RU2590020C2 - Смеситель текучих сред и использующая его система теплообмена - Google Patents

Смеситель текучих сред и использующая его система теплообмена Download PDF

Info

Publication number
RU2590020C2
RU2590020C2 RU2014118531/02A RU2014118531A RU2590020C2 RU 2590020 C2 RU2590020 C2 RU 2590020C2 RU 2014118531/02 A RU2014118531/02 A RU 2014118531/02A RU 2014118531 A RU2014118531 A RU 2014118531A RU 2590020 C2 RU2590020 C2 RU 2590020C2
Authority
RU
Russia
Prior art keywords
mixing
fluid
main body
pipe structure
housing
Prior art date
Application number
RU2014118531/02A
Other languages
English (en)
Other versions
RU2014118531A (ru
Inventor
Ёсихиро ЯМАСАКИ
Ясуфуми ОСОКАВА
Хироюки КАСИХАРА
Original Assignee
Кавасаки Дзюкогё Кабусики Кайся
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кавасаки Дзюкогё Кабусики Кайся filed Critical Кавасаки Дзюкогё Кабусики Кайся
Publication of RU2014118531A publication Critical patent/RU2014118531A/ru
Application granted granted Critical
Publication of RU2590020C2 publication Critical patent/RU2590020C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/435Mixing tubes composed of concentric tubular members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • F02C7/10Heating air supply before combustion, e.g. by exhaust gases by means of regenerative heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/001Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • F28F13/125Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation by stirring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/60Application making use of surplus or waste energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence

Abstract

Изобретение относится к смешиванию текучих сред. Устройство содержит полый трубчатый основной корпус (41) для смешивания первой (G4) и второй (G5) текучих сред внутри него, первый впускной порт, предусмотренный в верхней по потоку части основного корпуса (41), через который протекает первая текучая среда (G4), способствующий смешиванию корпус (38) трубчатой формы, расположенный внутри основного корпуса (41) и имеющий продольную ось (С1), проходящую в направлении, согласованном с направлением потока первой текучей среды (G4), причем противоположные концы способствующего смешиванию корпуса оставлены открытыми, и второй впускной порт (45), предусмотренный в периферийной стенке основного корпуса, через который протекает вторая текучая среда (G5) в направлении наружной периферийной стенки способствующего смешиванию корпуса (38). Первая текучая среда (G4) протекает снаружи и внутри способствующего смешиванию корпуса (38). Изобретение обеспечивает однородное смешивание и позволяет снизить потери давления. 2 н. и 4 з.п. ф-лы, 12 ил.

