RU2595895C2 - Катализатор, газогенератор и толкатель с улучшенной термической способностью и коррозионной стойкостью - Google Patents

Катализатор, газогенератор и толкатель с улучшенной термической способностью и коррозионной стойкостью Download PDF

Info

Publication number
RU2595895C2
RU2595895C2 RU2013157828/04A RU2013157828A RU2595895C2 RU 2595895 C2 RU2595895 C2 RU 2595895C2 RU 2013157828/04 A RU2013157828/04 A RU 2013157828/04A RU 2013157828 A RU2013157828 A RU 2013157828A RU 2595895 C2 RU2595895 C2 RU 2595895C2
Authority
RU
Russia
Prior art keywords
catalyst
carrier
oxide
gas generator
rocket fuel
Prior art date
Application number
RU2013157828/04A
Other languages
English (en)
Other versions
RU2013157828A (ru
Inventor
Роберт К. МАССЕ
Сильвано Р. САРЕТТО
Цзюньли ЛЮ
Original Assignee
Аэроджет Рокетдайн, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Аэроджет Рокетдайн, Инк. filed Critical Аэроджет Рокетдайн, Инк.
Publication of RU2013157828A publication Critical patent/RU2013157828A/ru
Application granted granted Critical
Publication of RU2595895C2 publication Critical patent/RU2595895C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/32Constructional parts; Details not otherwise provided for
    • F02K9/34Casings; Combustion chambers; Liners thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/135Hafnium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)

Abstract

Изобретение раскрывает катализатор ракетного топлива, содержащий: носитель, изготовленный посредством горячего изостатического прессования и имеющий теоретическую плотность, по меньшей мере, 97%, который содержит оксид гафния и вплоть до равной части оксид циркония по массе, причем объединенные оксид гафния и оксид циркония, когда присутствуют, составляют, по меньшей мере, 50% масс. носителя, и активный металл на поверхности данного носителя, причем активный металл выбран из платиновой группы металлов, включающей родий, рутений, палладий, осмий, иридий и платину. Описывается способ промотирования реакции ракетного топлива в продукты реакции, содержащие газ, при контакте с данным катализатором. Также раскрывается газогенератор, содержащий корпус и указанный выше катализатор внутри корпуса, вход для ракетного топлива и выход из данного корпуса для продуктов реакции, содержащих газ. Технический результат заключается в получении катализатора с улучшенной стойкостью к высокотемпературному разрушению и спеканию и увеличенным сроком службы. 3 н. и 16 з.п. ф-лы, 2 ил., 6 пр.

