WO2009091025A1 - 燃料電池用電極触媒及びそれを用いた固体高分子型燃料電池 - Google Patents

燃料電池用電極触媒及びそれを用いた固体高分子型燃料電池 Download PDF

Info

Publication number
WO2009091025A1
WO2009091025A1 PCT/JP2009/050533 JP2009050533W WO2009091025A1 WO 2009091025 A1 WO2009091025 A1 WO 2009091025A1 JP 2009050533 W JP2009050533 W JP 2009050533W WO 2009091025 A1 WO2009091025 A1 WO 2009091025A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
platinum
fuel cell
oxide
electrode catalyst
Prior art date
Application number
PCT/JP2009/050533
Other languages
English (en)
French (fr)
Inventor
Tetsuo Nagami
Yuichiro Hama
Hirofumi Iisaka
Kumiko Nomura
Mikihiro Kataoka
Tatsuya Hatanaka
Kazutaka Hiroshima
Yu Morimoto
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009005969A external-priority patent/JP2009193956A/ja
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2009091025A1 publication Critical patent/WO2009091025A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrode catalyst for a fuel cell in which the performance of a conventional platinum catalyst or platinum alloy catalyst is improved, and a polymer electrolyte fuel cell using the same.
  • a cathode and an anode catalyst of an electrode catalyst of a polymer electrolyte fuel cell a catalyst in which a noble metal such as platinum or a platinum alloy is supported on carbon black has been used.
  • Platinum-supported carbon black is obtained by adding sodium hydrogen sulfite to a chloroplatinic acid aqueous solution, then reacting with hydrogen peroxide solution, supporting the resulting platinum colloid on carbon black, washing, and heat-treating as necessary. It is common to prepare.
  • the electrode of a polymer electrolyte fuel cell is prepared by dispersing platinum-supported carbon black in a polymer electrolyte solution, preparing an ink, applying the ink to a gas diffusion substrate such as carbon paper, and drying. .
  • An electrolyte membrane-electrode assembly (MEA) is assembled by sandwiching a polymer electrolyte membrane between these two electrodes and performing hot pressing.
  • platinum is an expensive noble metal, and it is desired that both the anode catalyst and the cathode catalyst exhibit sufficient performance with a small amount of support. Therefore, studies have been made to increase the catalytic activity with a smaller amount, and an alloy catalyst composed of platinum and various metals has been developed. Specifically, there is an alloy catalyst composed of platinum and ruthenium or molybdenum for the purpose of avoiding CO poisoning.
  • an electrode catalyst for a fuel cell using a platinum-cobalt alloy as a catalyst component a transition metal-4 nitride structure (MN4 structure) is arranged on the catalyst surface and / or in the vicinity of the catalyst.
  • MN4 structure transition metal-4 nitride structure
  • the current fuel cell for automobiles has a large amount of Pt used per unit, and a significant reduction in the amount of Pt used is required for future popularization.
  • Pt alloy catalysts such as PtCo are now in a practical stage.
  • the level is not sufficient for the target.
  • the overvoltage caused by the temporary poisoning by OH is still large, and further OH poisoning is required to drastically increase the mass activity of Pt.
  • the fuel cell electrode catalyst that has improved the performance of the conventional platinum catalyst or platinum alloy catalyst is not sufficient in the power generation performance of the anode catalyst and the cathode catalyst, and the development of a higher performance catalyst has been desired.
  • An object of this invention is to aim at the performance improvement of a platinum catalyst or a platinum alloy catalyst.
  • SMSI Short Metal Support Interaction
  • the present inventors arrived at the present invention by thinking that Pt or a Pt alloy can be brought into contact with a substance having an SMSI effect to optimally control the electron density on the surface of the Pt or Pt alloy.
  • the present invention relates to a fuel cell comprising a catalyst component made of platinum or a platinum alloy, a carrier that supports the catalyst component as an optional component, and a metal oxide that reduces poisoning of the catalyst component.
  • the wave number of the spectrum having the maximum peak area in IR absorption of CO adsorbed on the platinum or platinum alloy surface in the catalyst component is 2060 cm ⁇ 1 or more.
  • the electrode catalyst for a fuel cell of the present invention uses a metal oxide or the like as a carrier or additive, and controls the electron density on the Pt surface to an appropriate value by an electronic interaction between the oxide or the like and platinum or a platinum alloy. . That is, the electron density on the Pt surface is lowered and oxygen poisoning is weakened.
  • the electron density on the Pt surface uses the IR absorption spectrum position (wave number) of CO adsorbed on the Pt surface as an index, and a catalyst having this value of 2060 cm ⁇ 1 or more has excellent catalytic activity.
  • the metal oxide is disposed, for example, (1) contained in the support surface and / or inside, (2) as a promoter in the catalyst component made of platinum or a platinum alloy. It is selected from (3) included as a core material of a catalyst component made of platinum or a platinum alloy, (4) included as an additive in an electrode catalyst, and (5) included as the support.
  • Preferred examples of the metal oxide used in the fuel cell electrode catalyst of the present invention include at least one transition metal oxide selected from hafnium oxide, tantalum oxide, titanium oxide, niobium oxide, and silicon oxide.
  • the catalyst component used for the fuel cell electrode catalyst of the present invention is platinum or a platinum alloy.
  • the platinum alloy is composed of platinum and a transition metal, and the transition metal is ruthenium (Ru), molybdenum (Mo), osnium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), iron.
  • Ru ruthenium
  • Mo molybdenum
  • Mo molybdenum
  • Co cobalt
  • Crhodium Rh
  • Ir iridium
  • Fe nickel (Ni), titanium (Ti), tungsten (W), palladium (Pd), rhenium (Re), chromium (Cr), manganese (Mn), niobium (Nb), tantalum (Ta)
  • a preferable example is one selected from gold (Au).
  • metal oxide used in the fuel cell electrode catalyst of the present invention include tantalum oxide and / or niobium oxide.
  • a metal oxide comprising tantalum oxide and niobium oxide and containing 10 to 95 mol% of niobium oxide is particularly preferable.
  • FIG. 1 shows the absorption wave number of the adsorbed CO species of each catalyst sample.
  • FIG. 2 shows the relationship between the Ta 2 O 5 / Pt ratio and the absorption wave number of adsorbed CO.
  • FIG. 3 shows the relationship between the Nb 2 O 5 / Pt ratio and the absorption wave number of adsorbed CO.
  • FIG. 4 shows the Pt particle size in the electrode catalyst added with TaOx.
  • FIG. 5 shows the result of TEM observation of the sample of Example 1. A: TEM image of a general site; B: TEM image of a specific site.
  • FIG. 6 shows the CO adsorption amount in the electrode catalyst to which TaOx was added.
  • FIG. 7 shows the chemical bonding state of Pt in the electrode catalyst with TaOx added.
  • FIG. 1 shows the absorption wave number of the adsorbed CO species of each catalyst sample.
  • FIG. 2 shows the relationship between the Ta 2 O 5 / Pt ratio and the absorption wave number of adsorbed CO.
  • FIG. 3 shows
  • FIG. 8 shows the chemical bonding state of Ta in the electrode catalyst to which TaOx is added.
  • FIG. 9 shows measurement results of mass activity by MEA produced using an electrode catalyst to which TaOx was added.
  • FIG. 10 shows the Pt particle size in the electrode catalyst added with NbOx.
  • FIG. 11 shows the result of TEM observation of the sample of Example 10 (a TEM image of a general part).
  • FIG. 12 shows the amount of CO adsorption on the electrode catalyst with NbOx added.
  • FIG. 13 shows the state of chemical bonding of Pt in the electrode catalyst added with NbOx.
  • FIG. 14 shows the state of chemical bonding of Nb in the electrode catalyst with NbOx added.
  • FIG. 15 shows the measurement result of CO oxidation start potential (Eosp) by RDE produced using an electrode catalyst to which NbOx was added.
  • FIG. 16 shows the measurement result of the electrochemical surface area (SA (CO)) obtained from the CO adsorption amount by the RDE produced using the electrode catalyst to which NbOx was added.
  • FIG. 17 shows the measurement result of the electrochemical surface area (ECSA) obtained from the amount of H adsorption by RDE produced using an electrode catalyst added with NbOx.
  • FIG. 18 shows the measurement results of the CO oxidation start potential (Eosp) by RDE produced using an electrode catalyst to which TaOx was added.
  • FIG. 19 shows the measurement result of the electrochemical surface area (SA (CO)) obtained from the CO adsorption amount by the RDE produced using the electrode catalyst to which TaOx was added.
  • FIG. 20 shows the measurement result of the electrochemical surface area (ECSA) obtained from the amount of H adsorption by RDE produced using an electrode catalyst to which TaOx was added.
  • FIG. 21 shows measurement results of voltage performance under high and low humidification conditions by MEA produced using an electrode catalyst to which NbOx was added.
  • FIG. 22 shows the CO bond peak position in the CO adsorption IR method of the electrode catalyst to which TaOx and NbOx are added.
  • FIG. 23 shows the Pt particle size in the electrode catalyst to which TaOx and NbOx were added.
  • FIG. 24 shows the CO adsorption amount in the electrode catalyst to which TaOx and NbOx are added.
  • FIG. 25 shows the voltage performance under high humidification conditions by MEA produced using an electrode catalyst to which TaOx and NbOx are added as the relationship between the blending ratio of Ta and Nb and the voltage performance.
  • FIG. 26 shows the voltage performance under low humidification conditions by MEA produced using an electrode catalyst to which TaOx and NbOx are added as the relationship between the blending ratio of Ta and Nb and the voltage performance.
  • An electrode catalyst for a fuel cell according to the present invention comprises a catalyst component made of platinum or a platinum alloy, a carrier that supports the catalyst component as an optional component, and a metal oxide that reduces poisoning of the catalyst component. Including.
  • Catalyst component The catalyst component used in the fuel cell electrode catalyst of the present invention is platinum or a platinum alloy comprising platinum and a transition metal. Platinum is an expensive noble metal, and it is preferable that both the anode catalyst and the cathode catalyst exhibit sufficient performance with a small amount of support. In the fuel cell electrode catalyst of the present invention, the use amount of platinum can be reduced without impairing the catalytic activity by using an alloy catalyst composed of platinum and various transition metals.
  • the transition metal includes the following: ruthenium (Ru), molybdenum (Mo), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), iron (Fe), nickel (Ni), titanium (Ti), tungsten (W), palladium (Pd), rhenium (Re), chromium (Cr), manganese (Mn), niobium (Nb), tantalum (Ta), and gold (Au); Preferred is one or more selected from the group consisting of:
  • the supported density of platinum or platinum alloy is defined as the weight percentage of the supported platinum or platinum alloy with respect to the total weight of the electrode catalyst.
  • the carrying density is calculated by the following formula: platinum weight / (platinum weight + carrier weight) ⁇ 100.
  • platinum alloy it is calculated by the formula of (platinum weight + transition metal weight) / (platinum weight + transition metal weight + support weight) ⁇ 100.
  • the loading density of platinum or platinum alloy is preferably 10 to 60% by weight.
  • the composition of the platinum alloy is defined by the weight percent of platinum and / or transition metal with respect to the total weight of the supported platinum alloy. Such a composition is calculated by a formula of platinum weight / (platinum weight + transition metal weight) ⁇ 100.
  • the composition of the platinum alloy is preferably 90 to 100% by weight of platinum and 0 to 10% by weight of transition metal.
  • the carrier used in the fuel cell electrode catalyst of the present invention is an optional component, and is added to the electrode catalyst to support the catalyst component. Therefore, the catalyst component is not particularly limited as long as the catalyst component can be supported and the catalyst component itself has conductivity. Various materials conventionally used for fuel cell electrode catalysts can be used. For the purpose of supporting the catalyst component, a support material having electrical conductivity and a large specific surface area such as carbon black is preferable. By using a carrier having the above-described characteristics, a wider catalyst carrying area can be secured. As a result, the supported catalyst particles can be miniaturized, and as a result, the catalyst activity can be improved.
  • the carrier used in the fuel cell electrode catalyst of the present invention preferably has an electrical resistivity of 0.05 to 0.50 ⁇ ⁇ cm. Further, the specific surface area is preferably 30 to 1500 m 2 / g. Here, the electrical resistivity can be measured according to JIS K1469. The specific surface area can be measured by a nitrogen BET adsorption method.
  • Suitable carrier materials include, but are not limited to, for example, Ketjen EC (Ketjen Black International), Acetylene Black (Ketjen Black International), Vulcan XC-72R (Cabot) or Denka Black (DENKA). Such carbon powder.
  • metal oxide used in the fuel cell electrode catalyst of the present invention is an optional component and is added to the electrode catalyst for the purpose of mitigating catalyst poisoning and extracting the SMSI effect.
  • metal oxide By adding metal oxide to the electrode catalyst, it is possible to improve the mass activity by reducing the decrease in catalyst performance due to catalyst poisoning, and improve the catalyst activity and / or selectivity of the electrode catalyst by SMSI effect It becomes possible to make it.
  • the above-mentioned preferable effect by the addition of the metal oxide will be described in more detail below.
  • one or more transition metal oxides selected from hafnium oxide, tantalum oxide, titanium oxide, niobium oxide, silicon oxide and tin oxide are preferably exemplified.
  • the metal oxide is disposed, for example, (1) contained in the support surface and / or inside, (2) as a promoter in the catalyst component made of platinum or a platinum alloy. It is selected from (3) included as a core material of a catalyst component made of platinum or a platinum alloy, (4) included as an additive in an electrode catalyst, and (5) included as the support.
  • the metal oxide is preferably contained as a promoter in a catalyst component made of platinum or a platinum alloy.
  • the electrode catalyst for a fuel cell of the present invention is produced by supporting a catalyst component composed of platinum or a platinum alloy on a carrier using various methods commonly used in the art.
  • the electrode catalyst for a fuel cell of the present invention is a step in which a catalyst component which is a metal state or a metal complex and a carrier are brought into contact with each other in water to form a mixture (contact step); a base is added to the mixture to make the mixture alkaline.
  • a step of precipitating the catalyst component, which is a complex, as an insoluble hydroxide on the surface of the carrier precipitation step
  • a step of recovering the carrier on which the catalyst component hydroxide is precipitated recovery step
  • drying step drying the recovered carrier under vacuum Step
  • a method including a step of thermally reducing the dried support in a hydrogen atmosphere to obtain an electrode catalyst powder having a metal catalyst component supported on the support thermal reduction step
  • the electrode catalyst powder obtained in the thermal reduction step and a metal salt are brought into contact with each other in water to form a mixture ( Metal salt contact step); adding a base to the mixture to make it alkaline, and depositing the metal salt as an insoluble metal hydroxide on the surface of the electrode catalyst powder (metal hydroxide precipitation step); A step of recovering the electrode catalyst powder (metal hydroxide recovery step); a step of drying the recovered electrode catalyst powder under vacuum (metal hydroxide drying step); and a dried electrode catalyst powder in an inert gas atmosphere.
  • You may further include the process (baking process) of baking and obtaining the electrode catalyst powder containing a metal oxide.
  • the fuel cell electrode catalyst of the present invention may contain, as a carrier, a metal oxide that reduces the poisoning of the catalyst component.
  • the fuel cell electrode catalyst of the present invention comprises a step of bringing a catalyst component that is a metal state or a metal complex and a metal oxide used as a carrier into contact with each other in water (contact step); A step of adding a base to the mixture to make it alkaline, and depositing a metal or metal complex catalyst component as an insoluble hydroxide on the surface of the metal oxide (precipitation step); A step of recovering (recovery step); a step of drying the recovered metal oxide under vacuum (drying step); and a thermal reduction of the dried metal oxide in a hydrogen atmosphere, so that the metal catalyst component is a metal oxide. It is manufactured by a method including a step (thermal reduction step) of obtaining an electrocatalyst powder supported on the catalyst.
  • CO poisoning occurs when CO molecules are adsorbed on the platinum surface, CO poisoning can be mitigated by reducing the Pt—C bond strength.
  • the infrared (IR) absorption of an organic compound is proportional to the bond strength between the atoms constituting the compound. That is, a bond with higher bond strength absorbs IR corresponding to greater energy.
  • the IR energy is inversely proportional to the wavelength, it is proportional to the reciprocal wave number. Therefore, when the wave number shift of the absorption peak is observed when measuring the IR spectrum of a specific organic compound in multiple external environments, the shift to the high wave number region represents an increase in the absorption energy, It represents the relative improvement in bond strength caused by changes in the dynamic environment.
  • the wave number of the absorption peak of the C—O bond is expressed as the electron density index on the platinum surface. can do. That is, if the wave number of the absorption peak of CO adsorbed on the platinum surface is shifted to a high wave number region, it means that the CO bond strength in the CO molecule is relatively improved. Since CO is adsorbed on the platinum surface, the relative improvement in the C—O bond strength is thought to be due to the relative decrease in the Pt—C bond strength accompanying the decrease in the electron density on the platinum surface.
  • the shift of the absorption peak wave number of CO adsorbed on the platinum surface to a high wave number region means that the electron density on the platinum surface has decreased, and therefore, the tendency of OH poisoning, which is a problem in the cathode catalyst, is low.
  • the shift to the high wavenumber region also means a relative decrease in the Pt—C bond strength, which means that the tendency of CO poisoning, which is a problem with the anode catalyst, is low.
  • the characteristics of the electrode catalyst against the catalyst poisoning in the cathode and anode catalyst can be quantitatively determined without performing a complicated electrochemical test. Can be predicted and evaluated.
  • the electrode catalyst for fuel cells of the present invention in order to use as a cathode catalyst, it is preferable to lower the electron density on the platinum surface.
  • the wave number of the spectrum having the maximum peak area in the IR absorption of CO adsorbed on the platinum or platinum alloy surface in the catalyst component is preferably 2060 cm ⁇ 1 or more.
  • the electrode catalyst in the above embodiment as a cathode catalyst of a fuel cell, it becomes possible to reduce OH poisoning and improve mass activity. Further, by using it as an anode catalyst of a fuel cell used in combination with a reformer, CO poisoning can be mitigated and mass activity can be improved.
  • Metal oxide comprising tantalum oxide and / or niobium oxide in the fuel cell electrode catalyst of the present invention, other metal oxides comprising tantalum oxide and / or niobium oxide can be added to the catalyst component comprising platinum or a platinum alloy. Compared with the electrode catalyst containing the metal oxide, there are extremely good effects as described below.
  • the particle size of the supported catalyst particles is approximately the same as in the case of no addition. Or it can be suppressed to less than that. Since miniaturization of the catalyst particle size leads to an increase in the surface area of the catalyst involved in the reaction, the activity per unit mass of platinum (mass activity) can be achieved by preparing a fuel cell using an electrode catalyst with tantalum oxide added. Can be improved. Further, it is considered that the added tantalum oxide is present so as to cover the surface of the catalyst particles, thereby suppressing the adsorption of CO on the surface of the catalyst particles. As a result, by adding tantalum oxide, CO adsorption can be significantly suppressed depending on the amount added.
  • the tantalum oxide added in the fuel cell electrode catalyst of the present invention is preferably present in a relatively oxidized state, and particularly preferably present in an oxidized state close to Ta 2 O 5 .
  • tantalum oxide is preferably added in an amount of 0.005 to 0.5 equivalent to the weight of the catalyst component.
  • the electrode catalyst for a fuel cell containing a metal oxide composed of tantalum oxide according to the present invention can be produced by the production method described above.
  • the preferred characteristics can also be influenced by the process in producing the electrocatalyst. Therefore, it is preferable that the treatment temperature of the calcination step included in the method for producing an electrode catalyst for a fuel cell is 300 to 900 ° C.
  • the treatment time is preferably 30 to 300 minutes.
  • the particle size of the supported catalyst particles is about the same as when no additive is added. Or it can be suppressed to less than that.