Description

Данная заявка основана и испрашивает конвенционный приоритет по японской патентной заявке №2011-223820, поданной 11 октября 2011 г., описание которой включено целиком в данный документ посредством ссылки, в качестве части данной заявки.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к устройству для смешивания текучих сред, предназначенному для однородного смешивания двух несходных текучих сред, таких как, например, текучая среда высокой температуры и текучая среда низкой температуры.
УРОВЕНЬ ТЕХНИКИ
В аппаратах для смешивания нескольких текучих сред между собой требуется, чтобы распределение температуры и распределение концентраций газов после смешивания были однородными. Например, когда турбина или теплообменник расположены ниже по потоку относительно смешивающего устройства, если распределение температуры смешиваемого газа не является однородным, под действием неравномерных тепловых деформаций возникают напряжения в лопастях турбины и/или теплоотводящих трубках, и в результате срок службы турбины и/или теплоотводящей трубки может сокращаться. Эффективность оборудования также снижается.
В этой связи из уровня техники известны конструкции, способствующие смешиванию, в которых в области потока текучей среды предусмотрены ребра, содействующие турбулентному потоку, и конструкции, в которых поток принудительно отклоняется для объединения двух потоков текучих сред (См., например, патентный документ 1, приведенный ниже.) В этих конструкциях велики потери давления в трубных структурах, их строение является сложным, и стоимость их производства соответственно высока. Когда используется текучая среда высокой температуры, требуется, чтобы компоненты, контактирующие с текучей средой высокой температуры, были термоустойчивыми, что соответственно дополнительно повышает стоимость производства. Также было предложено другое решение (раскрытое в патентном документе 2, приведенном ниже), в котором соответствующие трубы для протекания двух текучих сред соединены вместе Т-образным образом, так что эти две текучие среды могут смешиваться друг с другом с помощью простой конструкции.
[Список литературы уровня техники]
Патентный документ 1: патентная публикация JP No.2008-049306
Патентный документ 2: патентная публикация JP No.2002-136855
Было обнаружено, что устройство для смешивания текучих сред, раскрытое в указанном выше патентном документе 2, хотя и имеет простую конструкцию, не способно обеспечить достаточно однородное смешанное состояние, поскольку две текучие среды сходятся под прямыми углами.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Соответственно настоящее изобретение предназначено для того, чтобы обеспечить устройство для смешивания текучих сред, имеющее простую конструкцию, но способное обеспечить однородное смешивание и при этом позволяющее снизить потери давления.
Для того чтобы достигнуть вышеуказанной цели настоящего изобретения, согласно настоящему изобретению предусмотрено устройство для смешивания текучих сред, содержащее полый трубчатый основной корпус для смешивания первой и второй текучих сред внутри него; первый впускной порт, предусмотренный в верхней по потоку части основного корпуса, через который протекает первая текучая среда; способствующий смешиванию корпус трубчатой формы, расположенный внутри основного корпуса и имеющий продольную ось, проходящую в направлении, согласованном с направлением потока первой текучей среды; и второй впускной порт, предусмотренный в периферийной стенке основного корпуса, через который вторая текучая среда протекает в направлении наружной периферийной стенки способствующего смешиванию корпуса.
Согласно настоящему изобретению способствующий смешиванию корпус, имеющий продольную ось, проходящую в направлении, согласованном с направлением потока первой текучей среды, расположен внутри основного корпуса, и вследствие этого вторая текучая среда вводится таким образом, что протекает в направлении наружной периферийной поверхности способствующего смешиванию корпуса. Вследствие этого вторая текучая среда после столкновения с наружной периферийной поверхностью способствующего смешиванию корпуса протекает вокруг всей площади поверхности по окружности способствующего смешиванию корпуса и, следовательно, первая и вторая текучие среды в достаточной степени смешиваются друг с другом снаружи способствующего смешиванию корпуса. Вторая текучая среда после смешивания с первой текучей средой, протекающей снаружи способствующего смешиванию корпуса, снова смешивается в местоположении, расположенном ниже по потоку относительно способствующего смешиванию корпуса, с первой текучей средой, протекавшей внутри способствующего смешиванию корпуса, что тем самым содействует смешиванию первой и второй текучей сред друг с другом. Также, поскольку первая текучая среда протекает в направлении, согласующемся с продольной осью способствующего смешиванию корпуса, имеющего трубчатую форму, потери давления первой текучей среды могут быть снижены. Кроме того, поскольку способствующий смешиванию корпус расположен внутри основного корпуса, а второй впускной порт расположен в основном корпусе всего лишь, так что вторая текучая среда может протекать по направлению к способствующему смешиванию корпусу через этот второй впускной порт, данная конструкция является простой.
В предпочтительном варианте осуществления настоящего изобретения способствующий смешиванию корпус может быть расположен по существу коаксиально основному корпусу. Согласно этому признаку независимо от положения, в котором задан второй впускной порт в направлении по окружности основного корпуса, расстояние между вторым впускным портом и способствующим смешиванию корпусом является постоянным, и вследствие этого больше не требуется точности в относительном расположении второго впускного порта и способствующего смешиванию корпуса. Соответственно изготовление становится легким.
В другом предпочтительном варианте осуществления настоящего изобретения устройство для смешивания текучих сред может дополнительно содержать первую трубную конструкцию и вторую трубную конструкцию. Первая трубная конструкция образует основной корпус, в то время как вторая трубная конструкция соединена с возможностью передачи текучей среды с первой трубной конструкцией так, что расположена под прямым углом к первой трубной конструкции. Эта вторая трубная конструкция используется для подачи через нее второй текучей среды во второй впускной порт. Согласно этому конструкционному признаку вторая текучая среда сталкивается со способствующим смешиванию корпусом в направлении, перпендикулярном продольной оси данного способствующего смешиванию корпуса, и вследствие этого вторая текучая среда может протекать вокруг всей наружной периферийной поверхности способствующего смешиванию корпуса, дополнительно способствуя перемешиванию первой и второй текучих сред.
В дополнительном предпочтительном варианте осуществления настоящего изобретения устройство для смешивания текучих сред может дополнительно содержать первую трубную конструкцию, образующую основной корпус, соединенный с возможностью передачи текучей среды со второй трубной конструкцией для подачи второй текучей среды во второй впускной порт. Вторая трубная конструкция имеет концевую кромку в месте этого соединения, причем место соединения расположено заподлицо или радиально снаружи относительно внутренней периферийной поверхности первой трубной конструкции. Согласно этому конструкционному признаку благодаря второй трубной конструкции поток первой текучей среды, протекающий через первую трубную конструкцию, больше не испытывает затруднений, и потери давления в трубной конструкции могут быть дополнительно снижены.
В еще одном предпочтительном варианте осуществления настоящего изобретения первая текучая среда может иметь более низкую температуру, чем вторая текучая среда. Поскольку первая текучая среда имеет более низкую температуру, чем вторая текучая среда, вся поверхность способствующего смешиванию корпуса может охлаждаться первой текучей средой, вследствие чего устраняется необходимость в использовании дополнительных конструкций, специально предназначенных для предотвращения перегрева способствующего смешиванию корпуса.
В еще одном дополнительном предпочтительном варианте осуществления настоящего изобретения расположенная ниже по потоку часть основного корпуса может быть образована расширяющимся корпусом, площадь поверхности прохождения которого увеличивается в направлении вниз по потоку. Согласно этому конструкционному признаку перемешанная текучая среда может рассеиваться расширяющимся корпусом, что, следовательно, может дополнительно способствовать смешиванию.