Description

УРОВЕНЬ ТЕХНИКИ
Ракетные двигательные системы на однокомпонентном топливе, которые используют катализаторы, чтобы энергично вызывать реакцию ракетного топлива в горячие газы, обеспечивают преимущества в отношении стоимости и надежности, что привело системы на однокомпонентном топливе к доминированию в околоземных и разведочных полетах над системами на двухкомпонентном топливе. Гидразин, однокомпонентное ракетное топливо, наиболее широко применяемое в настоящее время, является токсичным и должен находиться в закрытых контейнерах, вызывая тем самым косвенные затраты, связанные с необходимостью специального наземного оборудования и процедур и, как следствие, приостановки других мероприятий по подготовке к запуску, чтобы избежать опасности в отношении готовящего запуск персонала во время операций загрузки ракетного топлива космического корабля. Кроме того, проблемы, связанные с опасностью случайного токсичного воздействия, в большой степени предотвращаются применением однокомпонентного ракетного топлива в тактических и стратегических системах.
Некоторое число низкотоксичного однокомпонентного ракетного топлива было разработано, чтобы обойти ограничения гидразина и, в некоторых случаях, обеспечить улучшенные параметры относительно гидразина. Многие из этих однокомпонентных ракетных топлив работают при температуре пламени, существенно превышающей температуру пламени гидразина и возможности современных катализаторов, используемых в традиционных каталитических газогенераторах и толкателях. Ряд этих современных однокомпонентных ракетных топлив, например закись азота, пероксиды и ионные жидкости, такие как ракетные топлива на основе динитрамида аммония и нитрата гидроксиламмония, производят коррозионные и/или высокоокислительные промежуточные соединения или продукты, так что данные толкатели, каталитические газогенераторы и, особенно, катализаторы должны быть устойчивы к повреждению этими промежуточными соединениями или продуктами. Катализаторы, газогенераторы и толкатели, используемые сейчас в системах с однокомпонентным топливом, обычно демонстрируют ограниченную возможность срока службы вследствие разрушения по разным причинам.
Соответственно, сохраняется необходимость обеспечить новые и пригодные катализаторы для однокомпонентного ракетного топлива.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Данный раздел приведен, чтобы ознакомить в упрощенной форме с набором идей, которые дополнительно описываются ниже в подробном описании. Данный раздел не предназначен определять ключевые признаки заявляемого объекта изобретения и не предназначен для использования в качестве помощи при определении объема заявляемого объекта изобретения.
В одном варианте осуществления раскрывается катализатор. Данный катализатор включает в себя носитель, содержащий оксид гафния и до равной части по массе оксид циркония, причем объединенные оксид гафния и оксид циркония составляют, по меньшей мере, 50% масс. носителя, и данный катализатор дополнительно включает в себя активный металл на поверхности данного носителя.
В одном варианте осуществления данный активный металл представляет собой один металл из, по меньшей мере, родия, рутения, палладия, осмия, иридия или платины.
В одном варианте осуществления данный носитель представляет собой оксид гафния на, по меньшей мере, 99% масс.
В одном варианте осуществления данный носитель дополнительно содержит стабилизатор.
В одном варианте осуществления данный стабилизатор содержит оксид церия или оксид иттрия или любую их комбинацию.
В одном варианте осуществления данный носитель имеет плотность больше чем 50% от теоретического максимума.
В одном варианте осуществления данный активный металл составляет от 0,1% масс до 50% масс. в расчете на полную массу катализатора.
В одном варианте осуществления площадь поверхности катализатора составляет от 0,05 м2/г до 40 м2/г.
В одном варианте осуществления раскрывается газогенератор. Данный газогенератор включает в себя корпус, определяющий пространство внутри данного корпуса, катализатор в данном пространстве внутри корпуса, где данный катализатор содержит носитель, содержащий оксид гафния и, по меньшей мере, один активный металл на поверхности данного носителя, вход ракетного топлива в данный корпус и выход продукта реакции из корпуса. Катализатор может содержать единственный, предпочтительно пористый элемент или множество элементов, таких как частицы, которые позволяют приток и отток газа и жидкости.
В одном варианте осуществления носитель газогенератора дополнительно содержит оксид циркония до равной части по массе с оксидом гафния.
В одном варианте осуществления носитель газогенератора дополнительно содержит стабилизатор. В одном варианте осуществления данный стабилизатор может быть оксидом церия или оксидом иттрия или обоими.
В одном варианте осуществления носитель газогенератора может содержать стабилизатор, выбранный из оксида церия, оксида иттрия или обоих из них. В этом варианте осуществления носитель может содержать оксид гафния или оксид гафния с оксидом циркония до равной массы с оксидом гафния.
В одном варианте осуществления к данному выходу корпуса присоединяется сопло.
В одном варианте осуществления катализатор образует слой частиц в данном корпусе. В этом варианте осуществления носитель катализатора может дополнительно содержать стабилизатор. Данный стабилизатор может включать в себя оксид церия, оксид иттрия или оба из них. Данные частицы могут иметь максимальный размер от 0,5 мм до 2,0 мм.
В одном варианте осуществления раскрывается способ промотирования реакции ракетного топлива в продукты реакции, содержащие газ. Данный способ включает в себя контакт ракетного топлива с катализатором, где катализатор содержит носитель, содержащий оксид гафния и, по меньшей мере, один активный металл на поверхности данного носителя, и превращение данного ракетного топлива в один или более газообразных продуктов при контакте с данным катализатором.
В одном варианте осуществления ракетное топливо содержит окислитель, выбранный из группы, состоящей из кислорода, нитрата гидроксиламмония, нитрата аммония, перхлората аммония, перхлората лития, динитрамида аммония и нитрата гидроксиэтилгидразиния или любой их комбинации.
В одном варианте осуществления ракетное топливо содержит горючее, выбранное из группы, состоящей из водорода, глицина, бетаина, углеводородов, спиртов, нитрата триэтаноламина, тринитрата трис(2-аминоэтил)амина, нитрата гидразиния и нитрата гидроксиэтилгидразиния или любой их комбинации.
