RU2600602C1 - Способ переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана - Google Patents
Способ переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана Download PDFInfo
- Publication number
- RU2600602C1 RU2600602C1 RU2015116038/02A RU2015116038A RU2600602C1 RU 2600602 C1 RU2600602 C1 RU 2600602C1 RU 2015116038/02 A RU2015116038/02 A RU 2015116038/02A RU 2015116038 A RU2015116038 A RU 2015116038A RU 2600602 C1 RU2600602 C1 RU 2600602C1
- Authority
- RU
- Russia
- Prior art keywords
- copper
- vanadium
- solution
- treated
- pulp
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
- C22B3/46—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes by substitution, e.g. by cementation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к способу переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана. Способ включает отгонку тетрахлорида титана из медно-ванадиевой пульпы с получением кубового остатка . Смесь раствора гидроксида натрия карбоната натрия подают на выщелачивание кубового остатка при противоточной подаче сжатого воздуха. Ванадийсодержащий раствор отделяют от кека и обрабатывают сначала соляной кислотой, затем хлоридом аммония и повторно обрабатывают хлоридом аммония. Смесь выдерживают, отделяют осадок в виде ванадата аммония, сушат и прокаливают с получением пентаоксида ванадия. Кек, полученный после выщелачивания кубового остатка, промывают водой, обрабатывают соляной кислотой при подаче сжатого воздуха. Твердый осадок отделяют в виде редкометаллического концентрата. Медьсодержащий раствор обрабатывают железной стружкой с получением цементационной меди. Техническим результатом является повышение сквозной степени извлечения из медной пульпы в товарную продукцию таких компонентов, как тетрахлорид титана, пентаоксид ванадия и медь цементационная. 7 з.п. ф-лы, 1 пр.
Description
Изобретение относится к неорганической химии, а именно к получению тетрахлорида титана, в частности к переработке медно-ванадиевой пульпы, образующейся в процессе химической очистки тетрахлорида титана.
Известен способ переработки медно-ванадиевой пульпы (отходов) процесса очистки тетрахлорида титана (патент РФ №2528610, опубл. 20.09.2014, бюл. №26). В медно-ванадиевую пульпу, образующуюся в процессе химической очистки тетрахлорида титана, добавляют воду, затем в пульпу подают при постоянном перемешивании гипохлорит кальция с концентрацией активного хлора, равной 15-90 г/дм3, выдерживают при перемешивании в течение 2-5 часов, затем добавляют соляную кислоту до рН раствора, равного 2,0-3,0. Полученную суспензию фильтруют, раствор двухвалентной меди подают в цементатор на поверхность восстановителя в виде стальной стружки, смесь подогревают до температуры 40-60°С и при перемешивании проводят процесс восстановления. Полученную суспензию фильтруют, осадок в виде смеси восстановителя и цементационной меди разделяют методом декантации на цементационную медь и восстановитель. Цементационную медь обрабатывают стабилизатором, промывают, фильтруют, сушат и очищают от примесей железа магнитной сепарацией.
Недостатком указанного способа переработки медно-ванадиевой пульпы является то, что по данной технологии получают только цементационную медь и не предусмотрено извлечение из медно-ванадиевой пульпы соединений ванадия и титана в виде тетрахлорида титана и редкометаллического концентрата. Это приводит к загрязнению сточных вод соединениями ванадия и титана, которые являются экологически вредными компонентами для окружающей среды.