В настоящем изобретении также предусмотрена система теплообмена, в которой устройство для смешивания текучих сред также согласно настоящему изобретению, которое описано выше, расположено выше по потоку относительно теплообменника. Согласно этому второму аспекту настоящего изобретения, поскольку перемешанная текучая среда вводится в теплообменник после того, как две текучих среды были в достаточной степени перемешаны друг с другом с помощью устройства для смешивания текучих сред, распределение температуры в сечении, перпендикулярном потоку перемешанной текучей среды, является однородным, и, следовательно, эффективность теплообмена повышается.
Любое сочетание по меньшей мере двух конструктивных признаков, раскрытых в прилагаемой формуле изобретения, и/или описании, и/или прилагаемых чертежах, должно рассматриваться как входящее в объем настоящего изобретения. В частности, любое сочетание двух или более пунктов приложенной формулы изобретения должно равноценно считаться как входящее в объем настоящего изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
В любом случае настоящее изобретение будет более понятно из последующего описания предпочтительных вариантов его осуществления в сочетании с прилагаемыми чертежами. Однако варианты осуществления и чертежи даны только для иллюстраций и пояснения и не предназначены для какого-либо ограничения объема настоящего изобретения, который определяется приложенной формулой изобретения. На прилагаемых чертежах сходные номера позиций используются для обозначения сходных деталей, представленных на различных видах, и:
Фиг. 1 представляет блок-схему, иллюстрирующую наклонную систему газовой турбины топливно-заборного типа, использующую смеситель текучих сред, выполненный согласно первому предпочтительному варианту осуществления настоящего изобретения;
Фиг. 2 представляет структурное схематическое изображение, иллюстрирующее расположение основных компонентов системы газовой турбины, изображенной на Фиг. 1;
Фиг. 3 представляет структурное схематическое изображение, иллюстрирующее смеситель текучих сред;
Фиг. 4 представляет схематический вид в сечении, иллюстрирующий поддерживающую конструкцию для смесителя текучих сред;
Фиг. 5 представляет вид в поперечном сечении, выполненном вдоль линии V-V, изображенной на Фиг. 4;
Фиг. 6 представляет схематическое изображение, иллюстрирующее распределение температуры в аксиальном направлении смесителя текучих сред;
Фиг. 7 представляет схематическое изображение, иллюстрирующее распределение температуры в радиальном направлении, наблюдаемое со стороны входного отверстия к регенератору, соединенному со смесителем текучих сред;
Фиг. 8 представляет схематическое изображение, иллюстрирующее распределение температуры в аксиальном направлении, соответствующее традиционному смесителю текучих сред;
Фиг. 9 представляет схематическое изображение, иллюстрирующее распределение температуры в радиальном направлении, наблюдаемое со стороны входного отверстия, к регенератору, соединенному с традиционным смесителем текучих сред;
Фиг. 10 представляет структурное схематическое изображение, иллюстрирующее смеситель текучих сред, выполненный согласно второму предпочтительному варианту осуществления настоящего изобретения;
Фиг. 11 представляет схематическое изображение, иллюстрирующее распределение температуры в аксиальном направлении, соответствующее смесителю текучих сред, изображенному на Фиг. 10; и
Фиг. 12 представляет схематическое изображение, иллюстрирующее распределение температуры в радиальном направлении, которое наблюдается со стороны входного отверстия к регенератору, соединенному со смесителем текучих сред, изображенным на Фиг. 10.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Далее предпочтительные варианты осуществления изобретения будут описаны более подробно и со ссылками на прилагаемые чертежи.
В частности, Фиг. 1 иллюстрирует структурное схематическое изображение наклонной системы газовой турбины топливно-заборного типа, использующей смеситель текучих сред, выполненный согласно первому предпочтительному варианту осуществления настоящего изобретения. Система газовой турбины содержит газотурбинный двигатель GT, который в свою очередь содержит компрессор 1, каталитическую камеру 2 сгорания, использующую катализатор, такой как, например, платину или палладий, и турбину 3. Полезной мощностью газотурбинного двигателя GT приводится в действие вращающийся механизм 4, служащий в качестве силового генератора и стартера.
Рабочий газ G1, используемый в этом газотурбинном двигателе GT, может быть низкокалорийным газом, таким как, например, среда VAM (вентиляционного метана), вырабатываемого в угольной шахте, или среда СММ (метана угольных пластов), имеющая более высокую концентрацию горючего компонента (метана), чем в среде VAM, в которой воздух и топливо (горючий компонент) смешаны друг с другом. Рабочий газ G1 сжимается посредством компрессора 1 и полученный в результате сжатый, высокого давления газ G2, в свою очередь, поступает в каталитическую камеру 2 сгорания. Этот сжатый газ G2 сгорает в каталитической реакции с катализатором, таким как, например, как платина или палладий, внутри каталитической камеры 2 сгорания с образованием газа G3 сгорания высокой температуры и высокого давления. Этот газ G3 сгорания затем поступает в турбину 3 для приведения ее в действие.
Турбина 3 соединена с возможностью передачи приводного усилия с компрессором 1 посредством вращающегося вала 5, и, вследствие этого, компрессор 1 приводится в действие этой турбиной 3. Таким образом, сформирован генерирующий энергию аппарат 50, содержащий газотурбинный двигатель GT и вращающийся механизм 4. Здесь концентрация топлива (концентрация горючего компонента) в рабочем газе G1, в котором используется только среда VAM, ниже, чем предельная концентрация возгорания, даже при температуре, полученной после того, как она была повышена в результате сжатия, выполненного компрессором 1, и, вследствие этого, он не возгорается в компрессоре 1. Также, даже в случае, когда к рабочему газу G1, состоящему только из среды VAM, используемому как описано выше, добавляется среда СММ с высокой концентрацией горючего компонента, количество добавляемой среды контролируется таким образом, чтобы она была ниже, чем предельная концентрация возгорания при температуре, полученной после повышения температуры в результате сжатия, выполненного компрессором 1, и вследствие этого он не возгорается.
Газотурбинный двигатель GT, упомянутый выше, также содержит регенератор (теплообменник) 6 для нагревания сжатого газа G2, вводимого из компрессора 1 в каталитическую камеру 2 сгорания посредством выхлопного газа G4 из турбины 3, и нагревательную форсунку 7, предназначенную для активации катализатора посредством повышения температуры сжатого газа G2, втекающего в каталитическую камеру 2 сгорания, в момент запуска. Эта нагревательная форсунка 7 осуществляет нагревание посредством смешивания нагревающего газа G5, образованного путем смешивания топлива с выделенным газом G20, частично выделенным из сжатого газа G2, сжатого компрессором 1, а затем полученная в результате этого смесь подвергается сжиганию в пламени, с выхлопным газом G4, поступающим от турбины 3 к регенератору 6. Нагревательная форсунка 7 соединена с возможностью передачи текучей среды с клапаном 8 отбора газа с целью контроля количества выделенного газа G20, поступающего в нагревательную форсунку 7. Выхлопной газ G4, вытекающий наружу из регенератора 6 выпускается, после того, как его звук понижается звукопоглотителем (не изображен), наружу. Контроль, осуществляемый с помощью клапана 8 отбора газа для контроля количества подаваемого выделенного газа G20 на нагревательную форсунку 7, выполняется в ответ на выходной сигнал от контроллера 20.
Подача топлива на нагревательную форсунку 7 происходит в то время, когда поток среды СММ, поступающий от источника 13 СММ, такого как пробуренная часть угольной шахты, контролируется первым клапаном 9 управления потоком топлива. Регулировка потока среды СММ, осуществляемая посредством первого клапана 9 управления потоком топлива, выполняется контроллером 20. Подача рабочего газа G1 в направлении компрессора 1 выполняется путем подмешивания среды СММ, выделенной из источника 13 СММ, в среду VAM, поступающую из источника 12 VAM, такого как, например, вентиляция в угольной шахте, в соответствии с потребностью, в то время, как ее поток регулируется вторым клапаном 10 управления потоком топлива. Среда СММ содержит газ метан в количестве в диапазоне от около 10 до 30%, в то время как среда VAM содержит метан в количестве менее чем 1%. Регулировка потока СММ, осуществляемая вторым клапаном 10 управления потоком топлива, также выполняется с помощью контроллера 20. Всасывающий канал, проходящий от источника 12 VAM к компрессору 1, соединен с возможностью передачи текучей среды с источником 19 воздуха, таким как, например, наружный воздух, поступающий через перепускной клапан 18 (открыт/закрыт), с целью продувки, происходящей в момент начала работы.
Вращающийся вал 5, соединяющий компрессор 1 и турбину 3, состоит из единого вала, и этот вращающийся вал 5 соединен с возможностью передачи приводного усилия с вращающимся механизмом (В/М) 4 посредством зубчатого редуктора (ЗР) 17. Электроэнергия, получаемая вращающимся механизмом 4, приводимым в действие вращающейся турбиной 3, подается на контроллер 20. Устройство 11 преобразования электроэнергии в качестве стартового мотора приводит в действие в момент запуска вращающийся механизм 4 посредством контроллера 20.