  • the added niobium oxide is considered to suppress the adsorption of CO on the surface of the catalyst particles by being present at or near the surface of the catalyst particles. As a result, the addition of niobium oxide can suppress CO adsorption depending on the addition amount.
  • the effect of suppressing CO adsorption by the addition of niobium oxide is an effect unique to niobium oxide that cannot be obtained with the electrode catalyst to which the metal oxide composed of tantalum oxide is added. That is, by adding niobium oxide to the platinum-supported electrode catalyst, it is possible to exert an effect of selectively reducing the adsorption of CO in the catalyst component or the platinum surface without impairing the performance against H adsorption. . Therefore, in a fuel cell that is used in combination with a reformer that uses natural gas or the like as a fuel, by using the electrode catalyst to which niobium oxide of the present invention is added as an anode catalyst, CO activity is not impaired without impairing the catalytic activity for the anode reaction.
  • the electrode catalyst to which niobium oxide of the present invention is added is used for a fuel cell, the fuel cell performance under low humidification conditions, particularly the output performance, is greatly maintained while maintaining the fuel cell performance under high humidification conditions. Can be improved.
  • the added niobium oxide is preferably present in a relatively oxidized state, in particular, an intermediate oxidation state of Nb 2 O 5 and NbO, or an oxidation state of Nb 2 O 5 . Is preferably present.
  • niobium oxide is preferably added in an amount of 0.005 to 0.5 equivalent to the weight of the catalyst component.
  • the electrode catalyst for a fuel cell containing a metal oxide composed of niobium oxide of the present invention can be produced by the production method described above.
  • the preferred characteristics can also be influenced by the process in producing the electrocatalyst. Therefore, it is preferable that the treatment temperature of the calcination step included in the method for producing an electrode catalyst for a fuel cell is 300 to 900 ° C.
  • the treatment time is preferably 30 to 300 minutes.
  • each metal oxide is obtained by adding a metal oxide comprising tantalum oxide and niobium oxide to a catalyst component comprising platinum or a platinum alloy. It is possible to simultaneously achieve the effects obtained when tantalum is added alone, that is, the improvement in mass activity obtained when tantalum oxide is added alone and the low humidification performance obtained when niobium oxide is added alone. .
  • a metal oxide composed of tantalum oxide and niobium oxide can exist as a crystalline state composed of an oxide of tantalum and niobium or a crystalline state of a composite oxide containing tantalum and niobium.
  • the niobium oxide content is preferably in the range of 0 to 95 mol% with respect to the total amount of tantalum oxide and niobium oxide in order to improve the efficiency performance under high humidification conditions.
  • a range of ⁇ 80 mol% is more preferable.
  • niobium oxide is preferably in the range of 15 to 95 mol%, more preferably in the range of 30 to 80 mol%.
  • niobium oxide is preferably in the range of 10 to 100 mol%, more preferably in the range of 30 to 100 mol%, in order to improve efficiency performance under low humidification conditions. preferable. Particularly preferred is a range of more than 40 mol%. In order to improve the output performance, niobium oxide is preferably in the range of 25 to 100 mol%, more preferably in the range of 40 to 100 mol%.
  • the electrode catalyst for a fuel cell containing a metal oxide composed of tantalum oxide and niobium oxide according to the present invention can be produced by the production method described above.
  • the preferred characteristics can also be influenced by the process in producing the electrocatalyst. Therefore, it is preferable that the treatment temperature of the calcination step included in the method for producing an electrode catalyst for a fuel cell is 300 to 900 ° C.
  • the treatment time is preferably 30 to 300 minutes.
  • Fuel Cell The fuel cell electrode catalyst of the present invention has various features that contribute to the improvement of the performance of the fuel cell as described above. Therefore, the fuel cell including the fuel cell electrode catalyst of the present invention can improve mass activity and low humidification performance.
  • the fuel cell electrode catalyst containing the metal oxide of the present invention when used in a fuel cell, it is possible to obtain a fuel cell exhibiting high power generation efficiency while reducing the amount of platinum used.
  • fuel cell electrode catalysts containing metal oxides composed of tantalum oxide and niobium oxide have improved mass activity obtained when tantalum oxide is added alone and low humidification performance obtained when niobium oxide is added alone. Can be realized simultaneously. Therefore, the fuel cell electrode catalyst containing a metal oxide composed of tantalum oxide and niobium oxide of the present invention has a very useful advantage of simultaneously improving the different performances required for a fuel cell.
  • the method of setting the wave number of the spectrum having the maximum peak area in the IR absorption of platinum adsorbed on the platinum or platinum alloy surface in the catalyst component of the present invention to 2060 cm ⁇ 1 or more is a catalyst design of an oxygen reduction catalyst. Widely useful. At the same time, it helps to mitigate CO poisoning in the anode catalyst of the fuel cell used in combination with the reformer. Thereby, it becomes possible to contribute to the practical use and spread of fuel cells.
  • Pt / metal oxide catalyst The amount of Pt supported on each metal oxide of ZrO 2 , CeO 2 , Al 2 O 3 , SiO 2 , TiO 2 , Nb 2 O 5 , HfO 2 , Ta 2 O 5 , SnO 2 , and Fe 3 O 4 is about 1 wt. %, A Pt / metal oxide catalyst was prepared by the following procedure.
  • the dried powder is heat-treated at 700 ° C. for 2 hours in a hydrogen atmosphere.
  • a 10 mm ⁇ pellet was formed from about 10 mg of KBr diluted sample.
  • the CO adsorption IR method was performed according to the following procedure.
  • a 10 mm ⁇ pellet was formed from about 10 mg of KBr diluted sample.
  • the obtained CO adsorption spectrum was analyzed, and Table 1 shows the absorption wave number, peak height, and absorption band integrated area of the adsorbed CO species of each sample.
  • FIG. 1 shows the absorption wave number of the adsorbed CO species of each catalyst sample. Note that no CO peak was observed for Pt / Fe 3 O 4 .
  • the Pt or Pt alloy on the carbon support is in the middle of the distribution, suggesting that the interaction with Pt is moderate.
  • the CO peak position is preferably 2060 cm ⁇ 1 or more for the fuel cell electrode catalyst.
  • the CO adsorbing power on the Pt surface decreases due to weakening of the Pt—C bond, so that CO poisoning in the anode catalyst of the fuel cell used in combination with the reformer is expected to be mitigated.
  • FIG. 2 shows the relationship between the Ta 2 O 5 / Pt ratio and the absorption wave number of adsorbed CO.
  • 700 ° C. and 900 ° C. are heat treatment temperatures.
  • the catalyst Ta 2 O 5 / Pt / C added with Ta 2 O 5 having an equivalent ratio to Pt of 0.1 to 1.0 absorbs CO on the Pt surface and absorbs the IR of the absorbed CO.
  • all the peak positions are 2,060 cm ⁇ 1 or more, and it can be seen that the electronic state of Pt can be modified in a preferable direction.
  • the heat processing of a catalyst material is effective.
  • FIG. 3 shows the relationship between the Pt / Nb 2 O 5 ratio and the absorption wave number of adsorbed CO. From the results shown in FIG. 3, in the case of the catalyst Nb 2 O 5 / Pt / C catalyst to which Nb 2 O 5 having an equivalent ratio to Pt of 0.1 to 1.0 is added, the heat treatment temperature after supporting Nb 2 O 5 is preferable. It can be seen that the IR absorption spectrum positions of the adsorbed C—O are all 2,060 cm ⁇ 1 or more, and the electronic state of Pt can be modified in a preferable direction.
  • TaOx / Pt / C catalyst (Preparation of TaOx / Pt / C catalyst) (Comparative Example 1) 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, reduction treatment was performed by holding at 400 ° C. for 2 hours in hydrogen gas, and then holding at 700 ° C. for 2 hours in nitrogen gas to obtain a catalyst powder.
  • Comparative Example 2 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, reduction treatment was performed by holding at 400 ° C. for 2 hours in hydrogen gas, and then holding at 900 ° C. for 2 hours in nitrogen gas to obtain a catalyst powder.
  • Example 1 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the above catalyst powder and 0.39 g of tantalum were added and dispersed in 0.5 L of pure water. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 700 ° C. for 2 hours to obtain a catalyst powder.
  • Example 2 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the above catalyst powder and 0.78 g of tantalum were added and dispersed in 0.5 L of pure water. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 700 ° C. for 2 hours to obtain a catalyst powder.
  • Example 3 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the catalyst powder and 1.95 g of tantalum were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 700 ° C. for 2 hours to obtain a catalyst powder.
  • Example 4 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the above catalyst powder and 3.9 g of tantalum were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 700 ° C. for 2 hours to obtain a catalyst powder.
  • Example 5 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the above catalyst powder and 0.39 g of tantalum were added and dispersed in 0.5 L of pure water. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 900 ° C. for 2 hours to obtain a catalyst powder.
  • Example 6 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the above catalyst powder and 0.78 g of tantalum were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 900 ° C. for 2 hours to obtain a catalyst powder.
  • Example 7 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the catalyst powder and 1.95 g of tantalum were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 900 ° C. for 2 hours to obtain a catalyst powder.
  • Example 8 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the above catalyst powder and 3.9 g of tantalum were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 900 ° C. for 2 hours to obtain a catalyst powder.
  • the particle size of the supported platinum particles was measured.
  • the particle size measurement of platinum particles is performed by measuring the XRD of each electrocatalyst, and from the full width at half maximum of the peak corresponding to Pt (111) detected at about 40 ° in the obtained XRD profile. Calculated using Scherrer's formula. The results are shown in FIG.
  • Example 1 When the sample of Example 1 was observed with a transmission electron microscope (TEM), Pt particles with a particle size of 2 to 5 nm were observed. This result corresponds well to the results of the particle size obtained from XRD shown in FIG. (FIG. 5). Only a part of FIG. 5B was observed. In this part, the surface of the Pt particle is covered with TaOx. As the amount of TaOx added increased, the shape of the portion as shown in FIG. 5B tended to increase.
  • TEM transmission electron microscope
  • the CO adsorption amount was measured for the electrode catalysts obtained in Examples 1 to 8 and Comparative Examples 1 and 2. In the following examples, the CO adsorption amount was measured by the CO pulse adsorption method. The results are shown in FIG.
  • Example 1 For the electrode catalyst obtained in Example 1 and Comparative Example 1, the state of chemical bonding on the surface was evaluated by X-ray photoelectron spectroscopy (XPS). The results are shown in FIGS.
  • Example 1 (TaOx-added catalyst) the oxidation state in the chemical bonding state on the Pt surface was relatively increased as compared with Comparative Example 1. This is presumably because the electronic state of Pt was changed by the addition of TaOx.
  • TaOx added is presumed to be present in the oxidation state close to Ta 2 O 5.
  • Example 1 As shown in FIG. 9, it was confirmed that the activity per unit mass of Pt was improved by adding TaOx.
  • the Ta addition amount was 0.1 equivalent to Pt, and in Example 2, the Ta addition amount was 0.2 equivalent to Pt. However, no significant difference in mass activity was observed.
  • the Pt-supported electrode catalyst by adding TaOx to the Pt-supported electrode catalyst, it is possible to suppress the growth of Pt particles and reduce the CO adsorption amount. Moreover, the activity per unit mass of Pt can be improved by using a Pt-supported electrode catalyst with TaOx added to the fuel cell.
  • NbOx / Pt / C catalyst Preparation of NbOx / Pt / C catalyst
  • Example 9 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • niobium niobium chloride
  • 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a niobium oxide.
  • the dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 700 ° C. for 2 hours to obtain a catalyst powder.
  • Example 10 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • carbon Ketjen EC manufactured by Ketjen Black International
  • the catalyst powder and 0.4 g of niobium (niobium chloride) were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a niobium oxide.
  • the dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 700 ° C. for 2 hours to obtain a catalyst powder.
  • Example 11 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • niobium niobium chloride
  • 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a niobium oxide.
  • the dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 700 ° C. for 2 hours to obtain a catalyst powder.
  • Example 12 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • niobium niobium chloride
  • 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a niobium oxide.
  • the dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 700 ° C. for 2 hours to obtain a catalyst powder.
  • Example 13 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • carbon Ketjen EC manufactured by Ketjen Black International
  • niobium niobium chloride
  • 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a niobium oxide.
  • the dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 900 ° C. for 2 hours to obtain a catalyst powder.
  • Example 14 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • carbon Ketjen EC manufactured by Ketjen Black International
  • the catalyst powder and 0.4 g of niobium (niobium chloride) were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a niobium oxide.
  • the dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 900 ° C. for 2 hours to obtain a catalyst powder.
  • Example 15 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • carbon Ketjen EC manufactured by Ketjen Black International
  • niobium niobium chloride
  • 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a niobium oxide.
  • the dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 900 ° C. for 2 hours to obtain a catalyst powder.
  • Example 16 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • carbon Ketjen EC manufactured by Ketjen Black International
  • niobium niobium chloride
  • 1N ammonia was added dropwise thereto to adjust the pH to 6 to form a niobium oxide.
  • the dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 900 ° C. for 2 hours to obtain a catalyst powder.
  • Example 10 When the sample of Example 10 was observed with a transmission electron microscope (TEM), Pt particles having a particle size of 2 to 5 nm were observed. This result corresponds well to the results of the particle size obtained from XRD shown in FIG. (FIG. 11). Although the location of NbOx could not be determined from the TEM image, it was detected at the same time as Pt by energy dispersive X-ray spectroscopy (EDX) analysis.
  • EDX energy dispersive X-ray spectroscopy
  • Example 10 For the electrode catalyst obtained in Example 10 and Comparative Example 1, the state of chemical bonding on the surface was evaluated by X-ray photoelectron spectroscopy (XPS). The results are shown in FIGS.
  • Example 10 NbOx-added catalyst
  • the oxidation state was relatively increased in the chemical bonding state on the Pt surface as compared with Comparative Example 1. This is considered to be because the electronic state of Pt was changed by adding NbOx, as in the case of adding TaOx (see FIG. 7).
  • efficiency point voltage efficiency
  • output point voltage output
  • NbOx to the Pt-supported electrode catalyst, it is possible to suppress the growth of Pt particles and selectively reduce CO poisoning. Further, by using a Pt-supported electrode catalyst with NbOx added to the fuel cell, it is possible to significantly improve the low humidification performance, particularly the output performance, while maintaining the high humidification performance.
  • Ta ⁇ NbOx / Pt / C catalyst Preparation of Ta ⁇ NbOx / Pt / C catalyst
  • Example 17 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the above catalyst powder 0.06 g of niobium (niobium chloride) and 0.66 g of tantalum (tantalum chloride) were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form niobium oxide and tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 700 ° C. for 2 hours to obtain a catalyst powder.
  • Example 18 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the above catalyst powder 0.16 g of niobium (niobium chloride) and 0.47 g of tantalum (tantalum chloride) were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form niobium oxide and tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 700 ° C. for 2 hours to obtain a catalyst powder.
  • Example 19 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the catalyst powder 0.32 g of niobium (niobium chloride) and 0.16 g of tantalum (tantalum chloride) were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form niobium oxide and tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 700 ° C. for 2 hours to obtain a catalyst powder.
  • Example 20 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • carbon Ketjen EC manufactured by Ketjen Black International
  • the above catalyst powder 0.06 g of niobium (niobium chloride) and 0.66 g of tantalum (tantalum chloride) were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form niobium oxide and tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 900 ° C. for 2 hours to obtain a catalyst powder.
  • Example 21 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the above catalyst powder 0.16 g of niobium (niobium chloride) and 0.47 g of tantalum (tantalum chloride) were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form niobium oxide and tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 900 ° C. for 2 hours to obtain a catalyst powder.
  • Example 22 5 g of commercially available carbon Ketjen EC (manufactured by Ketjen Black International) and 4.2 g of platinum were added to 0.5 L of pure water and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, a hydroxide was formed, and deposited on carbon. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was reduced in hydrogen gas at 400 ° C. for 2 hours to obtain a catalyst powder.
  • the catalyst powder 0.32 g of niobium (niobium chloride) and 0.16 g of tantalum (tantalum chloride) were added to 0.5 L of pure water and dispersed. 1N ammonia was added dropwise thereto to adjust the pH to 6 to form niobium oxide and tantalum oxide. The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, it was kept in nitrogen gas at 900 ° C. for 2 hours to obtain a catalyst powder.
  • Example 2 treatment temperature 700 ° C.
  • Example 10 is used as a sample having an Nb composition of 100 mol% (ie, Ta composition is 0 mol%).
  • Treatment temperature 700 ° C. was also used for evaluation as a control group. The results are shown in FIG.
  • the output point voltage although not as effective as the above-mentioned efficiency performance, it has been revealed that the output point voltage is more effective than the pure platinum catalyst (Comparative Example 1) in the range of Nb composition of 15 to 95 mol%.
  • the addition of metal oxides consisting of TaOx and NbOx is similar to the efficiency performance. It has been clarified that the addition of a metal oxide composed of TaOx and NbOx contributes to the improvement of the output performance, as well as the effect superior to the addition of TaOx alone and NbOx alone.
  • the output performance showed the same tendency as the efficiency performance. That is, it has been clarified that an effect exceeding that of a pure platinum catalyst (Comparative Example 1) is achieved in a range of Nb composition exceeding 15 mol%. In addition, since the output point voltage is improved depending on the Nb composition, higher output performance can be obtained as the Nb composition is increased.
  • the efficiency or output performance under high or low humidification conditions can be improved by adding a metal oxide composed of TaOx and NbOx in the range of Nb composition of 0 to 95 mol%. Is possible.
  • the fuel cell electrode catalyst of the present invention is highly active and helps to reduce the amount of expensive platinum used.
  • the method of setting the wave number of the spectrum having the maximum peak area in the IR absorption of platinum adsorbed on the platinum or platinum alloy surface in the catalyst component of the present invention to 2060 cm ⁇ 1 or more is a catalyst design of an oxygen reduction catalyst. Widely useful. At the same time, it helps to mitigate CO poisoning in the anode catalyst of the fuel cell used in combination with the reformer. This contributes to the practical application and spread of fuel cells.
  • the fuel cell electrode catalyst containing the metal oxide of the present invention can contribute to the improvement of the performance of the fuel cell.
  • an electrode catalyst for a fuel cell containing a metal oxide composed of TaOx and NbOx is improved in mass activity obtained when Ta oxide is added alone and in low humidification performance obtained when Nb oxide is added alone. Can be realized simultaneously. Therefore, the fuel cell electrode catalyst containing a metal oxide composed of TaOx and NbOx according to the present invention has a very useful advantage of achieving both improvement of different performances required for a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、従来の白金触媒又は白金合金系触媒と比べて、高活性な燃料電池用電極触媒を提供するとともに、触媒設計に役立つ性能評価のための指標を提供する。  本発明は、白金又は白金合金からなる触媒成分と、任意成分として該触媒成分を担持する担体と、該触媒成分の被毒を緩和する金属酸化物とを含む燃料電池用電極触媒であって、該触媒成分中の白金又は白金合金表面に吸着させたCOのIR吸収におけるピーク面積が最大であるスペクトルの波数が2060cm-1以上であることを特徴とする燃料電池用電極触媒。前記金属酸化物が酸化タンタル及び/又は酸化ニオブであることを特徴とする燃料電池用電極触媒を提供する。

