлозный субстрат для культивирования грибов Pleurotus ostreatus, содержащий смесь измельченной пшеничной соломы и лузги подсолнечника в соотношении 1:1. Субстрат увлажняли и пастеризовали острым паром при температуре 80°C в течение двух часов, после чего субстрат выдерживали при температуре 40°C в течение 8 часов (стадия ферментации). Конечная влажность готового субстрата 65%.
Приготовленный маточный мицелий базидиомицета Pleurotus ostreatus методом пневматического распыления наносили на приготовленный лигноцеллюлозный субстрат. Фасовали субстрат в полиэтиленовые пакеты с массой готового блока 10 кг. Инкубировали блоки при температуре 25°C, относительной влажности воздуха 65%. Полное обрастание субстрата мицелием завершалось на седьмые сутки.
По истечении пятнадцати суток влажность в камере увеличивали до 85%, температуру снижали до 22°C. Кратность притока свежего воздуха в камеру - десятикратная.
Плодоношение начиналось на 19-е сутки. Продуктивность плодовых тел Pleurotus ostreatus за две волны плодоношения составила 32% от массы влажного субстрата. Таким образом, основную продуктивность получают за две волны плодоношения, а не за три, то есть производственный цикл на 14 суток короче, чем с использованием посевного мицелия, приготовленного известным способом по RU 2430155 C1, 27.09.2011.
Пример 2. Получение мицелия и его применение для выращивания плодовых тел проводили по примеру 1 с применением в качестве засевного материала чистой культуры базидиомицета Pleurotus eringii.
Пример 3. Получение мицелия и его применение для выращивания плодовых тел проводили по примеру 1 с применением в качестве засевного материала чистой культуры базидиомицета Pleurotus djamor.
Пример 4. Получение мицелия и его применение для выращивания плодовых тел проводили по примеру 1 с применением в качестве засевного материала чистой культуры базидиомицета Pleurotus saju-cajor.
Результаты экспериментов представлены в таблице 1.
Figure 00000001
Анализируя данные из примеров 1-4 и их результаты, показанные в таблице 1, позволяют утверждать, что вне зависимости от используемого штамма рода Pleurotus по заявляемому способу получаемый посевной материал характеризуется стабильным агрегатным состоянием, не расслаивается, в нем отсутствуют пеллеты, что делает возможным его механизированное внесение в субстрат при засеве блоков. Кроме того, быстрее происходит обрастание твердого субстрата, раньше начинается плодоношение и высокая продуктивность в первые две волны.
Пример 5. Полученный в примерах 1-4 и по прототипу посевной мицелий для проверки сроков хранения и изменение его качеств во время хранения колбы с жидкофазным мицелием хранили в холодильной камере при температуре 4°C. Результаты исследований показаны в таблице 2.
Figure 00000002
Из таблицы 2 видно, что жидкофазный мицелий, произведенный по примерам 1-4 изобретения, хранится при температуре 4°C в течение 60 суток. При этом у мицелия, воспроизведенного по прототипу, снижалась жизнеспособность на 2 порядка после 30 суток хранения, а на 60-е сутки - был не жизнеспособен.
Таким образом, применение способа приготовления жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов позволяет получить жидкофазный маточный мицелий с более длительным сроком хранения без потери жизнеспособности, получаемый мицелий не формирует плотных мицелиальных структур - пеллет, мицелий имеет стабильное агрегатное состояние, сокращается период производственного цикла.

Claims (1)

  1. Способ приготовления жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов, включающий приготовление стерильной жидкой питательной среды, содержащей источник углерода, азота, калия дигидрофосфат и магния сульфат, засев чистой культурой гриба и его культивирование, отличающийся тем, что в качестве гриба используют представителей рода вешенка, в качестве источника углерода используют фруктозу в количестве 1-3% от массы среды, культивирование осуществляют в течение 5-7 суток при температуре 26-28°С с перемешиванием со скоростью 100-140 об/мин, затем добавляют глицерин до 24-26% по объему.
RU2015140405A 2015-09-22 2015-09-22 Способ приготовления жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов RU2610707C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015140405A RU2610707C1 (ru) 2015-09-22 2015-09-22 Способ приготовления жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015140405A RU2610707C1 (ru) 2015-09-22 2015-09-22 Способ приготовления жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов

Publications (1)

Publication Number Publication Date
RU2610707C1 true RU2610707C1 (ru) 2017-02-14

Family

ID=58458545

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015140405A RU2610707C1 (ru) 2015-09-22 2015-09-22 Способ приготовления жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов

Country Status (1)

Country Link
RU (1) RU2610707C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2188537C1 (ru) * 2001-10-09 2002-09-10 Российская экономическая академия им. Г.В. Плеханова Способ проращивания базидиоспор высших грибов
UA7869U (en) * 2004-12-03 2005-07-15 Zaporizhia State University Method of improving activity of strains of stock cultures of oyster fungus
RU2430155C1 (ru) * 2009-12-30 2011-09-27 Учреждение Российской академии медицинских наук Научно-исследовательский институт по изысканию новых антибиотиков им. Г.Ф. Гаузе РАМН Посевной мицелий базидиомицета и способ его приготовления
CN102550294A (zh) * 2012-02-03 2012-07-11 连云港市农业科学院 一种姬菇菌种的液体发酵培养方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2188537C1 (ru) * 2001-10-09 2002-09-10 Российская экономическая академия им. Г.В. Плеханова Способ проращивания базидиоспор высших грибов
UA7869U (en) * 2004-12-03 2005-07-15 Zaporizhia State University Method of improving activity of strains of stock cultures of oyster fungus
RU2430155C1 (ru) * 2009-12-30 2011-09-27 Учреждение Российской академии медицинских наук Научно-исследовательский институт по изысканию новых антибиотиков им. Г.Ф. Гаузе РАМН Посевной мицелий базидиомицета и способ его приготовления
CN102550294A (zh) * 2012-02-03 2012-07-11 连云港市农业科学院 一种姬菇菌种的液体发酵培养方法

Similar Documents

Publication Publication Date Title
CN103918475B (zh) 秀珍菇盆景式栽培的方法及用于栽培秀珍菇的培养基
Abdullah et al. Production of liquid spawn of an edible grey oyster mushroom, Pleurotus pulmonarius (Fr.) Quél by submerged fermentation and sporophore yield on rubber wood sawdust
PT87067B (pt) Processo para o fabrico de substrato sintetico para fungos filamentosos
CN106986712A (zh) 一种羊肚菌培养料配方及其栽培方法
CN107937329B (zh) 一种提高液体菌种活力的方法
CN105237248A (zh) 一种灰树花生产培养料及其应用
CN102173883A (zh) 一种杏鲍菇工厂化栽培的培养料新配方
CN103449914B (zh) 海藻糖在延长糙皮侧耳菌种贮藏寿命方面的应用、培养基及方法
CN106434368A (zh) 一种云南白灵芝液体菌种的培养方法
CN103859015A (zh) 月桂精油微乳液樱桃番茄保鲜剂及其制备方法
CA1117881A (en) Growth promoting method for basidiomycetes
CN110004068B (zh) 一种香菇菌种保藏培养基及保藏方法
CN105838621B (zh) 一种灰树花液体菌种的培养液以及培育方法
RU2610707C1 (ru) Способ приготовления жидкофазной формы маточного мицелия для получения плодовых тел шляпочных пластинчатых грибов
RU2430155C1 (ru) Посевной мицелий базидиомицета и способ его приготовления
CN108713449A (zh) 一种茯苓的栽培方法
KR20150125918A (ko) 동결보호제로서 찹쌀풀을 이용하는 생존율이 증진된 식품 발효용 미생물 첨가제 조성물 및 이의 제조방법
US4369253A (en) Growth promoting method for basidiomycetes
CN109279937A (zh) 一种食用菌固体菌种的培养基及其制备方法
CN103849592A (zh) 一种链霉菌孢子的生产方法
KR101750288B1 (ko) 귤응애 방제용 조성물 및 그 방제 방법
KR101687891B1 (ko) 목이버섯의 재배방법 및 배지조성물
CN102154109B (zh) 一种裂褶菌菌种保藏方法
CN107360852B (zh) 牛樟芝培养方法
CN112806215A (zh) 一种香菇液体菌种的制作方法及菌棒的配套生产方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170923