Как лучше изображено на Фиг.2, турбина 3 и регенератор 6 соединены с возможностью передачи текущей среды друг с другом трубчатым выхлопным каналом 25. Этот трубчатый выхлопной канал 25 состоит из полого цилиндрического корпуса 25а, расположенного прилегающим к турбине 3, и расширяющегося корпуса 25b, соединенного с возможностью передачи текущей среды с нижней по потоку частью полого цилиндрического корпуса 25а и имеющего такую форму, что он расширяется в направлении регенератора 6, то есть в сторону вниз по потоку. Расширяющийся корпус 25b имеет верхнюю по потоку часть, имеющую круглую форму в сечении, нижнюю по потоку часть, имеющую прямоугольную форму, продольная ось которой расположена вертикально, и по существу промежуточную часть, лежащую между верхней по потоку частью и нижней по потоку частью. Промежуточная часть расширяющегося корпуса 25b имеет заданную в ней полость, такую, что имеет переменную форму сечения по своей длине, которая меняется постепенно от круглой формы до прямоугольной формы. Следует, однако, заметить, что нижняя по потоку часть расширяющегося корпуса 25b может иметь круглую форму сечения.
Полый цилиндрический корпус 25а выхлопного канала 25, упомянутый выше, образует первую трубную конструкцию, с которой соединена вторая трубная конструкция 28, проходящая от нагревательной форсунки 7, предназначенной для подачи нагревающего газа G5 в выхлопной канал 25. Полый цилиндрический корпус 25а имеет заднюю часть, а способствующий смешиванию корпус 38, имеющий трубчатую форму, в частности в данном примере полую цилиндрическую форму, расположен внутри задней части полого цилиндрического корпуса 25а, причем его продольная ось С1 (лучше видно на Фиг. 3) проходит параллельно направлению, в котором протекает выхлопной газ G4.
Как описано выше, в нагревательную форсунку 7 поступает среда СММ, которая является топливным компонентом, из источника 13 СММ (лучше видно на Фиг. 1). Канал 27 для выделенного газа ответвляется от канала 24 для сжатого газа, через который из компрессора 1 к регенератору 6 поступает сжатый газ G2, и в этом канале 27 для отвода выделенного газа предусмотрены нагревательная форсунка 7 и клапан 8 отбора газа, расположенный выше по потоку относительно нагревательной форсунки 7. Часть канала 27 для отвода выделенного газа, расположенная ниже по потоку относительно нагревательной форсунки 7, сформирована в виде второй трубной конструкции 28, упомянутой выше.
Ссылаясь на Фиг. 3 и 4, опишем подробно устройство 40 для смешивания текучих сред. Устройство 40 для смешивания текучих сред образовано частью выхлопного канала 25, способствующим смешиванию корпусом 38 и расположенной ниже по потоку частью второй трубной конструкции 28. Основной корпус 41 устройства 40 для смешивания текучих сред образован расположенной ниже по потоку частью первой трубной конструкции (полым цилиндрическим корпусом) 25а, которая является частью выхлопного канала 25, и расширяющимся корпусом 25b. Первый впускной порт 43 предусмотрен в верхней по потоку части основного корпуса 41, а второй впускной порт 45, сообщающийся со второй трубной конструкцией 28, предусмотрен в периферийной стенке основного корпуса 41. Как изображено на Фиг. 2, устройство 40 для смешивания текучих сред и регенератор (теплообменник) 6, расположенный ниже по потоку относительно устройства 40 для смешивания текучих сред, взаимодействуют друг с другом с образованием системы 42 теплообмена.
Как лучше изображено на Фиг. 3, выхлопной газ G4, который является первой текучей средой, протекающий внутри выхлопного канала 25, втекает в основной корпус 41 через первый впускной порт 43 и проходит как внутри, так и снаружи способствующего смешиванию корпуса 38. Способствующий смешиванию корпус 38 расположен коаксиально с полым цилиндрическим корпусом 25а. Хотя в обсуждаемом варианте осуществления способствующий смешиванию корпус 38 изображен имеющим полую цилиндрическую форму, может быть использован любой полый элемент, имеющий любую подходящую форму, например многоугольную столбчатую форму, коническую форму или многоугольную коническую форму, или способствующий смешиванию корпус 38 может иметь нижнюю по потоку поверхность, которая может иметь радиальный наклон (как изображено на Фиг. 10 и будет упомянуто далее).
Вторая трубная конструкция 28 приварена к полому цилиндрическому корпусу 25а выхлопного канала 25, так что расположена под прямым углом к нему. Нагревающий газ G5, который является второй текучей средой из второй трубной конструкции 28, втекает в основной корпус 41 через второй впускной порт 45, ограниченный кромкой 46 нижнего по потоку конца (как лучше видно на Фиг.4) второй трубной конструкции 28, так чтобы сталкиваться с наружной периферийной поверхностью 38а способствующего смешиванию корпуса 38. Нагревающий газ G5 после столкновения с наружной периферийной поверхностью 38а способствующего смешиванию корпуса 38 в то время, когда направляется и проходит вдоль наружной периферийной поверхности 38а способствующего смешиванию корпуса 38, протекает между внутренней периферийной поверхностью 29 полого цилиндрического корпуса 25а выхлопного канала 25 и наружной периферийной поверхностью 38а способствующего смешиванию корпуса 38а. Выхлопной газ G4, который представляет собой первую текучую среду, имеет температуру ниже, чем температура нагревающего газа G5, который является второй текучей средой.
Способствующий смешиванию корпус 38 расположен своей наружной периферийной поверхностью 38а напротив второго впускного порта 45, так что нагревающий газ G5, который является второй текучей средой из второй трубной конструкции 28, может с ним сталкиваться. Как видно на Фиг. 4 в аксиальном направлении способствующего смешиванию корпуса 38, второй впускной порт 45, сформированный во второй трубной конструкции 28, целиком перекрывается с наружной периферийной поверхностью 38а способствующего смешиванию корпуса 38 при наблюдении сбоку в аксиальном направлении способствующего смешиванию корпуса 38. Другими словами, второй впускной порт 45 расположен между кромкой 38b верхнего по потоку конца и кромкой 38 с нижнего по потоку конца способствующего смешиванию корпуса 38.
Способствующий смешиванию корпус 38, изображенный на Фиг. 3, имеет наружный диаметр DO, размер которого равен от около 0,35 до 0,55 раз, предпочтительно от 0,4 до 0,5 раз, от внутреннего диаметра DI1 полого цилиндрического корпуса 25а. Также для того, чтобы подавить сопротивление потока текучей среды выхлопного газа G4, способствующий смешиванию корпус 38 имеет толщину стенки предпочтительно настолько малую, насколько это возможно, при условии сохранения прочности. Кроме того, диаметр DO способствующего смешиванию корпуса 38, упомянутый выше, имеет размер от 0,9 до 1,3 раз, предпочтительно от 1,0 до 1,2 раз, от внутреннего диаметра DI2 второй трубной конструкции 28. Способствующий смешиванию корпус 38 имеет длину L, составляющую от около 1,2 до 3,0 раз, предпочтительно от 1,5 до 2.5 раз, от внутреннего диаметра DI2 второй трубной конструкции 28.
Как изображено на Фиг. 4, полый цилиндрический корпус 25а выхлопного канала 25 и вторая трубная конструкция 28 соединены друг с другом в месте соединения 44, и концевая кромка 46 выпускной часть 28а второй трубной конструкции 28 в месте соединения 44 расположена по существу заподлицо с внутренней периферийной поверхностью 29 полого цилиндрического корпуса 25а выхлопного канала 25. Следует, однако, заметить, что кромка 46 нижнего по потоку конца второй трубной конструкции 28 может быть расположена в местоположении, отнесенном на некоторое расстояние радиально наружу относительно внутренней периферийной поверхности 29 полого цилиндрического корпуса 25а.
Как изображено на Фиг. 5, вторая трубная конструкция 28 имеет продольную ось С2, проходящую под прямым углом относительно продольной оси С1 способствующего смешиванию корпуса 38. Соответственно нагревающий газ G5, протекающий через вторую трубную конструкцию 28, сталкивается с вершиной угла и прилегающей к ней областью способствующего смешиванию корпуса 38. Способствующий смешиванию корпус 38 поддерживается полым цилиндрическим корпусом 25а выхлопного канала 25 посредством поддерживающего элемента 48, проходящего в его радиальном направлении. Поддерживающий элемент 48 предусмотрен проходящим от концевой части до способствующего смешиванию корпуса 38, лежащих напротив друг друга в направлении, параллельном продольной оси С1, что лучше видно на Фиг.4. Поддерживающий элемент 48 на каждой из противоположных концевых частей способствующего смешиванию корпуса 38 имеет внутреннюю концевую часть, прикрепленную к наружной периферийной поверхности способствующего смешиванию корпуса 38 посредством первого крепежного элемента 58, такого как, например, болт, и также имеет наружную концевую часть, соединенную с внутренней периферийной поверхностью выхлопного канала 25 посредством второго крепежного элемента 59, такого как, например, болт.