Description

燃料電池用電極触媒及びそれを用いた固体高分子型燃料電池
 本発明は、従来の白金触媒又は白金合金触媒の性能向上を図った燃料電池用電極触媒及びそれを用いた固体高分子型燃料電池に関する。
 従来、高分子電解質型燃料電池の電極触媒のカソード及びアノード触媒としては、白金又は白金合金等の貴金属をカーボンブラックに担持した触媒が用いられてきた。白金担持カーボンブラックは、塩化白金酸水溶液に、亜硫酸水素ナトリウムを加えた後、過酸化水素水と反応させ、生じた白金コロイドをカーボンブラックに担持させ、洗浄後、必要に応じて熱処理することにより調製するのが一般的である。高分子電解質型燃料電池の電極は、白金担持カーボンブラックを高分子電解質溶液に分散させてインクを調製し、そのインクをカーボンペーパーなどのガス拡散基材に塗布し、乾燥することにより作製される。この2枚の電極で高分子電解質膜を挟み、ホットプレスをすることにより電解質膜-電極接合体(MEA)が組立られる。
 ところで、白金は高価な貴金属であり、アノード触媒、カソード触媒ともに、少ない担持量で十分な性能を発揮させることが望まれている。そのため、より少量で触媒活性を高める検討がなされており、白金と種々の金属とからなる合金触媒が開発されている。具体的には、CO被毒回避を目的に、白金と、ルテニウムやモリブデンとからなる合金触媒がある。
 例えば、下記特許文献1には、白金-コバルト合金を触媒成分とする燃料電池用電極触媒で、触媒表面及び/又は触媒近傍に遷移金属-4窒化物構造(MN4構造)を配置して触媒の耐久性を向上させる発明が開示されている。しかし、この電極触媒などでは、白金や白金-コバルト合金表面へのOH基の吸着による触媒活性の劣化は抑制し切れなかった。
 このように、現状の自動車用燃料電池は1台あたりのPt使用量が多く、将来の普及のためにはPt使用量の大幅低減が求められている。
 カソード触媒においてPt量が多くなる理由について述べる。カソード反応では反応中間体であるOHがPt表面に一時被毒し、これが反応を阻害する。Ptは自らがPtメタルに還元されるまで反応を開始することができず、このとき電圧をロスする(過電圧が発生する)。これは、電流-電圧(IV)カーブにおいて低電流密度域で電圧が急速に落ち込む現象として観測される。
 所定の効率(燃費)を得るには最頻出電流密度において所定の電圧値を得る必要がある。この電圧値とPt量との間には実験的に70mV/decadeの関係が見出されている。すなわちPt目付け量が1/10になると電圧値が70mV低下する関係となる。現在の触媒技術で所定の電圧値を得るためにはPt量で補うしかないというのが現状である。これがPt量が多くなる理由である。
 カソード触媒のPt量を低減させるためには、Ptの質量活性向上が必要である。1990年頃からPtをCo,Fe,Ni等遷移金属と合金化することによって、Ptの質量活性を向上させる試みがなされてきた。近年、これらPt合金触媒の性能向上メカニズムの研究が進展し、Pt合金触媒表面においては上記OH吸着による一時被毒が緩和されることがわかってきている。OHの吸着力はOHとPt表面(フェルミレベル)の電子的相互作用によって決まる。Pt表面の電子密度が高いほどOHとの相互作用が強くなり強固な吸着となる。Pt合金触媒では合金化によりPt表面の電子密度が下がることにより、OHの吸着力を弱め一時被毒を緩和するといわれている。
 こうして現在PtCo等Pt合金触媒は実用段階になった。しかし、上述のとおり目標に対し十分なレベルにはない。Pt合金触媒においてもOHによる一時被毒に起因する過電圧は依然として大きく、Ptの質量活性を飛躍的に高めるには、OH被毒をさらに緩和することが求められる。
 一方、天然ガスなどを燃料とする改質器と組み合わせて使う燃料電池においては、改質ガス中に含まれる一酸化炭素(CO)がPt表面に一時被毒し、アノード反応(H→2H+2e)を著しく阻害する。これまでに、ルテニウム(Ru)、モリブデン(Mo)を添加した合金触媒の開発が進められている。
 しかしながら、前記合金触媒では、合金成分がイオンとして溶出し、これが触媒層中に存在するアイオノマのプロトン伝導阻害を誘発することにより、特に低加湿条件下での出力性能を著しく悪化させることも指摘されている。
特開2005-44659号公報
 従来の白金触媒又は白金合金触媒の性能向上を図った燃料電池用電極触媒は、アノード触媒及びカソード触媒の発電性能が十分ではなく、より高性能の触媒の開発が望まれていた。本発明は、白金触媒又は白金合金触媒の性能向上を図ることを目的とする。
 触媒化学の分野で1980年代からSMSI(Strong Metal Suppot Interaction)に関する研究が始まっている。SMSIとは貴金属と担体の電子的相互作用によって触媒の活性・選択性向上など特異な機能を引出しうる概念である。自動車用三元触媒においてPt/CeOが有する酸素吸放出能も、SMSIの一例と言える。近年、燃料電池用電極触媒の分野でもSMSIを利用した研究が行われ始めている。
 SMSIと呼ばれる貴金属と担体の相互作用は、上述したPtの合金化によるPt表面の電子状態改変よりも更に強く作用すると考えた。
 そこで、本発明者らは、Pt又はPt合金とSMSI効果を持つ物質を接触させて、Pt又はPt合金表面の電子密度を最適にコントロールできないかと考えて本発明に到達した。
 即ち、第1に、本発明は、白金又は白金合金からなる触媒成分と、任意成分として該触媒成分を担持する担体と、該触媒成分の被毒を緩和する金属酸化物とを含む燃料電池用電極触媒の発明であって、該触媒成分中の白金又は白金合金表面に吸着させたCOのIR吸収におけるピーク面積が最大であるスペクトルの波数が2060cm-1以上であることを特徴とする。
 本発明の燃料電池用電極触媒は、金属酸化物等を担体、添加剤等として用い、酸化物等と白金又は白金合金との電子的相互作用によって、Pt表面の電子密度を適正値に制御する。即ち、Pt表面の電子密度を下げ、酸素被毒を弱める。本発明では、Pt表面の電子密度は、Pt表面に吸着させたCOのIR吸収スペクトル位置(波数)を指標とし、この値が2060cm-1以上となる触媒が、触媒活性に優れるものである。
 前記金属酸化物が配置される位置・場所には制限がなく、例えば、(1)前記担体表面及び/又は内部に含まれる、(2)前記白金又は白金合金からなる触媒成分中に助触媒として含まれる、(3)前記白金又は白金合金からなる触媒成分のコア材として含まれる、(4)電極触媒中に添加剤として含まれる、(5)前記担体として含まれる、から選択される。
 本発明の燃料電池用電極触媒で用いられる金属酸化物として、酸化ハフニウム、酸化タンタル、酸化チタン、酸化ニオブ、及び酸化シリコンから選択される遷移金属酸化物の1種以上が好ましく例示される。
 本発明の燃料電池用電極触媒に用いられる触媒成分は白金又は白金合金である。ここで、白金合金としては白金と遷移金属からなり、該遷移金属が、ルテニウム(Ru)、モリブデン(Mo)、オスニウム(Os)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、鉄(Fe)、ニッケル(Ni)、チタン(Ti)、タングステン(W)、パラジウム(Pd)、レニウム(Re)、クロム(Cr)、マンガン(Mn)、ニオブ(Nb)、タンタル(Ta)、及び金(Au)から選択される1種以上であるものが好ましく例示される。
 本発明の燃料電池用電極触媒で用いられる金属酸化物として、酸化タンタル及び/又は酸化ニオブが特に好ましく例示される。
 本発明の燃料電池用電極触媒で用いられる金属酸化物として、酸化タンタル及び酸化ニオブからなり、酸化ニオブが10~95 mol%含まれるものが特に好ましく例示される。
 第2に、本発明は、上記の燃料電池用電極触媒を備えた固体高分子型燃料電池であり、発電性能に優れている。
 本明細書は本願の優先権の基礎である日本国特許出願第2008-007092号及び第2009-005969号の明細書及び/又は図面に記載される内容を包含する。
図1は、それぞれの触媒試料の吸着CO種の吸収波数を示す。 図2は、Ta/Pt比と吸着COの吸収波数との関係を示す。 図3は、Nb/Pt比と吸着COの吸収波数との関係を示す。 図4は、TaOx添加した電極触媒におけるPt粒径を示す。 図5は、実施例1の試料をTEM観察した結果を示す。A:一般的部位のTEM像;B:特定部位のTEM像。 図6は、TaOx添加した電極触媒におけるCO吸着量を示す。 図7は、TaOx添加した電極触媒におけるPtの化学結合状態を示す。 図8は、TaOx添加した電極触媒におけるTaの化学結合状態を示す。 図9は、TaOx添加した電極触媒を用いて作製したMEAによる、質量活性の測定結果を示す。 図10は、NbOx添加した電極触媒におけるPt粒径を示す。 図11は、実施例10の試料をTEM観察した結果(一般的部位のTEM像)を示す。 図12は、NbOx添加した電極触媒におけるCO吸着量を示す。 図13は、NbOx添加した電極触媒におけるPtの化学結合状態を示す。 図14は、NbOx添加した電極触媒におけるNbの化学結合状態を示す。 図15は、NbOx添加した電極触媒を用いて作製したRDEによる、CO酸化開始電位(Eosp)の測定結果を示す。 図16は、NbOx添加した電極触媒を用いて作製したRDEによる、CO吸着量から求めた電気化学表面積(SA(CO))の測定結果を示す。 図17は、NbOx添加した電極触媒を用いて作製したRDEによる、H吸着量から求めた電気化学表面積(ECSA)の測定結果を示す。 図18は、TaOx添加した電極触媒を用いて作製したRDEによる、CO酸化開始電位(Eosp)の測定結果を示す。 図19は、TaOx添加した電極触媒を用いて作製したRDEによる、CO吸着量から求めた電気化学表面積(SA(CO))の測定結果を示す。 図20は、TaOx添加した電極触媒を用いて作製したRDEによる、H吸着量から求めた電気化学表面積(ECSA)の測定結果を示す。 図21は、NbOx添加した電極触媒を用いて作製したMEAによる、高加湿及び低加湿条件における電圧性能の測定結果を示す。 図22は、TaOx及びNbOxを添加した電極触媒のCO吸着IR法におけるCO結合ピーク位置を示す。 図23は、TaOx及びNbOxを添加した電極触媒におけるPt粒径を示す。 図24は、TaOx及びNbOxを添加した電極触媒におけるCO吸着量を示す。 図25は、TaOx及びNbOxを添加した電極触媒を用いて作製したMEAによる高加湿条件における電圧性能を、Ta及びNbの配合比率と電圧性能の関係として示す。 図26は、TaOx及びNbOxを添加した電極触媒を用いて作製したMEAによる低加湿条件における電圧性能を、Ta及びNbの配合比率と電圧性能の関係として示す。
発明を実施するための形態
 以下、本発明の好ましい実施形態について詳細に説明する。
1.電極触媒の構成
 本発明の燃料電池用電極触媒は、白金又は白金合金からなる触媒成分と、任意成分として該触媒成分を担持する担体と、該触媒成分の被毒を緩和する金属酸化物とを含む。
1-1.触媒成分
 本発明の燃料電池用電極触媒において使用される触媒成分は、白金又は白金および遷移金属からなる白金合金である。白金は高価な貴金属であり、アノード触媒、カソード触媒ともに、少ない担持量で十分な性能を発揮させることが好ましい。本発明の燃料電池用電極触媒において、白金および種々の遷移金属からなる合金触媒を用いることにより、触媒活性を損なうことなく白金使用量を削減することが可能となる。
 特定の実施形態において、前記遷移金属としては、以下:ルテニウム(Ru)、モリブデン(Mo)、オスニウム(Os)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、鉄(Fe)、ニッケル(Ni)、チタン(Ti)、タングステン(W)、パラジウム(Pd)、レニウム(Re)、クロム(Cr)、マンガン(Mn)、ニオブ(Nb)、タンタル(Ta)、及び金(Au);から選択される1種以上であるものが好ましく例示される。
 白金又は白金合金の担持密度は、電極触媒の総重量に対する担持された白金又は白金合金の重量%で定義される。かかる担持密度は、白金の場合には、白金重量/(白金重量+担体重量)×100の計算式により算出される。また、白金合金の場合には、(白金重量+遷移金属重量)/(白金重量+遷移金属重量+担体重量)×100の計算式により算出される。本発明の燃料電池用電極触媒において、白金又は白金合金の担持密度は10~60重量%であることが好ましい。
 白金合金の組成は、担持された白金合金の総重量に対する白金及び/又は遷移金属の重量%で定義される。かかる組成は、白金重量/(白金重量+遷移金属重量)×100の計算式により算出される。本発明の燃料電池用電極触媒において、白金合金の組成は白金が90~100重量%に対して遷移金属が0~10重量%であることが好ましい。
1-2.担体
 本発明の燃料電池用電極触媒において使用される担体は任意成分であって、触媒成分を担持するために該電極触媒に加えられる。それ故、触媒成分を担持できるとともに、それ自体が導電性を具備するものであれば特に限定されるものではない。燃料電池用電極触媒に慣用されている様々な材料を使用することができる。触媒成分を担持する目的のために、例えばカーボンブラックのような、導電性を具備し、かつ比表面積が大きい担体材料が好ましい。前記のような特徴を具備する担体を用いることにより、より広い触媒担持面積を確保することが可能となる。これによって、担持される触媒粒子の微小化を図ることができるため、結果として触媒活性を向上させることが可能となる。
 本発明の燃料電池用電極触媒において使用される担体は、電気抵抗率が0.05~0.50 Ω・cmであることが好ましい。また、比表面積が30~1500 m2/gであることが好ましい。ここで電気抵抗率はJIS K1469によって測定することができる。また、比表面積は窒素BET吸着法によって測定することができる。好適な担体材料は、限定するものではないが、例えばKetjen EC(ケチェンブラックインターナショナル製)、アセチレンブラック(ケチェンブラックインターナショナル製)、バルカンXC-72R(Cabot製)又はデンカブラック(DENKA製)のようなカーボン粉末である。
1-3.金属酸化物
 本発明の燃料電池用電極触媒において使用される金属酸化物は任意成分であって、触媒被毒を緩和する目的およびSMSI効果を引き出す目的で該電極触媒に加えられる。金属酸化物を電極触媒に加えることにより、触媒被毒による触媒性能の低下を軽減して質量活性を向上させることが可能となるとともに、SMSI効果によって電極触媒の触媒活性及び/又は選択性を向上させることが可能となる。金属酸化物の添加による前記の好ましい効果については、以下においてさらに詳細に説明する。
 特定の実施形態において使用される金属酸化物としては、酸化ハフニウム、酸化タンタル、酸化チタン、酸化ニオブ、酸化シリコン及び酸化スズから選択される遷移金属酸化物の1種以上が好ましく例示される。