Известен способ переработки медно-ванадиевой пульпы (медно-ванадиевых кеков) на пятиокись ванадия (ст. Переработка медно-ванадиевых кеков на пятиокись ванадия. - Евтюхов В.Е., Ярославцев А.С., Свядощ И.Ю. - Ж. Цветные металлы, №2, 1974, стр. 52-54), включающий обработку медно-ванадиевого кека водой с одновременным окислением воздухом при температуре 40-50°С в течение 3-4 часов. Для повышения рН среды до 2-3 в медно-ванадиевый кек добавляют карбонат натрия (кальцинированную соду). Полученную смесь разделяют методом фильтрации на твердый остаток в виде нерастворимых соединений ванадия и маточного раствора с содержанием меди 50-65 мас.%. Твердый остаток направляют на выщелачивание, а маточный раствор - на получение цементационной меди. В твердый остаток первоначально загружают карбонат натрия до рН 7-8 при соотношении Т:Ж=1-(5-8), затем заливают раствор гидроксида натрия до концентрации 15-25 г/л в течение 2 часов при температуре 70°С. Полученную смесь вновь фильтруют с получением фильтрата в виде раствора ванадата натрия и твердого остатка, который промывают водой и направляют в отвал. Раствор ванадата натрия, полученный после выщелачивания, объединяют с ванадийсодержащими промводами и подвергают гидролитической очистке раствором технической соляной кислоты при температуре 60-70°С до рН 6,5-7,5 при непрерывном перемешивании в течение 2-2,5 часов. Для очистки технического пентаоксида ванадия от примесей его вновь растворяют карбонатом натрия до рН 9-9,5. Раствор охлаждают и загружают хлорид аммония при непрерывной подаче воздуха. Кристаллизацию продолжают в течение 2,5 часов. Полученную пульпу вновь фильтруют, промывают дистиллированной водой, осадок сушат, прокаливают с получением пентаоксида ванадия.
Недостатком данного способа переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана является низкая степень извлечения ванадия в товарный продукт (73,7 мас.%) и трудоемкость процесса. Кроме того, способ не позволяет снизить потери диоксида титана, уменьшить воздействие вредных компонентов, таких как соединения меди, титана и ванадия, на окружающую среду.
Известен способ переработки хлоридных медно-ванадиевых пульп (ст. Способ переработки хлоридных медно-ванадиевых пульп титановых заводов. - Михеева В.И., Сорокин И.П. - Сб. Металлургия и химия титана, том 2. - изд. Металлургия, М., 1968, с. 141-149), по количеству общих признаков принятый за ближайший аналог-прототип. Первоначально из медно-ванадиевой пульпы отгоняют тетрахлорид титана методом дистилляции при температуре 130-140°С. Тетрахлорид титана возвращают обратно на процесс очистки, а получаемый после отгонки кубовый остаток подвергают дальнейшей переработке для извлечения из него таких ценных компонентов, как пентаоксид ванадия, цементационная медь и твердый остаток. Кубовый остаток выщелачивают 25-30% раствором гидроксида натрия при температуре раствора 80-90°С в течение 0,5 часа при перемешивании механической мешалкой и при поддержания соотношения Т:Ж=1:5 с получением раствора гексаванадата натрия (Na2H2V6O17). Раствор гексаванадата натрия (Na2H2V6O17) отделяют от кека методом фильтрования. Кек промывают водой, выщелачивают 10%-ной серной кислотой до рН 2-3 с получением медьсодержащего раствора и твердого остатка с содержанием диоксида титана до 70%, который направляют обратно на переработку. Медьсодержащий раствор обрабатывают железным скрапом с получением цементационной меди. Раствор гексаванадата натрия подвергают гидролизу серной кислотой при температуре 80-90°С до рН 2-3. Образующийся осадок отделяют от раствора, сушат, прокаливают с получением пентаоксида ванадия.
Недостатком данного способа переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана является низкая сквозная степень извлечения пентаоксида ванадия (88% масс.) и низкая сквозная степень извлечения цементационной меди (92%) из медно-ванадиевой пульпы. Содержание пентаоксида ванадия в готовом продукте составляет 94,5 мас.%. Потери ванадия, меди и титана с отходами являются высокими, что уменьшает выход их в товарные продукты и увеличивает загрязнение окружающей среды.
Технический результат направлен на устранение недостатков прототипа и позволяет повысить сквозную степень извлечения из медно-ванадиевой пульпы процесса очистки тетрахлорида титана до следующих значений: пентаоксида ванадия до 91,1 мас.%, тетрахлорида титана до 94,5 мас.% и цементационной меди до 95,1 мас.%. Это позволяет повысить качество товарной продукции, повысить содержание пентаоксида ванадия в готовом продукте до 99,9 мас.% и уменьшить содержание соединений меди, ванадия и титана в отработанных растворах, снизить выбросы ценных компонентов в окружающую среду.
