WO2013099582A1 - ガスタービンにおける触媒燃焼器 - Google Patents

ガスタービンにおける触媒燃焼器 Download PDF

Info

Publication number
WO2013099582A1
WO2013099582A1 PCT/JP2012/081995 JP2012081995W WO2013099582A1 WO 2013099582 A1 WO2013099582 A1 WO 2013099582A1 JP 2012081995 W JP2012081995 W JP 2012081995W WO 2013099582 A1 WO2013099582 A1 WO 2013099582A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalytic combustor
casing
main body
combustor
Prior art date
Application number
PCT/JP2012/081995
Other languages
English (en)
French (fr)
Inventor
堂浦康司
緒方正裕
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to AU2012359391A priority Critical patent/AU2012359391A1/en
Priority to RU2014129646A priority patent/RU2014129646A/ru
Priority to CN201280063258.5A priority patent/CN104011468A/zh
Publication of WO2013099582A1 publication Critical patent/WO2013099582A1/ja
Priority to US14/316,230 priority patent/US20140308174A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/04Apparatus in which combustion takes place in the presence of catalytic material characterised by arrangements of two or more catalytic elements in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/13001Details of catalytic combustors

Definitions

  • the present invention relates to a catalytic combustor in a gas turbine incorporating a plurality of detachable catalyst units.
  • Catalytic combustors mounted on gas turbines have advantages such as little NOx emissions and the ability to oxidize low-concentration methane that cannot normally be combusted, and can respond to environmental problems such as low pollution and global warming countermeasures. This is one of the technologies (for example, Patent Document 1).
  • the multistage type shown in FIG. 5 may be used for the following reasons. First, since the ignitability is poor under high pressure conditions, a plurality of types of catalysts for ignition and oxidation are required. Second, in order to complete the reaction completely, a catalyst carrier having a certain length is required. However, since such a long catalyst carrier is difficult to produce, it is preferable to divide it into a plurality of stages. Even in the case of the multi-stage type, the force applied to the catalyst carrier 102 due to the differential pressure is large under a high pressure condition, and the support material 104 that supports the catalyst carrier 102 is required for each stage. As described above, the combustion catalyst under high-pressure conditions is a multistage type, and has the support material 104 in the catalyst carrier 102 at each stage, and the structure in which the catalyst carrier 102 and the support material 104 are attached inside the housing 106. It becomes.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a catalytic combustor capable of improving workability of catalyst replacement and assembly in a gas turbine.
  • a catalytic combustor is a catalytic combustor used in a gas turbine, and is a multistage catalyst unit and a hollow cylindrical main body in which the catalyst unit is housed.
  • Each of the catalyst units at each stage has a support material that supports the catalyst carrier, and the catalyst units are detachably attached to a housing that forms an outer shell of the main body.
  • the multistage type refers to a form in which a plurality of units are arranged along the gas flow direction.
  • the multistage catalyst unit is detachably attached to the combustor, it is necessary to replace another catalyst unit when replacing one catalyst unit in the multistage during maintenance. As a result, the workability of replacement and assembly of the catalyst carrier can be improved.
  • each catalyst unit is incorporated in the casing so as to be put in and out.
  • each catalyst unit can be removed from the casing after the casing is taken out of the combustor from the housing. As described above, since the replacement work can be performed outside, workability is further improved.
  • the housing and the casing are preferably cylindrical, and the catalyst unit is preferably columnar.
  • a cover portion that is detachably connected to one end portion in the axial direction of the main body portion is further provided, and the casing is set to be removable from the one end portion of the main body portion to the outside of the main body portion.
  • the casing in which the catalyst unit is incorporated can be taken in and out in the axial direction from one end of the housing, so that the workability for replacing the catalyst unit is improved.
  • the main body portion has a vertical axial direction, a support protrusion is provided on an inner peripheral surface thereof, and the casing is provided with a first flange portion provided at an upper end portion and protruding outward, and a lower end portion. And a second flange portion protruding inwardly, the first flange portion is placed on the protrusion, and a plurality of the catalyst units are superposed in the vertical direction,
  • the case of the catalyst unit can be configured to be placed on the second flange. According to this configuration, a plurality of catalyst units can be incorporated in the combustor with a simple structure.
  • each of the catalyst units includes a case, a catalyst carrier housed in the case, and the support material disposed on the downstream side of the catalyst carrier in the case. Is preferred. According to this configuration, since the catalyst carrier and the support material are accommodated in the case and unitized, the catalyst carrier is stably supported by the support material in the case in each catalyst unit.
  • FIG. 1 is a simplified configuration diagram illustrating a gas turbine engine including a catalytic combustor according to an embodiment of the present invention.
  • the gas turbine engine GT includes a compressor 1, a catalytic combustor 2 including a catalyst such as platinum or palladium, and a turbine 3.
  • the rotating machine 4 serving as a generator and a starter is driven by the output of the gas turbine engine GT.
  • the gas turbine engine GT and the rotating machine 4 constitute a power generation device E.
  • Gas turbine engine GT mixes low-calorie gas such as CMM (Coal Mine Methane) generated in coal mine with air or VAM (Ventilation Air Methane) emitted from coal mine.