Один из поддерживающих элементов 48, например расположенный выше по потоку поддерживающий элемент 48, расположенный на стороне, лежащей выше по потоку относительно направления потока в выхлопном канале 25 в данном примере, жестко (без возможности движения) поддерживается в направлении потока (аксиальном направлении) в то время, как другой из поддерживающих элементов 48, например расположенный ниже по потоку относительно поддерживающего элемента 48, расположенного на стороне, лежащей ниже по потоку относительно направления потока в выхлопном канале 25 в данном примере, поддерживается с возможностью аксиального движения, так что тепловое расширение способствующего смешиванию корпуса 38 в аксиальном направлении может быть скомпенсировано. Более конкретно, наружная концевая часть расположенного ниже по потоку поддерживающего элемента 48, упомянутого выше, снабжена прорезью, имеющей большую длину в аксиальном направлении, и посредством второго крепежного элемента 59, введенного через эту длинную прорезь, способствующий смешиванию корпус 38 поддерживается с возможностью движения в аксиальном направлении.
Как изображено на Фиг. 5, каждый из поддерживающих элементов 48 состоит из плоского элемента и предусматривается в трех местоположениях по окружности способствующего смешиванию корпуса 38. Каждый из поддерживающих элементов 48 имеет свои радиальные внутренние и наружные концевые части, сформированные таким образом, чтобы ответвляться в круговом или поперечном направлении друг от друга, так что может быть скомпенсировано тепловое расширение способствующего смешиванию корпуса 38 в его радиальном направлении.
Поддерживающая конструкция для описанного выше способствующего смешиванию корпуса 38 необязательно должна быть ограничена изображенным и описанным выше, но может иметь любую форму или конфигурацию при условии, что обеспечивается компенсация возникающего теплового расширения, способствующего смешиванию корпуса 38. Например, способствующий смешиванию корпус 38 может поддерживаться навесным образом посредством поддерживающего элемента 48 в форме соединительного механизма, расположенного между выхлопным каналом 25 и способствующим смешиванию корпусом 38, так что тепловое расширение способствующего смешиванию корпуса 38 может быть скомпенсировано.
Далее будет описана работа газотурбинного двигателя GT описанной выше конструкции. В момент запуска, поскольку температура каталитической форсунки 2, изображенной на Фиг. 1, ниже, чем нижняя предельная температура активации или самая низкая температура, при которой может быть активирован катализатор в каталитической камере 2 сгорания, температура сжатого газа G2, протекающего через регенератор 6, причем регенератор 6 разогревается вследствие зажигания нагревательной форсунки 7, повышается до тех пор, пока она не достигнет температуры, при которой в каталитической камере 2 сгорания происходит каталитическая реакция.
В это время, как лучше видно на Фиг. 3, выхлопной газ G4 из турбины 3 и нагревающий газ G5 от нагревательной форсунки 7 смешиваются друг с другом внутри устройства 40 для смешивания текучих сред. Более конкретно, выхлопной газ G4 втекает в основной корпус 41 устройства 40 для смешивания текучих сред через первый впускной порт 43, а затем протекает внутри и снаружи способствующего смешиванию корпуса 38. В это же время, после того, как нагревающий газ G5 втекает радиально в основной корпус 41 через второй порт 45, чтобы столкнуться с наружной периферийной поверхностью 38а способствующего смешиванию корпуса 38, он после этого протекает между наружной периферийной поверхностью 38а способствующего смешиванию корпуса 38 и основным корпусом 41, то есть внутренней периферийной поверхностью 29 полого цилиндрического корпуса 25а выхлопного канала 25.
Нагревающий газ G5, протекающий между наружной периферийной поверхностью 38а способствующего смешиванию корпуса 38 и внутренней периферийной поверхностью 29 основного корпуса 41, сначала смешивается с выхлопным газом G4, а затем вытекает наружу способствующего смешиванию корпуса 38 (т.е. происходит первичное смешивание). Поскольку нагревающий газ G5 сталкивается с наружной периферийной поверхностью 38а способствующего смешиванию корпуса 38, он направляется вдоль наружной периферийной поверхности 38а по всей поверхности основного корпуса 41 в направлениях радиально и по окружности основного корпуса 41. Соответственно это способствует смешиванию выхлопного газа G4 и нагревающего газа G5. В это время вся поверхность способствующего смешиванию корпуса 38 охлаждается выхлопным газом G4 низкой температуры, протекающего затем во внутренней части способствующего смешиванию корпуса 38.
После этого смешанный газ, образованный выхлопным газом G4 и нагревающим газом G5, смешанными, как упоминалось выше, друг с другом во время первичного смешивания, дополнительно перемешивается в местоположении ниже по потоку относительно способствующего смешиванию корпуса 38 с выхлопными газами G4, протекавшими во внутренней части способствующего смешиванию корпуса 38 (т.е. происходит вторичное смешивание). Смешивание, осуществляемое в двух этапах, как описано выше, дополнительно способствует смешиванию выхлопного газа G4 и нагревающего газа G5. Также, поскольку смешиваемый газ, протекавший через способствующий смешиванию корпус 38, втекает внутрь и рассеивается расширяющимся корпусом 25b основного корпуса 41, это еще больше способствует смешиванию.
Когда происходит нормальная или номинальная работа, температура выхлопного газа G4 повышается, и сжатый газ G2, поступающий из компрессора 1, изображенного на Фиг. 1, обменивается теплом с выхлопным газом G4 внутри регенератора 6, и вследствие этого температура сжатого газа G2 после осуществления теплообмена повышается до величины, достаточной для обеспечения работы каталитической камеры 2 сгорания. В результате, когда клапан 8 отбора газа закрывается, работа нагревательной форсунки 7 останавливается. Соответственно в устройстве 40 для смешивания текучих сред, изображенном на Фиг. 3, протекает только выхлопной газ G4, а нагревающий газ G5 не вводится. То есть внутри и снаружи способствующего смешиванию корпуса 38 протекает только выхлопной газ G4. В это время, поскольку способствующий смешиванию корпус 38 имеет такую форму и конфигурацию, что его продольная ось С1 проходит в направлении, параллельном направлению потока выхлопного газа G4, сопротивление, которое может сообщаться выхлопному газу G4 со стороны способствующего смешиванию корпуса 38, является достаточно низким. Соответственно во время нормальной работы, осуществляемой при максимальном сроке службы, потери давления выхлопного газа G4 могут быть эффективно снижены.
В описанной выше конструкции, как изображено на Фиг. 3, поскольку способствующий смешиванию корпус 38, имеющий продольную ось С1, проходящую в направлении, согласованном с направлением потока выхлопного газа G4, расположен внутри основного корпуса 41, и выхлопной газ G4 протекает снаружи и во внутренней части способствующего смешиванию корпуса 38 в направлении, параллельном продольной оси С1 способствующего смешиванию корпуса 38, потери давления выхлопного газа G4 снижены. Также, поскольку нагревающий газ G5 вводится в направлении наружной периферийной поверхности 38а способствующего смешиванию корпуса 38, нагревающий газ G5 сталкивается с наружной периферийной поверхностью 38а, протекая в соответствующих направлениях радиально и по окружности основного корпуса 41. В результате выхлопной газ G4 и нагревающий газ G5 достаточно смешиваются друг с другом снаружи способствующего смешиванию корпуса 38. Нагревающий газ G5 после смешивания с выхлопным газом G4, протекающим затем снаружи способствующего смешиванию корпуса 38, снова смешивается с выхлопным газом G4, протекавшим внутри способствующего смешиванию корпуса 38, что соответственно способствует смешиванию выхлопного газа G4 и нагревающего газа G5. Также, поскольку способствующий смешиванию корпус 38 расположен внутри основного корпуса 41, а второй впускной порт 45 для введения нагревающего газа G5 расположен просто в направлении способствующего смешиванию корпуса 38, конструкция является простой.
Также, поскольку способствующий смешиванию корпус 38 расположен по существу коаксиально с основным корпусом 41, расстояние между вторым впускным портом 45 и способствующим смешиванию корпусом 38 является постоянным, независимо от положения, в котором второй впускной порт 45 расположен в направлении по окружности основного корпуса 41. Вследствие этого точности в относительном расположении второго впускного порта 45 и способствующего смешиванию корпуса 38 больше не требуется и, следовательно, изготовление становится более легким.