Задачей, на решение которой направлено изобретение, является повышение степени извлечения ценных компонентов из медно-ванадиевой пульпы процесса очистки тетрахлорида титана, уменьшение загрязнения окружающей среды. Кроме того, предложенный способ позволяет получить товарные продукты в виде пентаоксида ванадия, цементационной меди и редкометаллического концентрата улучшенного качества.
Технический результат решается тем, что в предложенном способе переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана, включающем отгонку тетрахлорида титана из медно-ванадиевой пульпы с получением кубового остатка, выщелачивание кубового остатка раствором гидроксида натрия при нагревании и постоянном перемешивании с получением кека и ванадийсодержащего раствора, обработку ванадийсодержащего раствора кислотой, отделение осадка, его сушку и прокалку с получением пентаоксида ванадия, промывку кека водой, обработку его кислотой, отделение твердого остатка от медьсодержащего раствора, обработку медьсодержащего раствора железной стружкой с получением цементационной меди, новым является то, что перед выщелачиванием в раствор гидроксида натрия добавляют твердый карбонат натрия при соотношении, равном (30-45):1, полученной смесью выщелачивают кубовый остаток при одновременной противоточной подаче сжатого воздуха с получением ванадийсодержащего раствора в виде ванадата натрия и кека, отделенный от кека раствор ванадата натрия обрабатывают последовательно сначала соляной кислотой, затем хлоридом аммония при соотношении V2О5:NH4Cl=1:(0,5-0,8), выдерживают при постоянном перемешивании, повторно обрабатывают хлоридом аммония при соотношении V2О5:NH4Cl=1:(3,0-4,0), смесь выдерживают, отделяют осадок в виде ванадата аммония, сушат и прокаливают с получением пентаоксида ванадия, а полученный после промывки водой кек обрабатывают соляной кислотой при одновременной противоточной подаче сжатого воздуха при нагревании, твердый остаток отделяют от медьсодержащего раствора, промывают и направляют на использование в качестве редкометаллического концентрата, а медьсодержащий раствор направляют на получение цементационной меди.
Кроме того, при выщелачивании соотношение кубового остатка к смеси гидроксида натрия и карбоната натрия поддерживают равным Т:Ж=1:(4-7).
Кроме того, кубовый остаток выщелачивают при температуре 85-95°С в течение 1-3 часа.
Кроме того, при выщелачивании кубовый остаток обрабатывают сжатым воздухом в течение 1-3 часов.
Кроме того, раствор ванадата натрия обрабатывают соляной кислотой при температуре 55-60°С в течение 0,5-1,0 часа до рН 8-9.
Кроме того, повторную обработку раствора ванадата натрия хлоридом аммония проводят при температуре 20-25°С и при перемешивании в течение 0,5-2,0 часа.
Кроме того, после повторной обработки раствора ванадата натрия хлоридом аммония раствор выдерживают более 12 часов.
Кроме того, кек обрабатывают соляной кислотой при одновременной противоточной подаче сжатого воздуха при температуре 80-100°С в течение 1-2 часов до рН раствора 2-3.
Заявленная совокупность новых действий и новая последовательность операций переработки медно-ванадиевой пульпы, а именно отгонка из пульпы тетрахлорида титана и проведение процесса выщелачивания кубового остатка, полученного после отгонки тетрахлорида титана, приготовленной смесью гидроксида натрия с карбонатом натрия при одновременной противоточной подаче сжатого воздуха, с последующей обработкой раствора ванадата натрия соляной кислотой до рН 8-9, затем хлоридом аммония с получением пентаоксида ванадия, позволяет наиболее полно перевести из медно-ванадиевой пульпы соединения ванадия в растворимую форму. Это позволяет повысить степень извлечения пентаоксида ванадия из медно-ванадиевой пульпы, значительно снизить потери ценных компонентов и снизить выбросы в окружающую среду экологически вредных компонентов.