  • CMM Coal Mine Methane
  • VAM Vehicle Air Methane
  • This is a lean-fuel intake gas turbine that inhales into the engine as working gas having a flammable limit concentration or less so as not to be ignited by compression in the compressor, and uses contained combustible components as fuel.
  • a working gas G1 such as a mixture of VAM and CMM is compressed by the compressor 1, and the high-pressure compressed gas G2 is sent to the catalytic combustor 2.
  • the compressed gas G2 is combusted by a catalytic reaction by a catalyst such as platinum or palladium in the catalytic combustor 2, and a high-temperature / high-pressure combustion gas G3 generated thereby is supplied to the turbine 3 to drive the turbine 3.
  • the turbine 3 is connected to the compressor 1 via the rotary shaft 5, and the compressor 1 is driven by the turbine 3.
  • the rotating shaft 5 and the rotating machine 4 are connected via a speed reducer 17.
  • the rotating machine 4 is driven by the rotation of the turbine 3 to obtain electric power.
  • the power generator E including the gas turbine engine GT and the rotating machine 4 is constructed.
  • the gas turbine engine GT further raises the temperature of the regenerator (heat exchanger) 6 that heats the compressed gas G2 introduced from the compressor 1 to the catalytic combustor 2 by the exhaust gas G4 from the turbine 3, and the exhaust gas G4.
  • a heating burner 7 that activates the catalyst by increasing the temperature of the compressed gas G2 flowing into the catalytic combustor 2 at the time of starting.
  • the warming burner 7 is composed of a heating gas G5, which is flame-combusted by mixing the fuel F with the extracted gas G20 that is compressed by the compressor 1 and partially extracted from the compressed gas G2 toward the regenerator 6. It mixes with the exhaust gas G4 supplied to the regenerator 6 from the turbine 3 and heats it.
  • the warming burner 7 is connected to a bleed valve 8 for controlling the supply amount of the extraction gas G20 to the warming burner 7.
  • the regenerator 6 and the catalytic combustor 2 are connected by a downstream compressed gas passage 26, and supply the compressed gas G2 from the regenerator 6 to the catalytic combustor 2.
  • the turbine 3 and the regenerator 6 are connected by a hollow cylindrical exhaust duct 25.
  • the exhaust gas G4 flowing out from the regenerator 6 is silenced through a silencer (not shown) and then released to the outside.
  • FIG. 2 is a perspective view showing a main part of the power generation apparatus E.
  • the gas turbine engine GT is housed in a package 22 in a state of being supported by a base 20, and an exhaust duct 25 is provided on one end side in the axial direction C of the turbine 3 and on the left side in FIG.
  • the regenerator 6 is connected to the exhaust duct 25, and the heating burner 7 is connected to the upper part of the exhaust duct 25.
  • the compressor 1 is connected to the other end side in the axial direction C of the turbine 3 and the right side in FIG. 2, and the speed reducer 17 is connected to the other end side of the compressor 1.
  • the generator 4 (FIG. 1) is connected to the other end side of the speed reducer 17 via the rotating shaft 5.
  • the catalytic combustor 2 is connected to the upper part of the turbine 3, and the catalytic combustor 2 and the regenerator 6 are connected by a downstream compressed gas passage 26 that supplies the compressed gas G 2 from the regenerator 6 to the catalytic combustor 2.
  • the catalytic combustor 2 includes a hollow cylindrical main body 30 in which catalyst units U1, U2, and U3 (FIG. 3) are housed, and a bottomed cylindrical cover connected to the upper portion of the main body 30 by a bolt. 32.
  • two steel columns 40 arranged in the axial direction C are erected on the base 20 on both sides of the catalytic combustor 2, that is, on both sides orthogonal to the axial direction C.
  • Two of the four struts 40 facing each other on both sides of the catalytic combustor 2 are connected by the first connecting members 42 and 42, and the two ends of the connecting members 42 and 42 are two.
  • the second connection members 44 and 44 are connected.
  • the upper surfaces of the first and second connecting members 42 and 44 are located at substantially the same height as the connecting portion A between the main body 30 and the cover 32 in the catalytic combustor 2.
  • the catalytic combustor 2 has a multi-stage type, for example, three-stage catalyst units U1, U2, U3. Of the three catalyst units U1, U2 and U3, the uppermost catalyst unit U1 in FIG. 3 is for ignition, and the remaining two are oxidation catalyst units U2 and U3.
  • the axial direction that is, the gas flow direction is set to the vertical direction.
  • the main body portion 30 of the catalytic combustor 2 has a housing 50 that forms an outline thereof, and a lower end portion of the housing 50 is connected to the turbine 3 with a bolt.
  • the catalyst units U1, U2, U3 are detachably attached to the housing 50. That is, an annular support protrusion 52 that protrudes inward is fixed to the inner surface of the upper portion of the housing 50 by welding, and a cylindrical casing 54 is disposed inside the main body 30. The outer diameter of the casing 54 is set smaller than the inner diameter of the support protrusion 52.
  • a first flange 56 projecting radially outward is formed at one end of the casing 54, that is, the upper end in FIG. 3, and the first flange 56 projecting radially inward from the other end of the casing 54, ie, the lower end of FIG.
  • Two flanges 58 are formed.
  • the outer diameter of the first flange 56 is set to be larger than the inner diameter of the support protrusion 52 and smaller than the inner diameter of the housing 50, and the first flange 56 is placed on the support protrusion 52, Connected with bolts. Thereby, the casing 54 is detachably supported by the housing 50.
  • each of the catalyst units U 1 to U 3 has a cylindrical catalyst carrier 10 housed in a cylindrical case 60 via a sealing material 62.