Кроме того, поскольку вторая трубная конструкция 28 соединена с выхлопным каналом 25 так, что расположена по существу под прямым углом к последнему, нагревающий газ G5 отталкивается от наружной периферийной поверхности 38а способствующего смешиванию корпуса 38 в направлении под прямыми углами к нему, и вследствие этого нагревающий газ G5 протекает в соответствующих направлениях радиально и по окружности выхлопного канала 25 или основного корпуса 41. В результате это дополнительно способствует смешиванию выхлопного газа G4 и нагревающего газа G5.
Как лучше изображено на Фиг. 4, поскольку концевая кромка 46 второй трубной конструкции 28 в месте соединения 44 между выхлопным каналом 25 и второй трубной конструкцией 28 расположена заподлицо с внутренней периферийной поверхностью 29 выхлопного канала 25, поток выхлопного газа G4, протекающий затем через выхлопной канал 25, не распределяется посредством второй трубной конструкции 28, и вследствие этого потери давления выхлопного газа G4 дополнительно снижаются.
При этом, поскольку температура выхлопного газа G4 ниже, чем температура нагревающего газа G5, вся поверхность способствующего смешиванию корпуса 38, контактирующая с нагревающим газом G5 высокой температуры, охлаждается с помощью выхлопного газа G4. Следовательно, нет необходимости в использовании какой-либо конструкции для предотвращения перегрева способствующего смешиванию корпуса 38, и вся конструкция дополнительно упрощается.
Как изображено на Фиг. 3, поскольку расположенная ниже по потоку часть основного корпуса 41 образована расширяющимся корпусом 25b, имеющим площадь поверхности прохождения, увеличивающуюся в направлении вниз по потоку, смешиваемый газ выхлопного газа G4 и нагревающий газ G5 рассеиваются расширяющимся корпусом 25b, что дополнительно способствует смешиванию.
Как изображено на Фиг. 2, поскольку устройство 40 для смешивания текучих сред расположено в местоположении выше по потоку относительно регенератора 6, который является теплообменником, смешенный газ вводится в регенератор 6 после того, как выхлопной газ G4 и нагревающий газ G5 были достаточно перемешаны друг с другом с помощью с помощью устройства 40 для смешивания текучих сред. Вследствие этого распределение температуры в сечении, пересекающем поток перемешанной текучей среды, является однородным и, следовательно, эффективность теплообмена повышается.
Для того, чтобы уточнить условия смешивания в устройстве 40 для смешивания текучих сред согласно описанному выше варианту осуществления, были проведены серии компьютерных вычислений. Также в качестве сравнительного примера были аналогичным образом проанализированы конструкции, не использующие способствующий смешиванию корпус 38, применяемый в устройстве 40 для смешивания текучих сред согласно вышеуказанному варианту осуществления.
Фиг. 6 иллюстрирует распределение температуры в аксиальном направлении, которое было измерено при использовании устройства 40 для смешивания текучих сред согласно вышеуказанному варианту осуществления для смешивания выхлопного газа G4 с нагревающим газом G5; Фиг. 7 иллюстрирует распределение температуры в радиальном направлении на виде в сечении, выполненном вдоль линии VII-VII на Фиг. 6, то есть с выходной стороны устройства 40 для смешивания текучих сред. Фиг. 8 и 9 иллюстрируют соответствующие распределения температуры, измеренные в качестве сравнительного примера. На данных чертежах числа в круглых скобках от (1) до (21) относятся к соответствующим промежуткам, охватывающим интервал от высокой температуры до низкой температуры. На Фиг. 6 и 8 одинаковые числа от (1) до (9) соответствуют одинаковым температурным промежуткам. Аналогичным образом, на Фиг. 7 и 9 одинаковые числа от (10) до (21) соответствуют одинаковым температурным промежуткам.
Как показано на Фиг. 6 для устройства 40 для смешивания текучих сред согласно вышеуказанному варианту осуществления, нагревающий газ G5 высокой температуры распространяется от центральной части к нижней части расширяющегося корпуса 25b, и в результате несложно понять, что, как видно на Фиг. 7, со стороны выхода устройства 40 для смешивания текучих сред распределение температуры является однородным и, следовательно, оба газа надлежащим образом перемешаны друг с другом. С другой стороны, с устройством для смешивания текучих сред, взятым для сравнительного примера, как изображено на Фиг. 8, нагревающий газ G5 высокой температуры в большом количестве втекает в нижнюю часть расширяющегося корпуса 25b, и в результате, как изображено на Фиг. 9, распределение температуры искажено со стороны выхода устройства 40 для смешивания текучих сред и оба газа недостаточно смешаны друг с другом.
Фиг. 10 иллюстрирует структурное схематическое изображение устройства 40А для смешивания текучих сред, выполненного согласно второму предпочтительном варианту осуществления настоящего изобретения. Устройство 40А для смешивания текучих сред согласно второму варианту осуществления отличается от устройства 40 для смешивания текучих сред согласно описанному ранее варианту осуществления только поверхностью 62 нижнего по потоку конца способствующего смешиванию корпуса 38А, которая согласно второму варианту осуществления имеет такую форму, что концевая поверхность наклонена наружу в направлении в сторону вниз по потоку. Другие структурные признаки аналогичны изображенным и описанным в связи с описанным ранее первым вариантом осуществления. Другими словами, нижняя по потоку часть (нижняя часть) способствующего смешиванию корпуса 38, противоположная его части (верхней части), противолежащей второй трубной конструкции 28, обрезана с уклоном. Хотя в этом примере угол наклона 9 нижней концевой поверхности 62 относительно радиального направления изображен как 45°, этот угол наклона 9 может иметь величину в диапазоне от около 20 до 60°, а предпочтительно в диапазоне от около 30 до 50°. Второй впускной порт 45 расположен между кромкой 38Аа верхнего по потоку конца способствующего смешиванию корпуса 38А и кромкой 38Ab нижнего по потоку конца его части (верхней части, изображенной на Фиг. 10), противолежащей второму впускному порту 45.
Для устройства 40А для смешивания текучих сред согласно второму варианту осуществления, как и в случае с устройством 40 для смешивания текучих сред согласно описанному ранее первому варианту осуществления, была выполнена проверка посредством серий компьютерных вычислений. Ее результаты представлены на Фиг. 11 и 12. Как хорошо можно видеть на Фиг. 11, для устройства 40А для смешивания текучих сред, выполненного согласно второму варианту осуществления, еще большее количество нагревающего газа G5 высокой температуры протекает вблизи центральной части расширяющегося корпуса 25b и соответственно, как хорошо можно видеть на Фиг. 12, распределение температуры становится еще более однородным по сравнению с распределением, измеренным для устройства 40 для смешивания текучих сред согласно описанному ранее первому варианту осуществления.
Хотя при описании и первого, и второго варианта осуществления расположенная ниже по потоку часть полого цилиндрического корпуса 25а, образующая верхнюю по потоку часть основного корпуса 41, была изображена и описана как имеющая полую цилиндрическую форму, она может представлять собой расширяющуюся трубку с малым коэффициентом расширения, имеющую небольшой уклон в направлении вниз по потоку. Также, когда коэффициент расширения расширяющегося корпуса 25b основного корпуса 41 мал, способствующий смешиванию корпус 38 может быть расположен внутри расширяющегося корпуса 25b. Кроме того, при отсутствии расширяющегося корпуса 25b весь основной корпус 41 устройства 40 для смешивания текучих сред может иметь цилиндрическую форму. При этом может быть предусмотрено несколько вторых впускных портов 45, так что через соответствующие впускные порты 45 в основной корпус 41 могут вводиться различные текучие среды.
Хотя настоящее изобретение было полностью описано применительно к предпочтительным вариантам осуществления со ссылками на прилагаемые чертежи, используемые только с иллюстративной целью, специалистами в данной области техники после изучения приведенного здесь описания настоящего изобретения могут быть легко предложены различные очевидные изменения и модификации. Соответственно такие изменения и модификации, если только они не выходят за пределы объема настоящего изобретения, определяемого приложенной формулой изобретения, должны считаться относящимися к данному изобретению.
[Номера позиций]
6 Регенератор (теплообменник)
25 Выхлопной канал
28 Вторая трубная конструкция
29 Внутренняя периферийная поверхность основного корпуса
38, 38А Способствующий смешиванию корпус
38а Наружная периферийная поверхность способствующего смешиванию корпуса
40, 40А Устройство для смешивания текучих сред
41 Основной корпус (первая трубная конструкция)
42 Система теплообмена
43 Первый впускной порт
44 Место соединения
45 Второй впускной порт
46 Концевая кромка второй трубной конструкции
С1 Продольная ось
G4 Выхлопной газ (первая текучая среда)
G5 Нагревающий газ (вторая текучая среда)