В одном варианте осуществления ракетное топливо содержит химическое соединение, такое как гидразин, закись азота или пероксид, которое энергично разлагается с образованием газообразного продукта.
В одном варианте осуществления газообразный продукт из газогенератора может направляться через сопло, генерируя тягу.
В одном варианте осуществления ракетное топливо содержит окислитель, горючее и воду.
В одном варианте осуществления обеспечиваются катализатор, каталитический газогенератор и толкатель, вызывающие энергичную реакцию ракетного топлива, с улучшенной стойкостью к высокотемпературному разрушению и спеканию, придавая тем самым улучшенные характеристики и увеличенный срок службы.
В одном варианте осуществления обеспечиваются катализатор, каталитический газогенератор и толкатель, вызывающие энергичную реакцию ракетного топлива, с пониженной чувствительностью к повреждению тепловым ударом, обеспечивая, таким образом, улучшенные характеристики и увеличенный срок службы.
В одном варианте осуществления обеспечиваются катализатор, каталитический газогенератор и толкатель, вызывающие энергичную реакцию ракетного топлива, с улучшенной стабильность фазы катализатора, обеспечивая, таким образом, улучшенные характеристики и увеличенный срок службы.
В одном варианте осуществления обеспечиваются катализатор, каталитический газогенератор и толкатель, которые имеют улучшенную изготавливаемость в отношении физических параметров, связанных с улучшенным удерживанием каталитического металла катализатором и внутри слоя катализатора.
В одном варианте осуществления обеспечиваются катализатор, каталитический газогенератор и толкатель, которые обеспечивают улучшенные свойства обрабатываемости, так что данные катализаторы легко могут быть сформированы в желаемые формы или геометрии частиц, обеспечивая тем самым улучшенное средство изготовления, особенно связанное с улучшенной плотностью упаковки и консистенцией слоев гранулированного катализатора.
ОПИСАНИЕ ЧЕРТЕЖЕЙ
Предшествующие аспекты и многие из сопутствующих преимуществ данного изобретения станут легче восприниматься и одновременно станут более понятными посредством ссылки на последующее подробное описание, взятое вместе с сопровождающими чертежами, где:
фиг.1 представляет собой схематичное изображение, показывающее газогенератор согласно одному варианту осуществления данного изобретения; и
фиг.2 представляет собой схематичное изображение, показывающее толкатель согласно одному варианту осуществления данного изобретения.
ПОДРОБНОЕ ОПИСАНИЕ
Раскрывается катализатор, который включает в себя носитель и активный металл, нанесенный на данный носитель. Носитель содержит оксид гафния. Оксид гафния также известен как оксид гафния (IV) или диоксид гафния. Химическая формула оксида гафния HfO2. В некоторых приложениях параметры катализатора улучшаются, когда плотность достигает теоретического максимума, причем теоретическая плотность носителя, по меньшей мере, 97% является предпочтительной. Предпочтительная площадь поверхности на единицу объема катализатора находится в интервале от 0,05 до 40 м2/г.
Носитель может иметь любую форму, включая таблетки, цилиндрические стержни, округлые дробины, нерегулярные, сформированные в виде матрицы, такой как соты или решетки, и подобные, но не ограничиваясь ими. Катализатор включает в себя, по меньшей мере, один или более активных металлов на поверхности носителя. Активным металлом является, по меньшей мере, один металл из "платиновой" группы металлов. Платиновая группа металлов включает родий, рутений, палладий, осмий, иридий и платину. Процентное содержание активного металла или металлов может меняться от 0,1% масс. до 50% масс. в расчете на полную массу катализатора, причем содержание от 5% до 30% подходит для большинства приложений.
Носитель используется для поддерживания активного металла или металлов. В одном варианте осуществления носитель может представлять собой, по существу, 100% оксид гафния или оксид гафния с дополнительными компонентами. Дополнительные компоненты, такие как оксид церия и/или оксид иттрия или оба, могут быть включены в носитель оксид гафния, чтобы улучшить устойчивость к тепловому удару, химическому воздействию, механические свойства, одно или более из вышеуказанных. Оксид церия также известен как оксид церия (IV) или диоксид церия. Химическая формула СеО2. Оксид иттрия также известен как оксид иттрия (III) и имеет химическую формулу Y2O3. Когда дополнительные компоненты, такие как оксид церия или оксид иттрия или оба, добавляют в носитель оксид гафния по вышеуказанным причинам, дополнительные компоненты могут называться стабилизаторами, и катализатор может называться "стабилизированным" катализатором. В случаях, когда стабилизатор изменяет фазовое распределение носителя, величина фазовой стабилизации может меняться с количеством добавленного стабилизатора, причем лучшие параметры катализатора обычно достигаются при фазовой стабилизации от 70% до 100%. Кроме того, часть оксида гафния может быть замещена оксидом циркония до равного количества по массе, чтобы снизить стоимость и массу катализатора. Оксид циркония также известен как диоксид циркония и имеет химическую формулу ZrO2.
Чтобы получить оксидно-гафниевый носитель высокой теоретической плотностью, гафнийсодержащий носитель может изготавливаться посредством способа, известного как горячее изостатическое прессование. Можно сделать ссылку на многочисленные патенты, такие как патенты США №№ 4952353; и 5080841, оба из которых включены сюда посредством ссылки. Альтернативным способом получения оксидно-гафниевого носителя является спекание. Спекание также является хорошо известным способом получения продуктов из порошкообразных материалов. Порошкообразные материалы нагревают в печи выше температуры Таммана данных материалов. Нагрев продолжают до тех пор, пока частицы не начнут слипаться друг с другом. В горячем изостатическом прессовании или спекании к оксиду гафния могут быть добавлены дополнительные компоненты оксид церия, и/или оксид иттрия, и/или оксид циркония.