  • a cylindrical support member 64 is accommodated on the downstream side of the catalyst carrier 10. Specifically, a hook-shaped holding piece 66 extending radially inward is formed at the downstream end of the case 60, and the outer peripheral portion of the support material 64 is placed on the holding piece 66. It is held by the case 60.
  • the catalyst carrier 10 is made of, for example, a thin stainless steel plate and has a honeycomb structure with eyes aligned in the axial direction.
  • the annular sealing material 62 is made of a heat insulating material, and is interposed between the case 60 and the catalyst carrier 10 to hold the catalyst carrier 10 in the case 60.
  • the support material 64 has a honeycomb structure made of, for example, stainless steel whose eyes are directed in the axial direction, and the eyes of the honeycomb structure are set to be coarser than the catalyst carrier 10.
  • each catalyst unit U1, U2, U3 is set slightly smaller than the inner diameter of the casing 54, and each catalyst unit U1, U2, U3 is inserted into the casing 54 from above. It is installed by fitting.
  • the third catalyst unit U 3 on the most downstream side is held by the casing 54 with the lower surface 66 b of the holding piece 66 of the case 60 abutting against the upper surface 58 a of the second flange portion 58 of the casing 54.
  • the first and second catalyst units U1 and U2 are supported by the lower surface 66b of the holding piece 66 of the case 60 being in contact with the upper end 60a of the case 60 of the downstream catalyst units U2 and U3.
  • each of the catalyst units U1, U2, U3 is accommodated in the casing 54 in a state of being superposed in the vertical direction.
  • the compressed gas G2 flowing into the catalytic combustor 2 sequentially passes through the first to third catalyst units U1 to U3 and burns to become a high-temperature combustion gas G3. , Supplied to the turbine 3.
  • the support material 64 is for supporting the catalyst against such a differential pressure, and prevents the catalyst carrier 10 from being deformed in the axial direction D in cooperation with the case 60, the casing 54 and the support protrusion 52. ing.
  • the door 23 on the side wall of the package 22 shown in FIG. 2 is opened, and a temporary carry-out rail 24 is connected from the outside of the package 22. Subsequently, the connection between the main body portion 30 and the cover portion 32 of the catalytic combustor 2 is released by loosening a bolt, and the cover portion 32 is lifted by a crane provided on the ceiling of the package 22 and removed from the main body portion 30. Further, the main body 30 of the catalytic combustor 2 is disconnected from the turbine 3 by loosening the bolts.
  • a first connection portion is formed by placing a flange (flange) at the upper end of the main body 30 on an unloading device (not shown) such as a roller movably attached to the two first connection members 42, 42.
  • the main body 30 of the catalytic combustor 2 is taken out from the package 22 sideways along the member 42 and the carry-out rail 24.
  • the catalyst units U1, U2, and U3 are accommodated in the casing 54 in the reverse order to the above, and then the casing 54 is inserted into the main body portion 30 and the first flange portion 56 of the casing 54 and A bolt is connected to the support protrusion 52.
  • Defective catalyst units can be detected by measuring the temperature difference between the inlet and outlet of each catalyst unit U1, U2, U3 with a thermometer such as a thermocouple.
  • the multistage catalyst units U1, U2, U3 are detachably attached to the combustor 2, when replacing one catalyst unit in the multistage during maintenance, the other catalyst unit U1 , U2 and U3 are not required to be replaced, so that the workability of replacement and assembly of the catalyst carrier 10 can be improved.
  • each catalyst unit U1, U2, U3 can be removed from the casing 54. As described above, since the replacement work can be performed outside, workability is further improved. Specifically, since each catalyst unit U1, U2, U3 is incorporated into the casing 54 by fitting from above, the catalyst unit U1, U2, U3 is removed from the housing 50 by removing the casing 54. Since it can remove from 2, workability
  • the casing 54 in which the catalyst units U1, U2, and U3 are incorporated can be taken in and out in the axial direction from one end of the housing 50, the workability for replacing the catalyst units U1, U2, and U3 is improved. Moreover, since the casing 54 is taken out from the main body 30 in the axial direction D of the main body 30 after the cover 32 is removed, the structure of the combustor 2 is simplified.
  • each catalyst unit U1, U2, U3 is stabilized in the case 60 by the support material 64. Supported.
  • the casing 54 is taken out from the main body 30 in the axial direction D of the main body 30, but is not limited thereto, and may be taken out in the radial direction, for example.
  • the housing 50 of the main body 30 is configured by a member divided into two in the radial direction, or a housing 54 is provided on the housing 50, and the casing 54 is taken out using a forklift or the like.
  • the number of stages of the catalyst unit is not limited to three, and may be two or four or more.
  • a mixture of CMM and VAM is used as the intake air.
  • the present invention is not limited to this, and an ordinary gas turbine that uses air as the intake air and supplies fuel to the catalytic combustor 2 for combustion is used. Can also be applied.
  • the unit, and the housing are not limited to a cylindrical shape, and may be a square tube shape such as a quadrangle.
  • Compressor 2 Main combustor (catalytic combustor) 3 Turbine 6 Regenerator 10 Catalyst carrier 30 Body portion 32 Cover portion 50 Housing 52 Support protrusion 54 Casing 56 First flange portion 58 Second flange portion 60 Case 64 Support material GT Gas turbine U1, U2, U3 Catalyst unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 ガスタービンエンジン(GT)に用いられる触媒燃焼器(2)であって、触媒燃焼器(2)は、多段式の触媒ユニット(U1、U2,U3)を備えている。各段の触媒ユニット(U1、U2,U3)にはそれぞれ、触媒ユニット(U1、U2,U3)をガスの圧力に対して支持するサポート材(64)が設けられている。これら各段の触媒ユニット(U1、U2,U3)はサポート材(64)を含めてユニット化されており、触媒ユニット(U1、U2,U3)が、燃焼器ハウジング(50)に対して着脱自在に取り付けられている。