Claims (6)

1. Устройство для смешивания текучих сред, содержащее:
полый трубчатый основной корпус для смешивания первой и второй текучих сред внутри него,
первый впускной порт, предусмотренный в верхней по потоку части основного корпуса, через который протекает первая текучая среда,
способствующий смешиванию корпус трубчатой формы, расположенный внутри основного корпуса и имеющий продольную ось, проходящую в направлении, согласованном с направлением потока первой текучей среды, причем противоположные концы способствующего смешиванию корпуса оставлены открытыми, и
второй впускной порт, предусмотренный в периферийной стенке основного корпуса, через который протекает вторая текучая среда в направлении наружной периферийной стенки способствующего смешиванию корпуса,
причем способствующий смешиванию корпус расположен коаксиально основному корпусу,
при этом первая текучая среда, втекающая в основной корпус через первый впускной порт, протекает внутри и снаружи способствующего смешиванию корпуса, причем первая текучая среда, текущая снаружи способствующего смешиванию корпуса, сначала смешивается со второй текучей средой, втекающей в основной корпус через второй входной порт с получением первичного смешивания сред, и затем указанные первично смешанные среды перемешиваются в местоположении ниже по потоку относительно способствующего смешиванию корпуса с первой текучей средой, протекающей внутри способствующего смешиванию корпуса с получением вторичного смешивания сред.
2. Устройство для смешивания текучих сред по п. 1, в котором основной корпус образован первой трубной конструкцией, при этом устройство дополнительно содержит вторую трубную конструкцию, соединенную с возможностью передачи текучей среды с первой трубной конструкцией, так что она расположена под прямым углом к первой трубной конструкции, причем вторая трубная конструкция выполнена с возможностью подачи через нее второй текучей среды во второй впускной порт.
3. Устройство для смешивания текучих сред по п. 1, в котором основной корпус образован первой трубной конструкцией, при этом устройство дополнительно содержит вторую трубную конструкцию, соединенную с возможностью передачи текучей среды с первой трубной конструкцией, причем в месте соединения первой трубной конструкции и второй трубной конструкции концевая кромка второй трубной конструкции расположена заподлицо или радиально снаружи относительно внутренней периферийной поверхности первой трубной конструкции.
4. Устройство для смешивания текучих сред по п. 1 или 2, в котором первая текучая среда имеет температуру ниже, чем вторая текучая среда.
5. Устройство для смешивания текучих сред по п. 1 или 2, в котором основной корпус имеет расположенную ниже по потоку часть, причем расположенная ниже по потоку часть основного корпуса образована расширяющимся корпусом, площадь поверхности прохождения которого увеличивается в направлении вниз по потоку.
6. Система теплообмена, содержащая теплообменник и устройство для смешивания текучих сред по п. 1 или 2, расположенное выше по потоку относительно теплообменника.
RU2014118531/02A 2011-10-11 2012-08-23 Смеситель текучих сред и использующая его система теплообмена RU2590020C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011223820A JP5719745B2 (ja) 2011-10-11 2011-10-11 流体混合器とこれを用いた熱交換システム
JP2011-223820 2011-10-11
PCT/JP2012/071279 WO2013054595A1 (ja) 2011-10-11 2012-08-23 流体混合器とこれを用いた熱交換システム