Заявленная совокупность новых действий и новая последовательность операций переработки медно-ванадиевой пульпы, а именно обработка полученного после нейтрализации кека соляной кислотой при одновременной противоточной подаче сжатого воздуха, отделение осадка в виде редкометаллического концентрата и направление медьсодержащего раствора на получение цементационной меди позволяет наиболее полно перевести в осадок растворимые соединения меди и тем самым повысить степень извлечения цементационной меди и редкометаллического концентрата в готовый продукт, значительно снизить потери ценных компонентов и выбросы в окружающую среду экологически вредных компонентов.
Подобранные режимы извлечения ценных компонентов из медно-ванадиевой пульпы позволяют повысить степень извлечения пентакосида ванадия и меди в готовый продукт, значительно снизить потери ценных компонентов и уменьшить загрязнение окружающей среды за счет снижения количества отходов.
Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными (идентичными) всем существенным признакам изобретения. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволил установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана, изложенных в пунктах формулы изобретения. Следовательно, заявленное изобретение соответствует условию "новизна".
Для проверки соответствия заявленного изобретения условию "изобретательский уровень" заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного способа. Заявленная последовательность действий и новые режимы проведения действия являются новыми и не вытекают явным образом для специалиста, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения преобразований для достижения технического результата. Следовательно, заявленное изобретение соответствует условию "изобретательский уровень».
Промышленную применимость предлагаемого изобретения подтверждает пример его конкретного выполнения.
Пример 1.
Медно-ванадиевую пульпу, содержащую основные компоненты следующего состава масс.%: 16,0 диоксида титана, 15,8 пентаоксида ванадия и 21,5 меди, остальное - примеси хлоридных и оксидных соединений других металлов, получают в процессе химической очистки технического тетрахлорида титана медным порошком (см. кн. Металлургия титана. - Сергеев В.В., Галицкий Н.В., Киселев В.П. и др. - М.: Металлургия, 1971, с. 139-140). Первоначально из медно-ванадиевой пульпы удаляют тетрахлорид титана методом возгонки на лабораторной установке в виде колбы-реактора, нагревательного устройства, например электрического прибора с масляной баней, холодильника, приемной емкости и термометра. Медно-ванадиевую пульпу в количестве 1000 г загружают в колбу-реактор, колбу-реактор устанавливают в масляную баню, нагревают до температуры возгонки тетрахлорида титана 135°С и проводят процесс до полной возгонки тетрахлорида титана из медно-ванадиевой пульпы. Полученный дистиллят в виде тетрахлорида титана (181 г) возвращают на процесс очистки тетрахлорида титана (степень извлечения равна 94,5 мас.%), а кубовый остаток в количестве 807 г с содержанием основных компонентов следующего состава, масс.%: 10,3 диоксида титана, 19,5 пентакосида ванадия и 27,0 меди, остальное - примеси, направляют на дальнейшую переработку с целью извлечения из него пентаоксида ванадия, цементационной меди и редкометаллического концентрата. Для этого кубовый остаток в твердом виде загружают в реактор с крышкой, в него добавляют предварительно приготовленный в отдельной емкости щелочной раствор в виде смеси 25 мас.% раствора гидроксида натрия (каустической соды ГОСТ 2263-79) с карбонатом натрия (кальцинированной соды ГОСТ 5100-85) при соотношении гидроксид натрия к карбонату натрия, равном 40:1 (в количестве 4035 г гидроксида натрия к 100,9 г карбоната натрия), нагревают до температуры 85°С на водяной бане, и одновременно через кубовый остаток противоточно смеси раствора гидроксида натрия с карбонатом натрия подают сжатый воздух.
Сжатый воздух применяют как окислитель (для перевода ванадия из четырехвалентной в пятивалентную форму) и как перемешивающее устройство. Время перемешивания и выщелачивания кубового остатка составляет 2 часа. Затем смесь методом фильтрации разделяют на ванадийсодержащий раствор с содержанием, масс.%: 0,01 Tiобщ и 0,9 V, и кек состава, масс.%: 11,2 Tiобщ, 0,11 V и 49,5 Cu. Ванадийсодержащий раствор в виде раствора ванадата натрия обрабатывают последовательно концентрированной (36 мас.%) соляной кислотой (ТУ 2122-480-05785388-2009) и хлоридом аммония (ГОСТ 2210-73). Для этого раствор ванадата натрия в количестве 9345 г загружают в емкость, нагревают на водяной бане при температуре 56°С при постоянном перемешивании мешалкой, добавляют соляную кислоту до рН 8-9, затем 96 г хлорида аммония при соотношении V2O5:NH4Cl=1:0,7.