После получения оксидно-гафниевого носителя активный металл может быть нанесен на поверхность данного носителя различными методами. Может быть сделана ссылка на патент США № 4348303, который включен сюда посредством ссылки. В одном варианте осуществления активный металл наносят на носитель путем пропитки носителя раствором соли металла или путем распыления раствора соли металла на носитель. Например, иридий можно наносить сначала на носитель путем образования трихлорида иридия или тетрахлорида иридия и затем путем растворения данной соли, например, в спирте. Рутений можно наносить на носитель путем образования трихлорида рутения или тетрахлорида рутения и также путем растворения данной соли в спирте. Родий можно наносить на носитель путем образования и последующего растворения хлорида родия. Подходящие концентрации раствора соли могут быть большими, до 10% масс. соли в расчете на объединенную массу соли и растворителя. Однако 5% масс. растворы соли также являются подходящими. После пропитки носителя раствором соли или распыления на носитель раствора соли носитель можно сушить путем вращения в барабане в горячем воздухе. Нанесение раствора соли металла с последующей сушкой можно выполнять множество раз. После сушки соль остается на поверхности носителя, но данную соль металла еще необходимо превратить в оксид металла. В зависимости от используемого металла носитель можно нагревать до температуры свыше 500-600°F (260-316°С), чтобы окислить и активировать металл. Содержание металла обычно варьирует от 0,1% до 50%. Высокое содержание металла является предпочтительным для максимальной эффективности и срока службы катализатора, а варианты осуществления с низким содержанием металла могут быть использованы для снижения расходов в случаях, когда максимальная реакционная способность и срок службы не требуются.
В одном варианте осуществления оксидно-гафниевый катализатор с одним или более активными металлами применим для ускорения реакции ракетного топлива и, особенно, однокомпонентного топлива. Стабилизированный оксидно-гафниевый катализатор с одним или более активными металлами также является пригодным. Однокомпонентным ракетным топливом обычно называют композиции, которые могут содержаться в одном баке для хранения в противоположность двухкомпонентному топливу. Однокомпонентное ракетное топливо может быть газообразным или жидким и может включать в себя одно химическое соединение или смесь химических соединений, такую как объединение горючего и окислителя, и, необязательно, одного или более охладителей или растворителей, таких как вода. Реакция однокомпонентного ракетного топлива является экзотермической с получением больших объемов газов. Так как реакция является сильно экзотермической, данная реакция обычно является самоподдерживающейся после начала. Реакция ракетного топлива с получением газообразных продуктов имеет множество применений. Газ, генерируемый путем реакции ракетного топлива, может быть использован для обеспечения движущей силы, или для работы турбины для генерации электроэнергии, или для работы других механических систем.
Когда однокомпонентное ракетное топливо обеспечено в виде одного химического соединения, оно может включать гидразин. Гидразиновые ракетные топлива включают в себя 100% гидразин, симметричный диметилгидразин, несимметричный диметилгиразин и монометилгидразин, но не ограничиваются ими. Другие однокомпонентные ракетные топлива с единственным химическим соединением включают в себя пероксид водорода и газообразную или жидкую закись азота, но не ограничиваются ими.
Однокомпонентное ракетное топливо также может быть образовано в виде смеси одного или более однокомпонентных ракетных топлив с единственным химическим соединением, как указано выше, возможно с добавлением разбавителей, стабилизаторов и других модификаторов, например однокомпонентное ракетное топливо на основе пероксида водорода обычно включает в себя воду, чтобы стабилизировать его при хранении.
Однокомпонентное ракетное топливо может альтернативно содержать окислитель и горючее, и, необязательно, один или более разбавителей или растворителей, таких как вода, аммиак или гелий (для газообразных однокомпонентных ракетных топлив).
Типичные окислители включают в себя кислород и неорганические или органические нитраты, такие как нитрат гидроксиламмония, динитрат аминогуанидина, нитрат гуанидина, нитрат аммония, динитрамид аммония или нитрат гидроксиэтилгидразиния, но не ограничиваются ими. Производные нитрата гидроксиламмония также могут быть использованы в качестве окислителя, включая N-метил, N-этил, О-метил или О-этил производные нитрата гидроксиламмония, но не ограничиваясь ими.
В некоторых случаях предназначенные для хранения под давлением или при низкой температуре однокомпонентные ракетные топлива могут быть образованы из компонентов, которые не находятся в той же фазе при окружающих атмосферных условиях, как, например, смесь закиси азота и метанола.
Типичное горючее включает водород, углеводороды, глицин, бетаин, спирты и амины и нитраты аминов, такие как нитрат триэтаноламмония, гидроксиламин, нитрат диметилгидроксиламмония, нитрат диэтилгидроксиламмония, диэтилгидроксиламин, динитрат триэтилендиамина, динитрат диэтилентриамина, динитрат этилендиамина, нитрат метиламмония, нитрат диметиламмония, нитрат триметиламмония, нитрат метилгидразиния, нитрат этилендигидразиния, нитрат гидразиния, формиат гидразиния, ацетат гидразиния, карбазат гидразиния, аминоацетат гидразиния, нитрат триаминогуанидиния, карбогидразид, нитрат карбогидразида, динитрат карбогидразида, мочевину, формамид, N-метилформамид, N,N-диметилформамид, нитрат гуанидия, динитрат 1,4-бис-кубандиаммония, соль 3-нитро-1,2,4-триазол(5)он гидразиния, соль 3-нитро-1,2,4-триазол(5)он аммония, N-метил-2-пирролидон, производные азеридина, производные азетана и их комбинации, но не ограничивается ими.
Вышеприведенные перечни окислителей и горючих подразумеваются не исчерпывающими, а только типичными. Дополнительные ракетные топлива, которые могут быть использованы с раскрываемыми здесь катализаторами, могут быть найдены в патентах США №№ 6984273; 5648052; 5485722; 4047988; и 5223057, все из которых определенно включены сюда посредством ссылки.