 前記金属酸化物が配置される位置・場所には制限がなく、例えば、(1)前記担体表面及び/又は内部に含まれる、(2)前記白金又は白金合金からなる触媒成分中に助触媒として含まれる、(3)前記白金又は白金合金からなる触媒成分のコア材として含まれる、(4)電極触媒中に添加剤として含まれる、(5)前記担体として含まれる、から選択される。前記金属酸化物は白金又は白金合金からなる触媒成分中に助触媒として含まれることが好ましい。
1-4.電極触媒の製造方法
 本発明の燃料電池用電極触媒は、白金又は白金合金からなる触媒成分を、当業界で慣用される様々な方法を用いて担体に担持することで製造される。本発明の燃料電池用電極触媒は、金属態もしくは金属錯体である触媒成分と担体を水中で接触させて混合物とする工程(接触工程);該混合物に塩基を加えてアルカリ性とし、金属態もしくは金属錯体である触媒成分を不溶性の水酸化物として担体表面に析出させる工程(析出工程);触媒成分水酸化物が析出した担体を回収する工程(回収工程);回収した担体を真空下で乾燥する工程(乾燥工程);ならびに乾燥した担体を水素雰囲気下で熱還元して、金属態の触媒成分が担体に担持した電極触媒粉末を得る工程(熱還元工程)を含む方法によって製造される。
 前記の製造方法は、触媒成分の被毒を緩和する金属酸化物を助触媒として加えるために、前記熱還元工程で得られた電極触媒粉末と金属塩を水中で接触させて混合物とする工程(金属塩接触工程);該混合物に塩基を加えてアルカリ性とし、金属塩を不溶性の金属水酸化物として電極触媒粉末表面に析出させる工程(金属水酸化物析出工程);金属水酸化物が析出した電極触媒粉末を回収する工程(金属水酸化物回収工程);回収した電極触媒粉末を真空下で乾燥する工程(金属水酸化物乾燥工程);ならびに乾燥した電極触媒粉末を不活性ガス雰囲気下で焼成して、金属酸化物を含む電極触媒粉末を得る工程(焼成工程)をさらに含んでもよい。
 本発明の燃料電池用電極触媒は、触媒成分の被毒を緩和する金属酸化物を担体として含んでいてもよい。かかる実施形態において、本発明の燃料電池用電極触媒は、金属態もしくは金属錯体である触媒成分と、担体として使用される金属酸化物を水中で接触させて混合物とする工程(接触工程);該混合物に塩基を加えてアルカリ性とし、金属態もしくは金属錯体である触媒成分を不溶性の水酸化物として金属酸化物表面に析出させる工程(析出工程);触媒成分水酸化物が析出した金属酸化物を回収する工程(回収工程);回収した金属酸化物を真空下で乾燥する工程(乾燥工程);ならびに乾燥した金属酸化物を水素雰囲気下で熱還元して、金属態の触媒成分が金属酸化物に担持した電極触媒粉末を得る工程(熱還元工程)を含む方法によって製造される。
2.IRスペクトルによる触媒被毒特性の評価
 白金を触媒成分とする燃料電池用電極触媒において、触媒活性に大きな影響を与える原因の1つは触媒被毒である。カソード触媒においては、反応中間体であるOHが白金表面に一時被毒し、これがカソード反応((1/2)O+2H+2e→HO)を阻害するOH被毒が知られている。OH被毒は白金表面の電子密度と相関があるため、該電子密度を低下させることによりOH被毒を緩和することが可能である。一方、アノード触媒においては、特に天然ガスなどを燃料とする改質器と組み合わせて使う燃料電池の場合、改質ガス中に含まれる一酸化炭素(CO)が白金表面に一時被毒し、アノード反応(H→2H+2e)を著しく阻害するCO被毒が知られている。CO被毒は白金表面にCO分子が吸着されることにより起きるため、Pt‐C結合強度を低下させることによりCO被毒を緩和することが可能である。
 一般に有機化合物の赤外線(IR)吸収は、該化合物を構成する各原子間の結合強度に比例する。すなわち、より結合強度の高い結合は、より大きなエネルギーに相当するIRを吸収する。ここでIRのエネルギーは波長に反比例するため、その逆数である波数に比例する。それ故、複数の外的環境下で特定の有機化合物のIRスペクトルを測定した際に吸収ピークの波数シフトが観測された場合、高波数領域へのシフトは吸収エネルギーの増加を表すことから、外的環境の変化によって生じた結合強度の相対的な向上を表すことになる。
 前記原理に基づいて、本発明の電極触媒において触媒成分として含まれる白金表面に吸着したCOのIRスペクトルを測定することにより、C‐O結合の吸収ピークの波数を白金表面の電子密度の指標とすることができる。すなわち、白金表面に吸着したCOの吸収ピークの波数が高波数領域へシフトすれば、該CO分子中のC‐O結合強度が相対的に向上したことを意味する。COは白金表面に吸着されているので、C‐O結合強度の相対的向上は、白金表面の電子密度低下に伴うPt‐C結合強度の相対的低下に起因すると考えられる。
 白金表面に吸着したCOの吸収ピーク波数の高波数領域へのシフトは、白金表面の電子密度が低下したことを意味するため、カソード触媒で問題となるOH被毒の傾向が低いことを意味する。また、前記高波数領域へのシフトはPt‐C結合強度の相対的低下も意味するため、アノード触媒で問題となるCO被毒の傾向が低いことも意味する。
 したがって、電極触媒に含まれる白金表面に吸着したCOのIR吸収スペクトルを測定することにより、カソード及びアノード触媒における触媒被毒に対する電極触媒の特性について、煩雑な電気化学的試験を行うことなく定量的に予測し、かつ評価することが可能となる。
 本発明の燃料電池用電極触媒において、カソード触媒として使用するためには、白金表面の電子密度を低くすることが好ましい。一方、改質器と組み合わせて使う燃料電池のアノード触媒として使用するためには、Pt‐C結合強度を低下させることが好ましい。本発明の燃料電池用電極触媒において、触媒成分中の白金又は白金合金表面に吸着させたCOのIR吸収におけるピーク面積が最大であるスペクトルの波数は、2060cm-1以上にあることが好ましい。
 前記実施形態における電極触媒を燃料電池のカソード触媒に使用することにより、OH被毒を緩和し質量活性を向上させることが可能となる。また、改質器と組み合わせて使う燃料電池のアノード触媒に使用することにより、CO被毒を緩和し質量活性を向上させることが可能となる。
3.酸化タンタル及び/又は酸化ニオブからなる金属酸化物
 本発明の燃料電池用電極触媒において、白金又は白金合金からなる触媒成分に酸化タンタル及び/又は酸化ニオブからなる金属酸化物を添加することにより、他の金属酸化物を含む電極触媒と比較して以下に説明するような極めて良好な効果を奏する。
3-1.酸化タンタルからなる金属酸化物
 本発明の燃料電池用電極触媒において、白金又は白金合金からなる触媒成分に酸化タンタルを添加することにより、担持される触媒粒子の粒径を無添加の場合と同程度又はそれ未満に抑制することが可能である。触媒粒子の粒径の微小化は反応に関与する触媒の表面積向上につながることから、酸化タンタルを添加した電極触媒を用いて燃料電池を作製することにより、白金単位質量あたりの活性(質量活性)を向上させることが可能となる。また、添加された酸化タンタルは触媒粒子の表面を覆うように存在することにより、COが触媒粒子の表面に吸着することを抑制すると考えられる。結果として、酸化タンタルの添加により、その添加量依存的にCO吸着を有意に抑制することが可能となる。
 本発明の燃料電池用電極触媒において添加される酸化タンタルは、比較的酸化状態で存在することが好ましく、特にTaに近い酸化状態で存在することが好ましい。
 本発明の燃料電池用電極触媒において、酸化タンタルは触媒成分の重量に対して0.005~0.5当量で添加されることが好ましい。
 本発明の酸化タンタルからなる金属酸化物を含む燃料電池用電極触媒は、前記の製造方法によって製造することが可能である。しかしながら、前記の好ましい特徴は該電極触媒を製造する際の工程によっても影響されうる。それ故、前記燃料電池用電極触媒の製造方法に含まれる焼成工程の処理温度は300~900℃であることが好ましい。また、処理時間は30~300分間であることが好ましい。
3-2.酸化ニオブからなる金属酸化物
 本発明の燃料電池用電極触媒において、白金又は白金合金からなる触媒成分に酸化ニオブを添加することで、担持される触媒粒子の粒径を無添加の場合と同程度又はそれ未満に抑制することが可能である。添加された酸化ニオブは、触媒粒子の表面又はその近傍に存在することにより、COが触媒粒子の表面に吸着することを抑制すると考えられる。結果として、酸化ニオブの添加はその添加量依存的にCO吸着を抑制することができる。
 酸化ニオブ添加によるCO吸着抑制効果は、前記酸化タンタルからなる金属酸化物を添加した電極触媒では得られない、酸化ニオブに特有の効果である。すなわち、白金担持電極触媒に酸化ニオブを添加することにより、H吸着に対する性能を損なうことなく、触媒成分中の白金又は白金表面へのCO吸着を選択的に軽減する効果を奏することが可能である。それ故、天然ガスなどを燃料とする改質器と組み合わせて使う燃料電池において、本発明の酸化ニオブを添加した電極触媒をアノード触媒として使用することにより、アノード反応に対する触媒活性を損なうことなくCO被毒による触媒活性の低下を選択的に軽減することが可能となる。また、前記の好ましい特性により、本発明の酸化ニオブを添加した電極触媒を燃料電池に使用すると、高加湿条件における燃料電池性能を維持したまま、低加湿条件における燃料電池性能、特に出力性能を大幅に向上させることが可能となる。
 本発明の燃料電池用電極触媒において、添加される酸化ニオブは、比較的酸化状態で存在することが好ましく、特にNb及びNbOの中間的な酸化状態、又はNbの酸化状態で存在することが好ましい。
 本発明の燃料電池用電極触媒において、酸化ニオブは触媒成分の重量に対して0.005~0.5当量で添加されることが好ましい。
 本発明の酸化ニオブからなる金属酸化物を含む燃料電池用電極触媒は、前記の製造方法によって製造することが可能である。しかしながら、前記の好ましい特徴は該電極触媒を製造する際の工程によっても影響されうる。それ故、前記燃料電池用電極触媒の製造方法に含まれる焼成工程の処理温度は300~900℃であることが好ましい。また、処理時間は30~300分間であることが好ましい。
3-3.酸化タンタル及び酸化ニオブからなる金属酸化物
 本発明の燃料電池用電極触媒において、白金又は白金合金からなる触媒成分に酸化タンタル及び酸化ニオブからなる金属酸化物を添加することで、それぞれの金属酸化物を単独添加した場合に得られる効果、すなわち酸化タンタルを単独添加した際に得られる質量活性の向上及び酸化ニオブを単独添加した際に得られる低加湿性能の向上を同時に実現することが可能である。
 酸化タンタル及び酸化ニオブからなる金属酸化物は、タンタル及びニオブの酸化物からなる結晶状態またはタンタル及びニオブを含む複合酸化物の結晶状態として存在しうる。
 本発明の燃料電池用電極触媒において、高加湿条件における効率性能の向上を図るためには、酸化タンタル及び酸化ニオブの総量に対して酸化ニオブが0~95mol%の範囲であることが好ましく、5~80mol%の範囲であることがより好ましい。出力性能の向上を図るためには、酸化ニオブが15~95mol%の範囲であることが好ましく、30~80mol%の範囲であることがより好ましい。
 本発明の燃料電池用電極触媒において、低加湿条件における効率性能の向上を図るためには、酸化ニオブが10~100mol%の範囲であることが好ましく、30~100mol%の範囲であることがより好ましい。特に好ましくは40mol%超の範囲である。出力性能の向上を図るためには、酸化ニオブが25~100mol%の範囲であることが好ましく、40~100mol%の範囲であることがより好ましい。
 本発明の酸化タンタル及び酸化ニオブからなる金属酸化物を含む燃料電池用電極触媒は、前記の製造方法によって製造することが可能である。しかしながら、前記の好ましい特徴は該電極触媒を製造する際の工程によっても影響されうる。それ故、前記燃料電池用電極触媒の製造方法に含まれる焼成工程の処理温度は300~900℃であることが好ましい。また、処理時間は30~300分間であることが好ましい。
4.燃料電池
 本発明の燃料電池用電極触媒は、前記のように燃料電池の性能向上に寄与する様々な特徴を具備している。それ故、本発明の燃料電池用電極触媒を備えた燃料電池は、質量活性及び低加湿性能を向上させることが可能となる。
 以上説明したように、本発明の金属酸化物を含む燃料電池用電極触媒は、燃料電池に使用すると白金使用量を削減しながらも高い発電効率を示す燃料電池を得ることが可能となる。特に酸化タンタル及び酸化ニオブからなる金属酸化物を含む燃料電池用電極触媒は、酸化タンタルを単独添加した際に得られる質量活性の向上及び酸化ニオブを単独添加した際に得られる低加湿性能の向上を同時に実現することができる。したがって、本発明の酸化タンタル及び酸化ニオブからなる金属酸化物を含む燃料電池用電極触媒は、燃料電池に求められる異なる性能の向上を両立するという、極めて有用な利点を有するものである。
 又、本発明の触媒成分中の白金又は白金合金表面に吸着させたCOのIR吸収におけるピーク面積が最大であるスペクトルの波数を2060cm-1以上とする手法は、酸素還元型触媒の触媒設計に広く役立つものである。同時に、改質器と組み合わせて使う燃料電池のアノード触媒におけるCO被毒の緩和に役立つ。これにより、燃料電池の実用化と普及に貢献することが可能となる。
[実施例]
 以下、実施例および比較例によって本発明をさらに詳細に説明する。
[Pt/金属酸化物触媒の調製]
 ZrO,CeO,Al,SiO,TiO,Nb,HfO,Ta,SnO,Feの各金属酸化物上にPt担持量が約1wt%になるように、下記の手順により、Pt/金属酸化物触媒を調製した。
1)20mLの純水をビーカー中に準備した。
2)Pt濃度4.4wt%のジニトロソアミン白金硝酸水溶液を0.45g(白金換算で0.02g)を秤量し、上記20mLの純水中に添加した。
3)ZrO,CeO,Al,SiO,TiO,Nb,HfO,Ta,SnO,Feの各金属酸化物を2g秤量し、(2)の溶液中に添加した。
4)マグネチックスターラーにより溶液を攪拌しながら、溶液を加熱し、蒸発乾固法により白金を各金属酸化物上に担持させた。
5)蒸発乾固後、乾燥機中で120℃で1昼夜乾燥させた。
6)ビーカーよりPt担持金属酸化物を取り出し、めのう乳鉢を使って解砕した。
7)Pt担持金属酸化物をアルミナ皿上に移し、450℃で2時間焼成した。
[PtCo/C触媒の調製]
 下記の手順により、従来のPtCo/C触媒を調製した。
1)カーボン(Ketejen)2.0gを純水0.2Lに分散させ、スラリーを調製する。
2)スラリーを攪拌しながら、5wt%のヘキサヒドロキソ白金硝酸水溶液を33g(白金換算で1.6g)を滴下する。
3)上記混合液を攪拌する。
4)得られた混合液に、純水1Lを滴下し、混合した後、ろ過する。
5)ろ過後、得られたケーキを更に純水で洗浄する。
6)洗浄後、得られたケーキを1Lの純水に分散させる。
7)硝酸コバルト1.5g(Co換算で0.16g)を純水40gに溶解させる。
8)6)の混合液に7)の硝酸コバルト水溶液を滴下する。
9)得られた混合液にpH9.0となるまで0.01Nのアンモニア溶液を滴下する。
10)得られた混合液に純水1Lを滴下した後、ろ過する。
11)ろ過後、得られたケーキを更に純水を用いて洗浄する。
12)洗浄後、得られたケーキを、真空下、100℃×24時間加熱して乾燥する。