Полученную смесь выдерживают при температуре 57°С в течение часа при постоянном перемешивании, затем отстаивают при комнатной температуре 2 часа для выпадения осадка в виде примесей в количестве 3,9 г. Осадок отделяют методом фильтрования, а фильтрат смешивают с промводами и дополнительно обрабатывают хлоридом аммония в количестве 494,7 г при соотношении V2O5:NH4Cl=1:3,4. Осадок отстаивают 12 часов, отделяют, нагревают, прокаливают при температуре 550°С и получают товарный пентаоксид ванадия в количестве 143,7 г, соответствующий ТУ 1761-465-05785388-2006. Сквозная степень извлечения ванадия из медно-ванадиевой пульпы составляет 91,1 масс.%. Кек после выщелачивания направляют на получение цементационной меди. Для этого в реактор, снабженный механической мешалкой, загружают 439,6 г кека следующего состава, вес.%: Cu - 49,5, Ti - 11,2, V - 0,11, остальное - примеси и заливают воду при соотношении Т:Ж=1:6. Промывную жидкость отфильтровывают, а кек обрабатывают 10,8 мас.% соляной кислотой (ТУ 2122-480-05785388-2009) при температуре 90°С в течение 1,5 часа до рН раствора 2,3. Одновременно через смесь подают противоточно воздух. Процесс окисления однохлористой меди в двухлористую медь происходит по реакции:
2Cu2О+O2+8HCl=4CuCl2+4H2O.
Полученную суспензию фильтруют на нутч-фильтре. Осадок представляет собой редкометаллический концентрат состава, масс.%: 74,1 диоксида титана, 0,5 пентаоксида ванадия и 0,16 меди. Медьсодержащий раствор, представляющий собой раствор двухлористой меди с концентрацией 45 г/дм3, направляют на процесс цементации. Процесс цементации проводят в цементаторе в виде эмалированного чана, снабженного сепарированным днищем с отверстиями и паровой рубашкой. Стальную стружку (ГОСТ 2787-75) в количестве 260 г загружают в цементатор, затем на поверхность стальной стружки заливают медьсодержащий раствор. Процесс восстановления проводят при температуре 48°С длительностью 16 часов при перемешивании сжатым воздухом:
Cu2++Fe=Cu+Fe2+.
В результате обработки восстановителем - стальной стружкой - ионы хлора переходят в хлорид железа, а медный порошок в смеси со стальной стружкой осаждается на дно цементатора. По окончании процесса восстановления полученную смесь фильтруют на нутч-фильтре, фильтрат направляют в кислотную канализацию, а осадок в виде смеси стальной стружки и медного порошка репульпируют, вновь фильтруют. Затем методом декантации осадок разделяют на медный порошок и стальную стружку. Стальную стружку направляют обратно на процесс восстановления. Полученный медный порошок взвешивают и направляют на обработку стабилизатором, например 0,5 г/л раствором мылонафта (ТУ 0258-001-10105154-97). Осадок промывают водой при перемешивании и фильтруют на нутч-фильтре. Сушку медного порошка проводят в вакуумном сушильном шкафу, затем в муфельной печи при температуре 85°С в течение 4 часов. После сушки для удаления стальных включений медный порошок подвергают магнитной сепарации. В результате получают цементационную медь в соответствии с ТУ 1793-496-05785388-2009 «Медь цементационная» следующего состава, масс.%: 98 Cu, 0,5 Fe, 0,20 хлориды, остальное примеси. Полученный готовый продукт направляют обратно на процесс очистки технического тетрахлорида титана от ванадия, либо потребителю.