Катализатор может быть заключен в каталитической камере и использоваться в качестве газогенератора, как изображено на фиг.1. Обычно в газогенератор 100 (или каталитический реактор) подается ракетное топливо из бака для хранения (не показан). В системах с однокомпонентным ракетным топливом один бак для хранения может служить для хранения окислителя, горючего и растворителя. Однако в других вариантах осуществления множество баков для хранения может быть использовано, чтобы содержать окислитель, горючее и растворитель до смешения снаружи или внутри газогенератора 100. Газогенератор 100 включает в себя закрытый корпус 101 для удерживания слоя 102 катализатора внутри закрытого корпуса 101. Закрытый корпус 101 может быть цилиндрическим. Внутренние стенки корпуса 101 могут быть защищены изолятором 112, предпочтительно керамическим, таким как оксид алюминия, чтобы снизить теплоперенос к корпусу 101. Индивидуальные частицы катализатора в слое 102 катализатора могут быть сформированы в форме таблеток, которые предпочтительно плотно упакованы внутри корпуса 101 и удерживаются пористой пластиной 106, прикрепленной к корпусу 101. Опорная пластина 106 содержит отверстия, которые являются достаточно узкими, чтобы удерживать гранулы катализатора, в то же время обеспечивая достаточно большую полную открытую площадь, позволяющую поток образующихся газообразных продуктов реакции сквозь нее в направлении выхода 114. Опорная пластина 106 может быть сделана из тугоплавкого металла или комбинации металлов, включая ниобий, молибден, тантал, вольфрам и рений, но не ограничиваясь ими. Покрытие, такое как иридий, может быть нанесено на тугоплавкий металл опорной пластины 106. Ракетное топливо может подаваться в слой 102 катализатора через один или множество впрыскивающих элементов 104, соединенных с одним или множеством мест 116 впрыскивания, которые могут быть образованы в виде щелей или отверстий, которые являются достаточно тонкими, чтобы предотвратить попадание гранул катализатора в слой 102 катализатора, но с достаточной полной площадью, чтобы впускать поток ракетного топлива без избыточного перепада давления. В одном варианте осуществления один или более впрыскивающих элементов 104 могут проникать в слой 102 катализатора, так что ракетное топливо впрыскивают на некотором расстоянии от внутренних стенок крепления инжектора и/или корпуса 101. Ракетное топливо реагирует при контакте с катализатором 102 с получением газообразных продуктов, которые покидают слой 102 катализатора через отверстия в опорной пластине 106 и направляются через выход 114. Выход 114 может соединяться с одним из множества устройств, таких, что данный газ используется для получения реактивной силы или работы. Например, газы могут направляться в камеру для хранения и затем выходить через один или более клапанов для получения реактивной тяги для вывода на орбиту спутников, космических зондов, средств выведения, ракет или любых других типов летательных аппаратов. В другом примере газы могут направляться в турбину, которая, в свою очередь, соединена с генератором для получения электрической энергии. В других вариантах осуществления газы, выходящие из газогенератора 100, могут соединяться с механическими устройствами, такими как компрессоры, насосы и подобное. Конкретное применение или нагрузка не ограничиваются в данном изобретении.
Альтернативно, газогенератор 100 может непосредственно присоединяться к соплу 110, как изображено на фиг.2. В данной конфигурации газогенератора 100 и сопла 110 данное устройство может рассматриваться в качестве автономного толкателя для получения реактивной тяги для вывода на орбиту спутников, космических зондов, средств выведения, ракет или любых других типов летательных аппаратов.
Фиг.1 и 2 представляют собой только схематичные рисунки, изображающие газогенератор и толкатель, показывающие основные компоненты газогенератора и толкателя. Следует понимать, что компоненты, опущенные из газогенератора и толкателя на фиг.1 и 2, будут хорошо известны специалисту в данной области техники. Например, можно сделать ссылку на патенты США №№ 5648052; 4352782; и 4069664, включенные сюда посредством ссылки. Также следует понимать, что параметры промотирования реакции газогенератора 100, описанного выше, могут быть приспособлены путем замены и/или комбинации любого числа частиц или элементов катализаторов, изготовленных согласно любой геометрии или размеру, без изменения реализованных здесь принципов изобретения.
ПРИМЕРЫ
Нижеследующее суммирует ряд тестов, выбранных из большего объема тестов, выполненных Aerojet между 20 июня 2010 г. и 7 апреля 2011 г. в качестве части продолжающейся внутренней программы исследований и разработок, которые представлены здесь как примеры, демонстрирующие применение данного изобретения.
Тест 1 - Aerojet проводил тестирование срока службы катализатора известного уровня техники, содержащего приблизительно 5% иридия, нанесенного на стабилизированный оксид циркония. Тестирование содержало загрузку катализатора в тяжеловесный тестовый толкатель и работу в запрещенном режиме работы до колебания давления внутри толкателя, известного специалистам в данной области техники как "колебание давления камеры", которое увеличивает повреждение, происходящее с катализатором, превышающее 75% давления камеры по амплитуде. Это происходило приблизительно после 30 минут суммарного времени горения.
Тест 2 - Aerojet проводил тест срока службы, который был идентичен во всех отношениях тесту 1, за исключением того, что тестовый толкатель загружали оксидно-гафниевым катализатором, содержащим приблизительно 5% иридия, изготовленным согласно настоящему изобретению, который достигал приблизительно 53 минут суммарного времени горения до появления таких же критериев окончания теста.
Тест 3 - Aerojet проводил тест срока службы, в котором модифицированный тестовый толкатель загружали катализатором, идентичным катализатору, использованному в тесте 2, который достигал приблизительно 56 минут суммарного времени горения до появления таких же критериев окончания теста.
Тест 4 - Aerojet проводил тест срока службы, который был идентичен во всех отношениях тесту 3, за исключением того, что тестовый толкатель загружали оксидно-гафниевым катализатором, стабилизированным оксидом церия, содержащим приблизительно 5% иридия, изготовленным согласно настоящему изобретению, который достигал приблизительно 146 минут суммарного времени горения до появления таких же критериев окончания теста.
Тест 5 - Aerojet проводил тест срока службы, в котором дополнительно модифицированный тестовый толкатель загружали катализатором, идентичным катализатору, использованному в тесте 4, который достигал приблизительно 285 минут суммарного времени горения до появления таких же критериев окончания теста.
Тест 6 - Aerojet проводил тест срока службы, который был идентичен во всех отношениях тесту 5, за исключением того, что тестовый толкатель загружали оксидно-гафниевым катализатором, стабилизированным оксидом иттрия, содержащим приблизительно 5% иридия, изготовленным согласно настоящему изобретению, и данный толкатель работал при пониженном внутреннем давлении, который достигал приблизительно 689 минут суммарного времени горения до появления таких же критериев окончания теста.
Хотя были раскрыты и описаны иллюстративные варианты осуществления, будет понятно, что здесь могут быть сделаны различные изменения без отклонения от сущности и объема данного изобретения.