13)乾燥させた粉末を、水素雰囲気下、700℃×2時間熱処理を行う。
14)更に、アルゴン雰囲気下、800℃×5時間熱処理を行う。
[Pt/C触媒の調製]
 下記の手順により、従来のPt/C触媒を調製した。
1)カーボン(Ketejen)2.0gを純水0.2Lに分散させ、スラリーを調製する。
2)スラリーを攪拌しながら、5wt%のヘキサヒドロキソ白金硝酸水溶液を33g(白金換算で1.6g)を滴下する。
3)上記混合液を攪拌する。
4)得られた混合液に、純水1Lを滴下し、混合した後、ろ過する。
5)ろ過後、得られたケーキを更に純水で洗浄する。
6)洗浄後、得られたケーキを1Lの純水に分散させる。
7)得られた混合液にpH9.0となるまで0.01Nのアンモニア溶液を滴下する。
8)更に、上記混合液に3wt%の水素化ホウ素ナトリウム水溶液を140mL滴下する。
9)上記混合液を十分に攪拌する。
10)得られた混合液をろ過する。
11)ろ過後、得られたケーキを更に純水を用いて洗浄する。
12)洗浄後、得られたケーキを、80℃×48時間加熱して乾燥する。
[CO吸着IR法]
 上記の触媒材料(SnOを含む触媒材料を除く)について、下記の手順でCO吸着IR法を行った。
1)KBr希釈した試料約10mgで10mmφのペレットを成形した。
2)サンプルをセルに固定後、真空下で400℃に昇温し、1時間保持した。
3)真空を解除し、30分間Hガスを流通させた。
4)HからHeに切り替えて20分間保持した。
5)He気流中、室温に冷却してリファレンス測定した。
6)50℃に昇温して30分間COを吸着させた。
7)閉鎖系で室温まで冷却し、He気流中でCOを脱気しながら1分、5分、15分、30分後のデータを取得した。
8)7)のデータを5)のリファレンスを用いて演算し、吸光度データを得た。
(ガス流通はすべて20mL/分であった)
 SnOを含む触媒材料について、下記の手順でCO吸着IR法を行った。
1)KBr希釈した試料約10mgで10mmφのペレットを成形した。
2)サンプルをセルに固定後、真空下で100℃に昇温し、1時間保持した。
3)真空を解除し、100℃で20分間Heガスを流通させた。
4)He気流中、室温に冷却してリファレンス測定した。
5)50℃に昇温して30分間COを吸着させた。
6)閉鎖系で室温まで冷却し、He気流中でCOを脱気しながら1分、5分、15分、30分後のデータを取得した。
7)6)のデータを4)のリファレンスを用いて演算し、吸光度データを得た。
(ガス流通はすべて20mL/分であった)
 得られたCO吸着スペクトルを解析し、表1に、それぞれの試料の吸着CO種の吸収波数、ピーク高さ、及び吸収帯積分面積を示す。又、図1に、それぞれの触媒試料の吸着CO種の吸収波数を示す。なお、Pt/FeについてはCOピークが観察されなかった。
Figure JPOXMLDOC01-appb-T000001
 表1及び図1の結果を考察する。縦軸の数値からわかることを述べる。COのIR吸収スペクトルの波数、吸収波長、C‐O結合力、Pt‐C結合力、Pt表面の電子密度には以下の関係が成り立つ。波数が大きいということは吸収したIRの波長が短い、即ちC‐O結合力が強いことを意味する。C‐O結合力が強いということはPt‐Cの結合力が相対的に弱いことを意味し、それは即ちPt表面の電子密度が低いことを意味する。
 カーボン担体上のPt又はPt合金は分布の半ばにありPtへの相互作用が中庸であることが示唆される。上述のように、Pt表面の電子状態を低くすることがカソード触媒の開発方向であるので、燃料電池用電極触媒としてはCOピーク位置が2060cm‐1以上にあることが好ましいことが分かる。同時に、Pt-C結合が弱まることにより、Pt表面へのCO吸着力が減少するため、改質器と組み合わせて使う燃料電池のアノード触媒におけるCO被毒が緩和されると期待される。
[Ta/Pt比と吸着COの結合ピーク位置]
 上記実施例と同様に、Ta/Pt比を当量比で0.1~1.0に変化させて、その触媒材料の吸着COの吸収波数を調べた。図2に、Ta/Pt比と吸着COの吸収波数との関係を示す。なお、図中、700℃、900℃は熱処理温度である。図2の結果より、Ptに対する当量比で0.1~1.0のTaを添加した触媒Ta/Pt/Cは、Pt表面にCOを吸着させ吸着したCOのIR吸収スペクトルを測定するとピーク位置はすべて2,060cm-1以上となり、Ptの電子状態を好ましい方向に改質することができることが分かる。また、触媒材料の熱処理が有効なことが分かる。
[Nb/Pt比と吸着COの結合ピーク位置]
 上記実施例と同様に、Nb/Pt比を当量比で0.1~1.0に変化させて、その触媒材料の吸着COの吸収波数を調べた。なお、図中、700℃、900℃は熱処理温度である。図3に、Pt/Nb比と吸着COの吸収波数との関係を示す。図3の結果より、Ptに対する当量比で0.1~1.0のNbを添加した触媒Nb/Pt/C触媒においては、Nb担持後の熱処理温度を好適に選択することによって、吸着したC-OのIR吸収スペクトル位置はすべて2,060cm-1以上となり、Ptの電子状態を好ましい方向に改質できることが分かる。
[TaOx/Pt/C触媒]
(TaOx/Pt/C触媒の調製)
(比較例1)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理した後、窒素ガス中で700℃、2時間保持して触媒粉末を得た。
(比較例2)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理した後、窒素ガス中で900℃、2時間保持して触媒粉末を得た。
(実施例1)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とタンタル(塩化タンタル)0.39gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としタンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で700℃、2時間保持して触媒粉末を得た。
(実施例2)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とタンタル(塩化タンタル)0.78gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としタンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で700℃、2時間保持して触媒粉末を得た。
(実施例3)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とタンタル(塩化タンタル)1.95gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としタンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で700℃、2時間保持して触媒粉末を得た。
(実施例4)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とタンタル(塩化タンタル)3.9gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としタンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で700℃、2時間保持して触媒粉末を得た。
(実施例5)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とタンタル(塩化タンタル)0.39gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としタンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で900℃、2時間保持して触媒粉末を得た。
(実施例6)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とタンタル(塩化タンタル)0.78gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としタンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で900℃、2時間保持して触媒粉末を得た。
(実施例7)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とタンタル(塩化タンタル)1.95gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としタンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で900℃、2時間保持して触媒粉末を得た。
(実施例8)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とタンタル(塩化タンタル)3.9gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としタンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で900℃、2時間保持して触媒粉末を得た。
(触媒物性の評価)
 実施例1~8ならびに比較例1および2によって得られた電極触媒について、担持した白金粒子の粒径を測定した。以下の実施例において、白金粒子の粒径測定は、それぞれの電極触媒のXRDを測定し、得られたXRDプロファイルにおいて、約40°に検出されるPt(111)に相当するピークの半値全幅からシェラーの公式を用いて算出した。結果を図4に示す。
 図4に示すように、700℃で焼成工程を実施した試料(比較例1及び実施例1~4)はTaOx添加にともないPt粒子の成長が抑制され、触媒活性向上に有利な結果を得た。900℃で焼成工程を実施した試料についても、0.5当量添加まで(実施例5~7)はPt粒子の顕著な成長は観測されなかった。
 透過型電子顕微鏡(TEM)により実施例1の試料を観察すると、粒径2~5nmのPt粒子が観測されたが、この結果は図4に示したXRDから求めた粒径の結果によく対応している(図5)。ごく一部に図5Bのような部位が観察された。この部位では、Pt粒子の表面をTaOxが覆っている。TaOxの添加量増加に伴い、図5Bに示すような形状の部位が増加する傾向が認められた。
 実施例1~8ならびに比較例1および2によって得られた電極触媒について、CO吸着量を測定した。以下の実施例において、CO吸着量の測定はCOパルス吸着法によって行った。結果を図6に示す。
 図6に示すように、700℃及び900℃のいずれの条件で焼成工程を実施した場合においても、TaOx添加量の増加とともに、CO吸着量の低下が観測された。700℃で焼成工程を実施した場合(比較例1及び実施例1~4)にはPt粒子の成長が抑制されていたことを考慮すると(図4)、TaOxによるカバリングまたはPt表面の改質が生じていることが示唆される。これは前記TEM観察の結果からも同様に示唆される。すなわち、TaOx添加量の増加とともに、Pt粒子の表面をTaOxが覆っている形状の部位が増加し(図5B)、結果としてCO吸着量が減少すると考えられる。
 実施例1および比較例1によって得られた電極触媒について、X線光電子分光法(XPS)により表面の化学結合状態を評価した。結果を図7及び8に示す。
 図7に示すように、実施例1(TaOx添加触媒)では、比較例1に比べてPt表面の化学結合状態のうち比較的酸化状態が増加していた。これは、TaOx添加により、Ptの電子状態が変化したためと考えられる。
 また、図8に示すように、添加したTaOxはTaに近い酸化状態で存在していると推測される。
(MEAによる燃料電池特性の評価)
 実施例1および2ならびに比較例1によって得られた電極触媒について、MEA評価により質量活性を測定した。
 図9に示すように、TaOx添加により、Pt単位質量あたりの活性が向上することを確認した。実施例1はTa添加量がPtに対して0.1当量、実施例2はTa添加量がPtに対して0.2当量であるが、質量活性に有意な差は認められなかった。
 以上についてまとめると、Pt担持電極触媒にTaOxを添加することにより、Pt粒子の成長を抑制し、かつCO吸着量を減少させることが可能となる。また、燃料電池にTaOx添加したPt担持電極触媒を用いることにより、Pt単位質量あたりの活性を向上させることが可能となる。
[NbOx/Pt/C触媒]
(NbOx/Pt/C触媒の調製)
(実施例9)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)0.2gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で700℃、2時間保持して触媒粉末を得た。
(実施例10)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)0.4gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で700℃、2時間保持して触媒粉末を得た。
(実施例11)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)1gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で700℃、2時間保持して触媒粉末を得た。
(実施例12)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)2gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で700℃、2時間保持して触媒粉末を得た。
(実施例13)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)0.2gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で900℃、2時間保持して触媒粉末を得た。
(実施例14)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)0.4gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で900℃、2時間保持して触媒粉末を得た。
(実施例15)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)1gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で900℃、2時間保持して触媒粉末を得た。
(実施例16)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)2gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で900℃、2時間保持して触媒粉末を得た。