Таким образом, предложенный способ позволяет повысить сквозную степень извлечения из медно-ванадиевой пульпы в товарную продукцию таких компонентов, как тетрахлорид титана до 94,5 мас.%, пентаоксид ванадия до 91,1 мас.%, медь цементационная до 95,1 мас.%. Это позволяет повысить качество товарной продукции, повысить содержание пентаоксида ванадия в готовом продукте до 99,9 мас.% и уменьшить содержание соединений меди, ванадия и титана в отработанных растворах, снизить выбросы ценных компонентов в окружающую среду.
Claims (8)
1. Способ переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана, включающий отгонку из медно-ванадиевой пульпы тетрахлорида титана, выщелачивание кубового остатка с использованием раствора гидроксида натрия при нагревании и постоянном перемешивании с получением кека и ванадийсодержащего раствора, обработку ванадийсодержащего раствора кислотой, отделение осадка, его сушку и прокалку с получением пентаоксида ванадия, промывку кека водой, обработку его кислотой, отделение твердого остатка от медьсодержащего раствора, обработку медьсодержащего раствора железной стружкой с получением цементационной меди, отличающийся тем, что перед выщелачиванием в раствор гидроксида натрия добавляют твердый карбонат натрия при соотношении, равном (30-45):1, полученной смесью выщелачивают кубовый остаток при одновременной противоточной подаче сжатого воздуха с получением ванадийсодержащего раствора в виде ванадата натрия и кека, отделенный от кека раствор ванадата натрия обрабатывают последовательно сначала соляной кислотой, затем хлоридом аммония при соотношении V2O5:NH4Cl=1:(0,5-0,8), выдерживают при постоянном перемешивании, повторно обрабатывают хлоридом аммония при соотношении V2O5:NH4Cl=1:(3,0-4,0), смесь выдерживают, отделяют осадок в виде ванадата аммония, сушат и прокаливают с получением пентаоксида ванадия, а полученный после промывки водой кек обрабатывают соляной кислотой при одновременной противоточной подаче сжатого воздуха при нагревании, твердый остаток отделяют от медьсодержащего раствора, промывают и направляют на использование в качестве редкометаллического концентрата, а медьсодержащий раствор направляют на получение цементационной меди.
2. Способ по п. 1, отличающийся тем, что при выщелачивании соотношение кубового остатка к смеси гидроксида натрия и карбоната натрия поддерживают равным Т:Ж=1:(4-7).
3. Способ по п. 1, отличающийся тем, что кубовый остаток выщелачивают при температуре 85-95°С в течение 1-3 часа.
4. Способ по п. 1, отличающийся тем, что при выщелачивании кубовый остаток обрабатывают сжатым воздухом в течение 1-3 часов.
5. Способ по п. 1, отличающийся тем, что раствор ванадата натрия обрабатывают соляной кислотой при температуре 55-60°С в течение 0,5-1,0 часа до рН 8-9.
6. Способ по п. 1, отличающийся тем, что повторную обработку раствора ванадата натрия хлоридом аммония проводят при температуре 20-25°С и при перемешивании в течение 0,5-2,0 часа.
7. Способ по п. 1, отличающийся тем, что после повторной обработки раствора ванадата натрия хлоридом аммония раствор выдерживают более 12 часов.