Claims (19)

1. Катализатор ракетного топлива, содержащий:
носитель, изготовленный посредством горячего изостатического прессования и имеющий теоретическую плотность, по меньшей мере, 97%, который содержит оксид гафния и вплоть до равной части оксид циркония по массе, причем объединенные оксид гафния и оксид циркония, когда присутствуют, составляют, по меньшей мере, 50% масс. носителя, и
активный металл на поверхности данного носителя, причем активный металл выбран из платиновой группы металлов, включающей родий, рутений, палладий, осмий, иридий и платину.
2. Катализатор по п. 1, в котором данный носитель представляет собой оксид гафния на, по меньшей мере, 99% масс.
3. Катализатор по п. 1, в котором данный носитель дополнительно содержит стабилизатор.
4. Катализатор по п. 3, в котором данный стабилизатор содержит материал, выбранный из группы, содержащей оксид церия и оксид иттрия или любую их комбинацию.
5. Катализатор по п. 1, в котором данный активный металл составляет от 0,1% масс. до 50% масс. в расчете на полную массу катализатора.
6. Катализатор по п. 1, в котором площадь поверхности катализатора составляет от 0,05 м2/г до 40 м2/г.
7. Газогенератор, содержащий:
корпус, определяющий пространство внутри данного корпуса;
катализатор в данном пространстве внутри корпуса, причем
данный катализатор содержит носитель, изготовленный посредством горячего изостатического прессования и имеющий теоретическую плотность, по меньшей мере, 97%, который содержит оксид гафния и вплоть до равной части оксид циркония по массе, а также, по меньшей мере, один активный металл на поверхности данного носителя, причем активный металл выбран из платиновой группы металлов, включающей родий, рутений, палладий, осмий, иридий и платину;
вход для ракетного топлива в данный корпус; и
выход из данного корпуса для продуктов реакции, содержащих газ.
8. Газогенератор по п. 7, в котором данный носитель дополнительно содержит стабилизатор.
9. Газогенератор по п. 8, в котором данный стабилизатор содержит материал, выбранный из группы, содержащей оксид церия и оксид иттрия или любую их комбинацию.
10. Газогенератор по п. 7, дополнительно содержащий сопло, присоединенное к данному выходу.
11. Газогенератор по п. 7, в котором данный катализатор содержит слой частиц.
12. Газогенератор по п. 11, в котором данный носитель дополнительно содержит стабилизатор.
13. Газогенератор по п. 12, в котором данный стабилизатор содержит материал, выбранный из группы, содержащей оксид церия и оксид иттрия или любую их комбинацию.
14. Газогенератор по п. 11, в котором частицы катализатора имеют максимальный размер от 0,5 мм до 2,0 мм.
15. Способ промотирования реакции ракетного топлива в продукты реакции, содержащие газ, причем в упомянутом способе:
осуществляют контакт ракетного топлива с катализатором, причем катализатор содержит носитель, изготовленный посредством горячего изостатического прессования и имеющий теоретическую плотность по меньшей мере 97%, который содержит оксид гафния и вплоть до равной части оксид циркония по массе, а также, по меньшей мере, один активный металл на поверхности данного носителя, причем активный металл выбран из платиновой группы металлов, включающей родий, рутений, палладий, осмий, иридий и платину; и
превращают данное ракетное топливо в один или более продуктов реакции при контакте с данным катализатором.
16. Способ по п. 15, в котором данное ракетное топливо содержит окислитель, выбранный из группы, состоящей из кислорода, нитрата гидроксиламмония, нитрата аммония, перхлората аммония, перхлората лития, динитрамида аммония и нитрата гидроксиэтилгидразиния или любой их комбинации.
17. Способ по п. 15, где данное ракетное топливо содержит горючее, выбранное из группы, состоящей из водорода, глицина, бетаина, углеводородов, спиртов, нитрата триэтаноламина, тринитрата трис(2-аминоэтил)амина, нитрата гидразиния и нитрата гидроксиэтилгидразиния или любой их комбинации.
18. Способ по п. 15, где дополнительно направляют продукты реакции через сопло, генерируя реактивную тягу.
19. Способ по п. 15, где данное ракетное топливо содержит окислитель, горючее и воду.
RU2013157828/04A 2011-06-01 2012-05-14 Катализатор, газогенератор и толкатель с улучшенной термической способностью и коррозионной стойкостью RU2595895C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/151,155 US20120304620A1 (en) 2011-06-01 2011-06-01 Catalyst, gas generator, and thruster with improved thermal capability and corrosion resistance
US13/151,155 2011-06-01
PCT/US2012/037846 WO2012166335A1 (en) 2011-06-01 2012-05-14 Catalyst, gas generator, and thruster with improved thermal capability and corrosion resistance