(触媒物性の評価)
 実施例9~16ならびに比較例1および2によって得られた電極触媒について、前記と同様の方法により担持した白金粒子の粒径を測定した。結果を図10に示す。
 図10に示すように、700℃で焼成工程を実施した試料(比較例1及び実施例9~12)はNbOx添加にともないPt粒子の成長が抑制され、触媒活性向上に有利な結果を得た。900℃で焼成工程を実施した試料についても、0.2当量添加まで(実施例13および14)はPt粒子の顕著な成長は観測されなかった。
 透過型電子顕微鏡(TEM)により実施例10の試料を観察すると、粒径2~5nmのPt粒子が観測されたが、この結果は図10に示したXRDから求めた粒径の結果によく対応している(図11)。NbOxの存在位置をTEM像から判断することはできなかったが、エネルギー分散型X線分光法(EDX)分析によりPtと同時に検出されることから、Pt表面またはその近傍に存在すると推測される。
 実施例9~16ならびに比較例1および2によって得られた電極触媒について、前記と同様の方法によりCO吸着量を測定した。結果を図12に示す。
 図12に示すように、700℃及び900℃のいずれの条件で焼成工程を実施した場合においても、NbOx添加量の増加とともに、CO吸着量の低下が観測された。特に0.2当量以上のCO吸着量の低下はTaOx添加の場合に比べて顕著であった(図6参照)。この点については以下の電気化学的特性の評価と合わせさらに詳細に説明する。
 実施例10および比較例1によって得られた電極触媒について、X線光電子分光法(XPS)により表面の化学結合状態を評価した。結果を図13及び14に示す。
 図13に示すように、実施例10(NbOx添加触媒)では、比較例1に比べてPt表面の化学結合状態のうち比較的酸化状態が増加していた。これは、TaOx添加の場合と同様、NbOx添加により、Ptの電子状態が変化したためと考えられる(図7参照)。
 また、図14に示すように、添加したNbOxはNb及びNbOの中間的な酸化状態で存在していると推測される。
(RDEによる電気化学的特性の評価)
 回転ディスク電極(RDE)を介した測定により、CO酸化開始電位(Eosp)、CO吸着量から求めた電気化学表面積(SA(CO))およびH吸着量から求めた電気化学表面積(ECSA)をそれぞれ求めた。結果を図15~17に示す。
 図15に示すように、NbOx添加に伴いCOストリッピング時のCO酸化開始電位が低下する結果となった。本実験は、電極表面にCOを吸着させて電気化学的に酸化していく際の酸化開始電位をプロットしたものである。すなわち、酸化開始電位の低下はCO吸着力の低下を示している。それ故この結果は、NbOx添加に伴いPt表面へのCO吸着力が弱まったことを示唆している。
 また、図16に示すように、NbOx添加に伴いCO吸着から求めた電気化学表面積も低下する結果となった。本実験は、電極表面に吸着したCOの量から算出した電気化学的な比表面積をプロットしたものである。すなわち、CO吸着から求めた電気化学表面積の低下は実質的なCO吸着量の低下を示している。それ故この結果も図15と同様に、NbOx添加に伴いPt表面へのCO吸着力が弱まったことを示唆している。
 これに対して、図17に示すように、H吸着量から求めた電気化学表面積はNbOx添加量を変化させてもほぼ一定の値であった。したがって、図15~17の結果を勘案すると、NbOx添加はPt表面へのH吸着には影響を及ぼさないが、CO吸着を選択的に軽減する効果を奏すると推測される。これは、図12に示されているCO吸着量の低下と高い相関を有する結果である。
 前記の効果をさらに詳しく検討するため、比較としてTaOx添加した試料(実施例1~3)についても、RDEによる電気化学特性を同様の試験により評価した。結果を図18~20に示す。
 図18~20の結果を図15~17の結果とそれぞれ比較すると、TaOx添加した場合(実施例1~3)には、NbOx添加した場合(実施例9~11)に見られたCO吸着に対する選択的な軽減効果という、有利な効果を確認することはできなかった。むしろ、図19及び20に示すように、TaOx添加量に対するCO吸着量から求めた電気化学表面積の変化とH吸着量から求めた電気化学表面積の変化は、0.2当量添加時に最大値を示すという同様の傾向であった。それ故、図12、及び15~17に示されたCO吸着の軽減効果は、NbOx添加に特有の効果であると推測される。したがって、Pt担持電極触媒にNbOxを添加することにより、CO被毒を選択的に軽減することが可能であると推測される。
(MEAによる燃料電池特性の評価)
 実施例9及び10ならびに比較例1によって得られた電極触媒について、MEA評価により電圧性能を測定した。加湿条件の調整は、温度設定したバブラー内にガスを導入して水分吸収させることで行った。80℃に設定したバブラーを通過した場合、相対湿度100%に相当し、これを「高加湿条件」とした。一方、相対湿度40%程度を「低加湿条件」とした。
 出力電圧は、「効率点電圧(効率)」及び「出力点電圧(出力)」の2種類を測定したが、効率点電圧は0.2A/cmにおける電圧を、出力点電圧は1.0A/cmにおける電圧を測定した値である。
 図21に示すように、NbOx添加により、高加湿性能を維持したまま、低加湿性能、特に出力性能を大幅に向上させる結果を得た。
 以上についてまとめると、Pt担持電極触媒にNbOxを添加することにより、Pt粒子の成長を抑制し、かつCO被毒を選択的に軽減することが可能となる。また、燃料電池にNbOx添加したPt担持電極触媒を用いることにより、高加湿性能を維持したまま、低加湿性能、特に出力性能を大幅に向上させることが可能となる。
[Ta・NbOx/Pt/C触媒]
(Ta・NbOx/Pt/C触媒の調製)
(実施例17)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)0.06g、タンタル(塩化タンタル)0.66gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物、タンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で700℃、2時間保持して触媒粉末を得た。
(実施例18)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)0.16g、タンタル(塩化タンタル)0.47gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物、タンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で700℃、2時間保持して触媒粉末を得た。
(実施例19)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)0.32g、タンタル(塩化タンタル)0.16gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物、タンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で700℃、2時間保持して触媒粉末を得た。
(実施例20)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)0.06g、タンタル(塩化タンタル)0.66gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物、タンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で900℃、2時間保持して触媒粉末を得た。
(実施例21)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)0.16g、タンタル(塩化タンタル)0.47gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物、タンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で900℃、2時間保持して触媒粉末を得た。
(実施例22)
 市販カーボンであるKetjen EC(ケチェンブラックインターナショナル製)5gと白金4.2gを純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理して触媒粉末を得た。
 上記触媒粉末とニオブ(塩化ニオブ)0.32g、タンタル(塩化タンタル)0.16gを純水0.5Lに加え分散させた。これに1Nアンモニアを滴下し、pHを6としニオブ酸化物、タンタル酸化物を形成した。この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に窒素ガス中で900℃、2時間保持して触媒粉末を得た。
(TaOx及びNbOxからなる金属酸化物添加触媒のCO結合ピーク位置)
 実施例18~20によって得られた電極触媒について、前記CO吸着IR法によってCO結合ピーク位置を測定した。なお、Nb組成が0mol%(すなわちTa組成が100mol%)である試料として実施例2(処理温度700℃)を、Nb組成が100mol%(すなわちTa組成が0mol%)である試料として実施例10(処理温度700℃)を、対照区として併せて評価に用いた。結果を図22に示す。
 図22に示すように、試験に供した実施例試料はいずれも2,060cm-1以上のCO結合ピーク位置であった。それ故、TaOx及びNbOxからなる金属酸化物添加により、Ptの電子状態を好ましい方向に改質できることが明らかとなった。
(触媒物性の評価)
 実施例17~22によって得られた電極触媒について、前記と同様の方法により担持した白金粒子の粒径を測定した。なお、Nb組成が0mol%(すなわちTa組成が100mol%)である試料として実施例2及び6(それぞれ処理温度700℃及び900℃)を、Nb組成が100mol%(すなわちTa組成が0mol%)である試料として実施例10及び14(それぞれ処理温度700℃及び900℃)を、対照区として併せて評価に用いた。結果を図23に示す。
 図23に示すように、700℃で焼成工程を実施した試料(実施例2、17~19及び10)及び900℃で焼成工程を実施した試料(実施例6、14及び20~22)の間では、有意な組成依存的変化は確認されなかった。
 実施例17~22ならびに実施例2、6、10及び14によって得られた電極触媒について、前記と同様の方法によりCO吸着量を測定した。結果を図24に示す。
 図24に示すように、700℃で焼成工程を実施した試料のうち、40mol%以下のNb組成である試料(実施例2、17及び18)ではCO吸着量に差は認められなかったが、40mol%超のNb組成である試料(実施例19及び10)ではNb組成の増加とともにCO吸着量の低下が観測された。これに対して、900℃で焼成工程を実施した試料については、有意な組成依存的変化は確認されなかった。
(MEAによる燃料電池特性の評価)
 実施例17~19、実施例2及び10ならびに比較例1によって得られた電極触媒について、前記と同様のMEA評価により電圧性能を測定した。加湿条件は、相対湿度100%を「高加湿条件」とし、相対湿度40%程度を「低加湿条件」とした。また、出力電圧は、0.2A/cmにおける電圧を効率点電圧とし、1.0A/cmにおける電圧を出力点電圧とした。図25に高加湿条件における電圧性能を、図26に低加湿条件における電圧性能を示す。
 図25に示すように、高加湿条件において各実施例の電極触媒と比較例1の電極触媒によって作製したMEAの燃料電池特性を比較すると、効率点電圧については、95mol%未満のNb組成の範囲で純白金触媒(比較例1)を上回る効果を奏することが明らかとなった。また、TaOx単独(実施例2)及びNbOx単独(実施例10)添加の試料と比較した場合、TaOx及びNbOxからなる金属酸化物の添加(実施例17~19)はいずれもTaOx及びNbOxの単独添加を上回る効果を奏し、TaOx及びNbOxからなる金属酸化物添加は効率性能の向上に寄与することが明らかとなった。特に、15~70mol%のNb組成の範囲でTaOx及びNbOxからなる金属酸化物を添加すると、高い効率点電圧を得ることが可能である。
 一方、出力点電圧については、前記効率性能における効果ほどではないものの、15~95mol%のNb組成の範囲で純白金触媒(比較例1)を上回る効果を奏することが明らかとなった。TaOx単独(実施例2)及びNbOx単独(実施例10)添加の試料と比較した場合には、前記効率性能と同様、TaOx及びNbOxからなる金属酸化物添加(実施例17~19)はいずれもTaOx単独及びNbOx単独の添加を上回る効果を奏し、TaOx及びNbOxからなる金属酸化物添加は出力性能の向上についても寄与することが明らかとなった。
 図26に示すように、低加湿条件における効率性能については、10mol%超のNb組成の範囲で純白金触媒(比較例1)を上回る効果を奏することが明らかとなった。また、TaOx単独(実施例2)及びNbOx単独(実施例10)添加の試料と比較した場合、TaOx及びNbOxからなる金属酸化物添加(実施例17~19)はいずれもTaOx単独添加を上回る効果を奏することが明らかとなった。特に、40mol%超のNb組成の範囲では、NbOx単独添加に匹敵する効率性能を引き出すことが可能である。
 出力性能についても前記効率性能と同様の傾向を示した。すなわち、15mol%超のNb組成の範囲で純白金触媒(比較例1)を上回る効果を奏することが明らかとなった。また、Nb組成依存的に出力点電圧が向上する結果を示したことから、配合するNb組成を高めるにしたがってより高い出力性能を引き出すことが可能である。
 図25及び26の結果を勘案すると、0~95mol%のNb組成の範囲でTaOx及びNbOxからなる金属酸化物を添加することで、高加湿又は低加湿条件における効率又は出力性能を向上させることが可能である。
 本発明の燃料電池用電極触媒は高活性であり、高価な白金使用量の低減に役立つ。又、本発明の触媒成分中の白金又は白金合金表面に吸着させたCOのIR吸収におけるピーク面積が最大であるスペクトルの波数を2060cm-1以上とする手法は、酸素還元型触媒の触媒設計に広く役立つものである。同時に、改質器と組み合わせて使う燃料電池のアノード触媒におけるCO被毒の緩和に役立つ。これにより、燃料電池の実用化と普及に貢献する。
 また、本発明の金属酸化物を含む燃料電池用電極触媒は、燃料電池の性能向上に寄与することが可能である。特にTaOx及びNbOxからなる金属酸化物を含む燃料電池用電極触媒は、Ta酸化物を単独添加した際に得られる質量活性の向上及びNb酸化物を単独添加した際に得られる低加湿性能の向上を同時に実現しうる。したがって、本発明のTaOx及びNbOxからなる金属酸化物を含む燃料電池用電極触媒は、燃料電池に求められる異なる性能の向上を両立するという、極めて有用な利点を有するものである。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (7)