8. Способ по п. 1, отличающийся тем, что кек обрабатывают соляной кислотой при одновременной противоточной подаче сжатого воздуха при температуре 80-100°С в течение 1-2 часов до рН раствора 2-3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015116038/02A RU2600602C1 (ru) | 2015-04-27 | 2015-04-27 | Способ переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015116038/02A RU2600602C1 (ru) | 2015-04-27 | 2015-04-27 | Способ переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2600602C1 true RU2600602C1 (ru) | 2016-10-27 |
Family
ID=57216423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015116038/02A RU2600602C1 (ru) | 2015-04-27 | 2015-04-27 | Способ переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2600602C1 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1318528A1 (ru) * | 1985-01-16 | 1987-06-23 | Березниковский филиал Всесоюзного научно-исследовательского и проектного института титана | Способ получени однохлористой меди |
WO1997038771A1 (en) * | 1996-04-18 | 1997-10-23 | Electrocopper Products Limited | Process for making shaped copper articles |
SU1228503A1 (ru) * | 1984-08-01 | 2000-02-10 | Березниковский филиал Всесоюзного научно-исследовательского и проектного института титана | Способ переработки хлоридных пульп титанового производства, содержащих титан, медь и ванадий |
CN1616353A (zh) * | 2003-11-12 | 2005-05-18 | 李茂山 | 一种制备硫酸铜的新工艺 |
RU2340688C1 (ru) * | 2007-03-30 | 2008-12-10 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Способ переработки медно-хлоридного плава, являющегося отходом очистки тетрахлорида титана |
RU2528610C1 (ru) * | 2013-04-17 | 2014-09-20 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Способ переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана |
-
2015
- 2015-04-27 RU RU2015116038/02A patent/RU2600602C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1228503A1 (ru) * | 1984-08-01 | 2000-02-10 | Березниковский филиал Всесоюзного научно-исследовательского и проектного института титана | Способ переработки хлоридных пульп титанового производства, содержащих титан, медь и ванадий |
SU1318528A1 (ru) * | 1985-01-16 | 1987-06-23 | Березниковский филиал Всесоюзного научно-исследовательского и проектного института титана | Способ получени однохлористой меди |
WO1997038771A1 (en) * | 1996-04-18 | 1997-10-23 | Electrocopper Products Limited | Process for making shaped copper articles |
CN1616353A (zh) * | 2003-11-12 | 2005-05-18 | 李茂山 | 一种制备硫酸铜的新工艺 |
RU2340688C1 (ru) * | 2007-03-30 | 2008-12-10 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Способ переработки медно-хлоридного плава, являющегося отходом очистки тетрахлорида титана |
RU2528610C1 (ru) * | 2013-04-17 | 2014-09-20 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Способ переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100866824B1 (ko) | 전해 침전 구리의 처리 방법 | |
CN105836767B (zh) | 一种利用含锂废液制备无水氯化锂的方法 | |
US20040213717A1 (en) | Process for separating and recovering valuable metals | |
JPH085669B2 (ja) | 硫酸塩法による高品位二酸化チタンの製造方法 | |
CN101818262A (zh) | 一种从硫酸锌溶液中脱除氯的方法 | |
CN108396158A (zh) | 一种电解锰过程的复盐结晶物的处理方法 | |
CN110306065A (zh) | 一种钒渣制备偏钒酸铵的方法 | |
CN107815549B (zh) | 沉钒废水的利用方法 | |
CN107058750A (zh) | 含锗铜烟灰综合回收工艺 | |
DE102019007087B3 (de) | Verfahren, um Vanadium aus Sekundärrohstoffen zu entfernen | |
US20200370145A1 (en) | Process for recovering vanadium in the form of iron vanadate from a gasifier slag | |
CN107099672A (zh) | 含锌炼钢烟尘的回收方法 | |
CN104203830B (zh) | 制铁用赤铁矿的制造方法 | |
RU2600602C1 (ru) | Способ переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана | |
CN115974019B (zh) | 一种溶剂萃取法净化湿法磷酸的方法 | |
US2258310A (en) | Treatment of spent pickle liquor or the like | |
NO146957B (no) | Fremgangsmaate ved utvinning av krominnholdet fra et kromholdig raamateriale. | |
CN110004292B (zh) | 一种废弃硫酸锰溶液净化降低钙镁含量的工艺 | |
RU2340688C1 (ru) | Способ переработки медно-хлоридного плава, являющегося отходом очистки тетрахлорида титана | |
RU2497964C1 (ru) | Способ получения пентаоксида ванадия | |
RU2175681C1 (ru) | Способ получения пентаоксида ванадия из техногенного сырья | |
CN104694769A (zh) | 一种洁净钒液的生产方法 | |
RU2528610C1 (ru) | Способ переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана | |
NL8001653A (nl) | Werkwijze ter bereiding van magnesiumchloride. | |
CN107619954A (zh) | 一种浸取提钒的方法 |