Publications (2)

Publication Number Publication Date
RU2013157828A RU2013157828A (ru) 2015-07-20
RU2595895C2 true RU2595895C2 (ru) 2016-08-27

Family

ID=47259739

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013157828/04A RU2595895C2 (ru) 2011-06-01 2012-05-14 Катализатор, газогенератор и толкатель с улучшенной термической способностью и коррозионной стойкостью

Country Status (7)

Country Link
US (1) US20120304620A1 (ru)
EP (1) EP2714264B1 (ru)
JP (1) JP6081452B2 (ru)
CN (1) CN103796749A (ru)
IL (1) IL229471A (ru)
RU (1) RU2595895C2 (ru)
WO (1) WO2012166335A1 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986229B1 (fr) * 2012-01-27 2014-03-21 Centre Nat Detudes Spatiales Cnes Nouveaux monergols ioniques a base de n2o pour la propulsion spatiale
DE102013203470A1 (de) 2013-03-01 2014-09-04 Evonik Industries Ag Verfahren zur Herstellung von Ketonen aus Epoxiden
BR112015028850A2 (pt) * 2013-05-20 2017-07-25 Ecaps Ab motor de foguete químico de modo duplo, sistema de propulsão de modo duplo, veículo espacial, e, uso de uma combinação de bipropelente
KR20160011656A (ko) * 2013-05-29 2016-02-01 이삽스 에이비 듀얼 모드 화학 로켓 엔진, 및 상기 로켓 엔진을 포함하는 듀얼 모드 추진 시스템
CN104788269B (zh) * 2014-01-21 2018-05-08 比亚迪股份有限公司 一种气体发生剂组合物及其制备方法、安全气囊
JP6574273B2 (ja) * 2015-06-30 2019-09-11 エアロジェット ロケットダイン インコーポレイテッド 二段触媒スラスター
AT520683B1 (de) * 2017-12-11 2020-09-15 Umweltdata G M B H Vorrichtung und verfahren zur erfassung eines forstbestandes
WO2020131099A1 (en) * 2018-12-21 2020-06-25 Aerojet Rocketdyne, Inc. Reduced vapor-toxicity hydrazine composition
EP3914575A1 (en) * 2019-01-24 2021-12-01 Aerojet Rocketdyne, Inc. Reduced vapor-toxicity hydrazine composition
RU2721397C1 (ru) * 2019-05-06 2020-05-19 Федеральное государственное унитарное предприятие "Опытное конструкторское бюро "Факел" ФГУП "ОКБ "Факел" Однокомпонентный жидкостный ракетный двигатель малой тяги
CN112010719B (zh) * 2019-05-29 2021-11-30 南京理工大学 一种含铝炸药及其制备方法
WO2021107913A1 (en) * 2019-11-25 2021-06-03 Aerojet Rocketdyne, Inc. Catalyst-containing material
JP7360988B2 (ja) 2020-04-10 2023-10-13 株式会社Ihiエアロスペース 加圧ガス供給装置とこれを用いた衛星用推進装置
CN113058639B (zh) * 2021-03-09 2022-06-28 中国原子能科学研究院 Zsm-5为载体的贵金属催化剂及其制备方法和应用
CN112973680B (zh) * 2021-03-10 2022-09-06 中国科学院长春应用化学研究所 耐腐蚀金属氧化物基复合材料、其制备方法及其应用
CN115677432B (zh) * 2022-10-13 2024-04-05 张家港楚人新材料科技有限公司 非晶金属氧化物在固体推进剂中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005057A1 (en) * 1995-07-27 1997-02-13 Catalytica, Inc. Catalyst support for high temperature applications and catalysts and catalytic processes employing same
RU2313391C2 (ru) * 2005-02-09 2007-12-27 Общество с ограниченной ответственностью "ВАМИК" Катализатор и способ получения бензина-алкилата
RU2360735C2 (ru) * 2003-10-16 2009-07-10 Дау Текнолоджи Инвестментс Ллс Катализаторы для получения алкиленоксидов, имеющие улучшенную стабильность, эффективность и/или активность