  1.  白金又は白金合金からなる触媒成分と、任意成分として該触媒成分を担持する担体と、該触媒成分の被毒を緩和する金属酸化物とを含む燃料電池用電極触媒であって、該触媒成分中の白金又は白金合金表面に吸着させたCOのIR吸収におけるピーク面積が最大であるスペクトルの波数が2060cm-1以上であることを特徴とする燃料電池用電極触媒。
  2.  前記金属酸化物が、(1)前記担体表面及び/又は内部に含まれる、(2)前記白金又は白金合金からなる触媒成分中に助触媒として含まれる、(3)前記白金又は白金合金からなる触媒成分のコア材として含まれる、(4)電極触媒中に添加剤として含まれる、(5)前記担体として含まれる、から選択されることを特徴とする請求項1に記載の燃料電池用電極触媒。
  3.  前記金属酸化物が、酸化ハフニウム、酸化タンタル、酸化チタン、酸化ニオブ、及び酸化シリコンから選択される遷移金属酸化物の1種以上であることを特徴とする請求項1又は2に記載の燃料電池用電極触媒。
  4.  前記白金合金が白金と遷移金属からなり、該遷移金属が、ルテニウム(Ru)、モリブデン(Mo)、オスニウム(Os)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、鉄(Fe)、ニッケル(Ni)、チタン(Ti)、タングステン(W)、パラジウム(Pd)、レニウム(Re)、クロム(Cr)、マンガン(Mn)、ニオブ(Nb)、タンタル(Ta)、金(Au)から選択される1種以上であることを特徴とする請求項1乃至3のいずれかに記載の燃料電池用電極触媒。
  5.  前記金属酸化物が、酸化タンタル及び/又は酸化ニオブであることを特徴とする請求項1乃至4のいずれか1項に記載の燃料電池用電極触媒。
  6.  前記金属酸化物が酸化タンタル及び酸化ニオブからなり、該金属酸化物に酸化ニオブが10~95 mol%含まれることを特徴とする請求項5に記載の燃料電池用電極触媒。
  7.  請求項1乃至6のいずれかに記載の燃料電池用電極触媒を備えた固体高分子型燃料電池。
PCT/JP2009/050533 2008-01-16 2009-01-16 燃料電池用電極触媒及びそれを用いた固体高分子型燃料電池 WO2009091025A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-007092 2008-01-16
JP2008007092 2008-01-16
JP2009005969A JP2009193956A (ja) 2008-01-16 2009-01-14 燃料電池用電極触媒及びそれを用いた固体高分子型燃料電池
JP2009-005969 2009-01-14