Publications (2)

Publication Number Publication Date
RU2014118531A RU2014118531A (ru) 2015-11-20
RU2590020C2 true RU2590020C2 (ru) 2016-07-10

Family

ID=48081655

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014118531/02A RU2590020C2 (ru) 2011-10-11 2012-08-23 Смеситель текучих сред и использующая его система теплообмена

Country Status (7)

Country Link
US (1) US10092886B2 (ru)
JP (1) JP5719745B2 (ru)
CN (1) CN103857463B (ru)
AU (1) AU2012321964B2 (ru)
RU (1) RU2590020C2 (ru)
UA (1) UA107906C2 (ru)
WO (1) WO2013054595A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666423C1 (ru) * 2017-11-30 2018-09-07 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Устройство для смешивания и нагрева газовых сред

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719745B2 (ja) * 2011-10-11 2015-05-20 川崎重工業株式会社 流体混合器とこれを用いた熱交換システム
JP6244159B2 (ja) * 2013-10-11 2017-12-06 川崎重工業株式会社 ガス混合器
US20150124552A1 (en) * 2013-11-04 2015-05-07 Yang Shi System and method for mixing a gas and a liquid
CN106268385A (zh) * 2015-06-24 2017-01-04 贵州航空发动机研究所 一种高温燃气掺混装置
EP3181866B1 (en) 2015-12-16 2018-07-04 Airbus Operations, S.L. Gas turbine engine for an aircraft
US11857933B2 (en) * 2018-03-09 2024-01-02 Produced Water Absorbents Inc. Systems, apparatuses, and methods for mixing fluids using a conical flow member
US10458446B1 (en) * 2018-11-29 2019-10-29 Vortex Pipe Systems LLC Material flow amplifier
US11221028B1 (en) 2018-11-29 2022-01-11 Vortex Pipe Systems LLC Cyclonic flow-inducing pump
ES2713123B2 (es) * 2019-02-19 2019-11-06 Univ Madrid Politecnica Sistema termico con compresor y turbina de expansion de gas en circuito cerrado, con aportacion de calor por fuente exterior, y recuperacion interna de calor y de energia mecanica, para generacion de electricidad y procedimiento
KR102086440B1 (ko) * 2019-05-31 2020-03-09 주식회사 이엠코 화력발전소의 배가스 처리장치
US11002301B1 (en) 2020-09-15 2021-05-11 Vortex Pipe Systems LLC Material flow modifier and apparatus comprising same
CN112934014A (zh) * 2021-01-30 2021-06-11 河南省奥瑞环保科技有限公司 多种气体动态配气控制装置及系统
US11378110B1 (en) 2022-01-05 2022-07-05 Vortex Pipe Systems LLC Flexible fluid flow modifying device
CN115790247B (zh) * 2023-01-06 2023-04-21 中国核动力研究设计院 均流部件及换热装置
US11739774B1 (en) 2023-01-30 2023-08-29 Vortex Pipe Systems LLC Flow modifying device with performance enhancing vane structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU394073A1 (ru) * 1968-08-05 1973-08-22 Смеситель
SU1607916A1 (ru) * 1989-01-09 1990-11-23 Всесоюзный Теплотехнический Научно-Исследовательский Институт Им.Ф.Э.Дзержинского Смеситель потоков текучих веществ
JPH0448921A (ja) * 1990-06-18 1992-02-18 Inax Corp エゼクタ
RU2056920C1 (ru) * 1993-12-20 1996-03-27 Товарищество с ограниченной ответственностью "Камен" Инжекторный смеситель
JP2007500074A (ja) * 2003-07-29 2007-01-11 ジュモン ソシエテ アノニム 2つの流体を混合する装置、及び該装置を使用して超高温流体を冷却する方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1454196A (en) * 1921-07-16 1923-05-08 Trood Samuel Device for producing and utilizing combustible mixture
US1466006A (en) * 1922-09-14 1923-08-28 Trood Samuel Apparatus for producing and utilizing combustible mixture
US1672209A (en) * 1923-09-24 1928-06-05 Fairbanks Morse & Co Priming device
US1678225A (en) * 1926-10-28 1928-07-24 Jerry W Kincade Agitator for chemically purifying oil
US1903429A (en) * 1929-08-08 1933-04-11 Paul W Merchant Mixing device
US2831754A (en) * 1954-05-10 1958-04-22 Jones & Laughlin Steel Corp Solvent extraction process
US3304564A (en) * 1965-10-04 1967-02-21 Green Jack Apparatus for cleaning a body of liquid and maintaining its level
DE1904014C3 (de) * 1969-01-28 1974-06-20 Noll Maschinenfabrik Gmbh, 4950 Minden Vorrichtung zum kontinuierlichen Vereinigen von Getränkekomponenten in einstellbarem Mengenverhältnis
JPS5372273U (ru) * 1976-11-18 1978-06-16
US4296779A (en) * 1979-10-09 1981-10-27 Smick Ronald H Turbulator with ganged strips
SU882571A1 (ru) * 1980-02-22 1981-11-23 Предприятие П/Я Г-4696 Газовоздушный смеситель
JPS6046117U (ja) * 1983-09-09 1985-04-01 三菱重工業株式会社 流体混合装置
JPH0660640B2 (ja) * 1985-09-09 1994-08-10 清之 堀井 管路に螺旋流体流を生成させる装置
CH676628A5 (en) * 1988-06-16 1991-02-15 Ceramic Technology Foundation Dual liquid mixing device - has low pressure chamber for low pressure fluid between venturi for high pressure fluid and discharge valve
CA1295585C (en) * 1988-08-25 1992-02-11 Chemonics Industries, Inc. Apparatus for applying fire-fighting chemicals
SE500071C2 (sv) * 1992-06-25 1994-04-11 Vattenfall Utveckling Ab Anordning för blandning av två fluider, i synnerhet vätskor med olika temperatur
US5743637A (en) * 1995-11-09 1998-04-28 Chem Financial, Inc. Venturi mixing valve for use in mixing liquids
JP2002136855A (ja) 2000-11-02 2002-05-14 Mitsubishi Heavy Ind Ltd 流体混合器
US6453926B1 (en) * 2001-04-10 2002-09-24 Gary A. Baker Method and apparatus for injecting a chemical into a fluid stream
JP2003126667A (ja) * 2001-10-22 2003-05-07 Mitsuru Kitahara 空気混合供給装置
US7029165B2 (en) * 2001-10-26 2006-04-18 Allen Thomas E Automatically adjusting annular jet mixer
CN2629817Y (zh) * 2003-06-19 2004-08-04 中国石化上海石油化工股份有限公司 一种气液混合射流器
US7416404B2 (en) * 2005-04-18 2008-08-26 General Electric Company Feed injector for gasification and related method
JP4989062B2 (ja) * 2005-04-28 2012-08-01 バブコック日立株式会社 流体混合装置
US20070144158A1 (en) * 2005-12-22 2007-06-28 Girard James W Exhaust dispersion device
JP2008049306A (ja) 2006-08-28 2008-03-06 Hitachi Ltd ガス混合装置
JP2010149062A (ja) * 2008-12-25 2010-07-08 Fujifilm Corp 流体の混合装置及び混合方法
EP2621620B1 (en) * 2010-09-28 2016-04-06 Dow Global Technologies LLC Reactive flow static mixer with cross-flow obstructions and method for mixing
JP5719745B2 (ja) * 2011-10-11 2015-05-20 川崎重工業株式会社 流体混合器とこれを用いた熱交換システム
US9885318B2 (en) * 2015-01-07 2018-02-06 Jason E Green Mixing assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU394073A1 (ru) * 1968-08-05 1973-08-22 Смеситель
SU1607916A1 (ru) * 1989-01-09 1990-11-23 Всесоюзный Теплотехнический Научно-Исследовательский Институт Им.Ф.Э.Дзержинского Смеситель потоков текучих веществ
JPH0448921A (ja) * 1990-06-18 1992-02-18 Inax Corp エゼクタ
RU2056920C1 (ru) * 1993-12-20 1996-03-27 Товарищество с ограниченной ответственностью "Камен" Инжекторный смеситель
JP2007500074A (ja) * 2003-07-29 2007-01-11 ジュモン ソシエテ アノニム 2つの流体を混合する装置、及び該装置を使用して超高温流体を冷却する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666423C1 (ru) * 2017-11-30 2018-09-07 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Устройство для смешивания и нагрева газовых сред

Also Published As

Publication number Publication date
WO2013054595A1 (ja) 2013-04-18
US10092886B2 (en) 2018-10-09
RU2014118531A (ru) 2015-11-20
US20140219048A1 (en) 2014-08-07
JP2013081905A (ja) 2013-05-09
CN103857463B (zh) 2016-01-27
AU2012321964B2 (en) 2015-07-30
CN103857463A (zh) 2014-06-11
AU2012321964A1 (en) 2014-05-01
JP5719745B2 (ja) 2015-05-20
UA107906C2 (ru) 2015-02-25

Similar Documents

Publication Publication Date Title
RU2590020C2 (ru) Смеситель текучих сред и использующая его система теплообмена
RU2568030C2 (ru) Демпфирующее устройство для уменьшения пульсаций камеры сгорания
CN101220953B (zh) 燃料灵活的三方向旋转旋流器和其使用方法
RU2632073C2 (ru) Узел впрыска топлива и установка, содержащая узел впрыска топлива
CN103256632B (zh) 气冷旋流式喷嘴头
CN102472493B (zh) 燃气轮机燃烧器及燃气轮机
EP2741005B1 (en) A fuel nozzle for a combustor of a gas turbine engine
CN103244968A (zh) 具有驻涡腔的燃烧室总成
JP2010169385A (ja) ターボ機械の結束多管ノズル
WO2008047825A1 (fr) Chambre de combustion de turbine à gaz
CN109252961B (zh) 连续爆震式燃气涡轮发动机及其组装方法
US20210190320A1 (en) Turbine engine assembly including a rotating detonation combustor
CN101802365A (zh) 驻涡燃烧腔
EP2592345B1 (en) Combustor and method for supplying fuel to a combustor
US20160175786A1 (en) Gas mixer
WO2013099582A1 (ja) ガスタービンにおける触媒燃焼器
CN109073222A (zh) 压缩机扩散器及燃气轮机
RU89671U1 (ru) Горелочное устройство для камеры сгорания газотурбинной установки
RU2171903C1 (ru) Модульная передвижная газотурбинная теплофикационная установка и жаротрубный котел для нее
US11846417B2 (en) Micro-mixer bundle assembly, and combustor and gas turbine having same
CN104024738A (zh) 流速分布均匀化装置
JP2013181744A (ja) タービンエンジンで使用するための燃料ノズルアセンブリおよびそれを組み立てる方法
EP4103828B1 (en) A pulse detonation engine and a biogas energy recovery unit
EP4220016A1 (en) Combustor nozzle
RU2449144C1 (ru) Газотурбинная энергетическая установка с рекуперацией тепла

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
TC4A Change in inventorship

Effective date: 20161018

MM4A The patent is invalid due to non-payment of fees

Effective date: 20200824