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2984576A (en) * 1956-10-10 1961-05-16 Du Pont Uses of zirconia sols
US3375127A (en) * 1964-02-19 1968-03-26 Fenwal Inc Plasma arc spraying of hafnium oxide and zirconium boride mixtures
US4047988A (en) 1967-06-29 1977-09-13 The United States Of America As Represented By The Secretary Of The Navy Liquid monopropellant compositions
US5223057A (en) 1969-03-28 1993-06-29 The United States Of America As Represented By The Secretary Of The Navy Monopropellant aqueous hydroxyl ammonium nitrate/fuel
US4348303A (en) 1970-10-20 1982-09-07 United Technologies Corporation Catalyst for hydrazine decomposition
US4069664A (en) 1974-01-24 1978-01-24 Hughes Aircraft Company Monopropellant thruster
US4352782A (en) 1981-02-20 1982-10-05 Rocket Research Company Catalytic gas generator
JPH0320588A (ja) 1989-06-16 1991-01-29 Nkk Corp 熱間静水圧プレス処理方法
US4952353A (en) 1989-12-28 1990-08-28 Gte Laboratories Incorporated Hot isostatic pressing
US5485722A (en) 1993-10-07 1996-01-23 Olin Corporation Catalytic decomposition of hydroxylammonium nitrate-based monopropellants
US5648052A (en) 1995-05-30 1997-07-15 Martin Marietta Corporation Liquid monopropellant gas generator
WO1997005087A1 (fr) * 1995-07-27 1997-02-13 Sensor Technology Co., Ltd. Composition explosive pour coussin gonflable de securite et son procede de production
US6984273B1 (en) * 1999-07-29 2006-01-10 Aerojet-General Corporation Premixed liquid monopropellant solutions and mixtures
US7390768B2 (en) * 2002-01-22 2008-06-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Stabilized tin-oxide-based oxidation/reduction catalysts
US20030186805A1 (en) * 2002-03-28 2003-10-02 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
US7919659B2 (en) * 2004-07-09 2011-04-05 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production
US20060137786A1 (en) * 2004-12-10 2006-06-29 Daicel Chemical Industries, Ltd. Gas generator
US20080064914A1 (en) * 2005-03-28 2008-03-13 Fokema Mark D Thermally stable catalyst and process for the decomposition of liquid propellants
US20070093587A1 (en) * 2005-10-25 2007-04-26 Starfire Systems Silicon carbide precursors and uses thereof
WO2009091025A1 (ja) * 2008-01-16 2009-07-23 Toyota Jidosha Kabushiki Kaisha 燃料電池用電極触媒及びそれを用いた固体高分子型燃料電池
US7685940B1 (en) * 2008-03-21 2010-03-30 Raytheon Company Rocket motor with pellet and bulk solid propellants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005057A1 (en) * 1995-07-27 1997-02-13 Catalytica, Inc. Catalyst support for high temperature applications and catalysts and catalytic processes employing same
RU2360735C2 (ru) * 2003-10-16 2009-07-10 Дау Текнолоджи Инвестментс Ллс Катализаторы для получения алкиленоксидов, имеющие улучшенную стабильность, эффективность и/или активность
RU2313391C2 (ru) * 2005-02-09 2007-12-27 Общество с ограниченной ответственностью "ВАМИК" Катализатор и способ получения бензина-алкилата

Also Published As

Publication number Publication date
EP2714264B1 (en) 2018-05-02
EP2714264A4 (en) 2015-05-13
JP2014519408A (ja) 2014-08-14
EP2714264A1 (en) 2014-04-09
JP6081452B2 (ja) 2017-02-15
WO2012166335A1 (en) 2012-12-06
CN103796749A (zh) 2014-05-14
US20120304620A1 (en) 2012-12-06
RU2013157828A (ru) 2015-07-20
IL229471A0 (en) 2014-01-30
IL229471A (en) 2017-12-31

Similar Documents

Publication Publication Date Title
RU2595895C2 (ru) Катализатор, газогенератор и толкатель с улучшенной термической способностью и коррозионной стойкостью
CN1321950C (zh) 二硝酰胺基液体单组份推进剂
Florczuk et al. Performance evaluation of the hypergolic green propellants based on the HTP for a future next generation spacecrafts
US20090007541A1 (en) Thruster using nitrous oxide
Kamal et al. Application of ionic liquids to space propulsion
JP5642538B2 (ja) ハイブリッドロケットモータ
JP6154142B2 (ja) 宇宙推進のためのn2oを主体とした新規なイオン単元推進薬
EP2847453B1 (en) Improved reactor for ammonium dinitramide-based liquid monopropellants, and thruster including the reactor
Cong et al. Propulsive performance of hypergolic H202/kerosene bipropellant
Bonifacio et al. Novel structured catalysts for hydrogen peroxide decomposition in monopropellant and hybrid rockets
Lee et al. Performance characteristics of silver catalyst bed for hydrogen peroxide
US3779009A (en) Catalytic method of producing high temperature gases
CN111173647A (zh) 双组元氧化亚氮发动机
Makled et al. Modeling of hydrazine decomposition for monopropellant thrusters
Meinhardt et al. Performance and life testing of small HAN thrusters
Harmansa et al. Development of a water electrolysis propulsion system for small satellites
Bonifacio et al. Novel manufacturing method for hydrogen peroxide catalysts: A performance verification
Surmacz et al. Experimental evaluation of a catalyst bed based on MnxOy/Al2O3 catalyst for decomposition of 98% hydrogen peroxide
US9149795B2 (en) Corrosion resistant catalysts for decomposition of liquid monopropellants
Bonifacio et al. Experimental assessment of hydrogen peroxide decomposition in a monopropellant thruster
Ferroni Pereira et al. CoMn‐Spinel Oxides as Supported Catalyst for Rocket‐Grade Hydrogen Peroxide Decomposition
US20160016152A1 (en) Corrosion Resistant Catalysts for Decomposition of Liquid Monopropellants
Cervone et al. Development of green hydrogen peroxide monopropellant rocket engines and testing of advanced catalytic beds
BONDUGULA et al. Hydrogen peroxide based green propellants for future space propulsion applications
Fortini et al. WITHDRAWN APPLICATION AS PER THE LATEST USPTO WITHDRAWN LIST