Publications (1)

Publication Number Publication Date
WO2009091025A1 true WO2009091025A1 (ja) 2009-07-23

Family

ID=40885407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050533 WO2009091025A1 (ja) 2008-01-16 2009-01-16 燃料電池用電極触媒及びそれを用いた固体高分子型燃料電池

Country Status (1)

Country Link
WO (1) WO2009091025A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014475A (ja) * 2009-07-06 2011-01-20 Toyota Motor Corp 燃料電池用電極触媒、並びにその製造方法及び固体高分子型燃料電池
WO2011038907A2 (en) * 2009-09-30 2011-04-07 Daimler Ag Synthesis of stable and durable catalyst composition for fuel cell
US20130248378A1 (en) * 2010-12-07 2013-09-26 Hiroshi Kanemoto Electrode for electrochemical measurement, electrolysis cell for electrochemical measurement, analyzer for electrochemical measurement, and methods for producing same
JP2014519408A (ja) * 2011-06-01 2014-08-14 エアロジェット・ロケットダイン・インコーポレイテッド 改善された加熱能力および耐食性を有する触媒、ガス発生器、およびスラスター

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598273A (ja) * 1982-06-21 1984-01-17 エンゲルハ−ド・コ−ポレ−シヨン 燐酸燃料電池の電極
JPS60225363A (ja) * 1984-04-23 1985-11-09 Matsushita Electric Ind Co Ltd 燃料電池
JPH09167620A (ja) * 1995-12-15 1997-06-24 Toshiba Corp 燃料電池用電極触媒とその製造方法、およびその触媒を用いた電極と燃料電池
JP2002231254A (ja) * 2000-11-30 2002-08-16 Plug Power Inc 燃料電池電極
JP2006228546A (ja) * 2005-02-17 2006-08-31 Mitsui Eng & Shipbuild Co Ltd 固体高分子形燃料電池用電極触媒及びその製造方法
JP2007149417A (ja) * 2005-11-25 2007-06-14 Mitsubishi Electric Corp 燃料電池用電極およびその製造方法
JP2008171647A (ja) * 2007-01-10 2008-07-24 Toyota Motor Corp 燃料電池用触媒、燃料電池用カソード及びこれを備えた固体高分子型燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598273A (ja) * 1982-06-21 1984-01-17 エンゲルハ−ド・コ−ポレ−シヨン 燐酸燃料電池の電極
JPS60225363A (ja) * 1984-04-23 1985-11-09 Matsushita Electric Ind Co Ltd 燃料電池
JPH09167620A (ja) * 1995-12-15 1997-06-24 Toshiba Corp 燃料電池用電極触媒とその製造方法、およびその触媒を用いた電極と燃料電池
JP2002231254A (ja) * 2000-11-30 2002-08-16 Plug Power Inc 燃料電池電極
JP2006228546A (ja) * 2005-02-17 2006-08-31 Mitsui Eng & Shipbuild Co Ltd 固体高分子形燃料電池用電極触媒及びその製造方法
JP2007149417A (ja) * 2005-11-25 2007-06-14 Mitsubishi Electric Corp 燃料電池用電極およびその製造方法
JP2008171647A (ja) * 2007-01-10 2008-07-24 Toyota Motor Corp 燃料電池用触媒、燃料電池用カソード及びこれを備えた固体高分子型燃料電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSUSHI UEDA ET AL.: "Electrochemical oxidation of CO in sulfuric acid solution over Pt and PtRu catalysts modified with TaOx and NbOx", CATALYSIS TODAY, vol. 84, 2003, pages 223 - 229 *
YUSUKE YAMADA ET AL.: "High-throughput screening of PEMFC anode catalysts by IR thermography", APPLIED SURFACE SCIENCE, vol. 223, 2004, pages 220 - 223 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014475A (ja) * 2009-07-06 2011-01-20 Toyota Motor Corp 燃料電池用電極触媒、並びにその製造方法及び固体高分子型燃料電池
WO2011038907A2 (en) * 2009-09-30 2011-04-07 Daimler Ag Synthesis of stable and durable catalyst composition for fuel cell
WO2011038907A3 (en) * 2009-09-30 2011-05-26 Daimler Ag Synthesis of stable and durable catalyst composition for fuel cell
CN102596398A (zh) * 2009-09-30 2012-07-18 戴姆勒股份公司 燃料电池用稳定且耐久催化剂组合物的合成
US8722284B2 (en) 2009-09-30 2014-05-13 Daimler Ag Synthesis of stable and durable catalyst composition for fuel cell
CN105006577A (zh) * 2009-09-30 2015-10-28 戴姆勒股份公司 燃料电池用稳定且耐久催化剂组合物的合成
CN105006577B (zh) * 2009-09-30 2017-11-17 戴姆勒股份公司 燃料电池用稳定且耐久催化剂组合物的合成
US20130248378A1 (en) * 2010-12-07 2013-09-26 Hiroshi Kanemoto Electrode for electrochemical measurement, electrolysis cell for electrochemical measurement, analyzer for electrochemical measurement, and methods for producing same
US9234861B2 (en) * 2010-12-07 2016-01-12 Hitachi High-Technologies Corporation Electrode for electrochemical measurement, electrolysis cell for electrochemical measurement, analyzer for electrochemical measurement, and methods for producing same
US9829458B2 (en) 2010-12-07 2017-11-28 Hitachi High-Technologies Corporation Electrode for electrochemical measurement, electrolysis cell for electrochemical measurement, analyzer for electrochemical measurement, and methods for producing same
JP2014519408A (ja) * 2011-06-01 2014-08-14 エアロジェット・ロケットダイン・インコーポレイテッド 改善された加熱能力および耐食性を有する触媒、ガス発生器、およびスラスター

Similar Documents

Publication Publication Date Title
JP4713959B2 (ja) 燃料電池用担持触媒および燃料電池
JP5907736B2 (ja) 活性粒子含有触媒、その製造方法、該触媒を含んだ電極、及び該電極を含んだ電池
US8017548B2 (en) Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
EP2917952B1 (en) Method for producing a catalyst for fuel cells
JP5209474B2 (ja) 電極触媒、電極触媒の製造方法及び触媒粒子の粗大化を抑制する方法
WO2009104500A1 (ja) 触媒用担体、触媒およびその製造方法
KR100868756B1 (ko) 백금/루테늄 합금 담지 촉매, 그 제조방법 및 이를 이용한연료전지
JP4901143B2 (ja) 電極触媒、燃料極用電極、燃料電池装置及び電極触媒製造方法
JP2002511639A (ja) 燃料電池用の選択的酸化触媒の改良された組成物
JP2006179479A (ja) 燃料電池用の電極,燃料電池用の電極の製造方法,及び燃料電池
JP2007111582A (ja) 触媒、燃料電池燃料極用電極及び燃料電池
KR20120115559A (ko) 촉매의 제조 방법 및 촉매
JP2013154346A (ja) 複合体、これを含む触媒、これを含む燃料電池及びリチウム空気電池
WO2015050046A1 (ja) 電極触媒及びその製造方法
JP2009193956A (ja) 燃料電池用電極触媒及びそれを用いた固体高分子型燃料電池
JP2011014475A (ja) 燃料電池用電極触媒、並びにその製造方法及び固体高分子型燃料電池
JP5489740B2 (ja) 燃料電池用3元系電極触媒の製造方法、及びそれを用いた固体高分子型燃料電池
Choudhary et al. Synthesis of low-cost HNO 3-functionalized acetylene black carbon supported Pt-Ru/C AB nano electrocatalysts for the application in direct ethanol fuel cell (DEFC)
WO2009091025A1 (ja) 燃料電池用電極触媒及びそれを用いた固体高分子型燃料電池
Li et al. Surfactant-stabilized PtRu colloidal catalysts with good control of composition and size for methanol oxidation
JP2008506513A (ja) 電気化学的酸化反応用の金属合金およびその製造方法
JP4863735B2 (ja) 担持電極触媒及び触媒の製造方法
JP2009117287A (ja) 直接形アルコール燃料電池電極用触媒及びその電極用触媒の製法
JP2006224095A (ja) 燃料電池用電極触媒
WO2018051765A1 (ja) 電極触媒の製造方法及び電極触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703039

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09703039

Country of ref document: EP

Kind code of ref document: A1