Description

ガスタービンにおける触媒燃焼器 関連出願
 この出願は、2011年12月27日出願の特願2011-285244の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、着脱自在な複数の触媒ユニットを内蔵したガスタービンにおける触媒燃焼器に関するものである。
 ガスタービンに搭載される触媒燃焼器は、NOxをほとんど排出しない、通常燃焼できないような低濃度メタンを酸化できる等の利点があり、低公害性や温暖化対策といった環境問題に対応することができる技術の一つである(例えば、特許文献1)。
特開2011-196355号公報
 また、ガスタービンのような高圧条件下、例えば0.5MPa以上の条件化で用いられる燃焼触媒として、以下の理由から、図5に示す多段式のものが用いられることがある。第1に、高圧条件下では着火性が悪いので、着火用と酸化用の複数種の触媒が必要となる。第2に、完全に反応を終わらせるためには、ある程度の長さの触媒担体が必要であるが、そのような長い触媒担体は製造が困難であるから、複数段に分けるのが好ましい。多段式とした場合でも、高圧条件下においては、差圧によって触媒担体102にかかる力が大きく、触媒担体102を支えるサポート材104が各段に必要となる。以上のように、高圧条件下における燃焼触媒は、多段式であり、かつ各段の触媒担体102にサポート材104を有し、これら触媒担体102およびサポート材104をハウジング106の内部に取り付けた構造となる。
 このような触媒燃焼器では、メンテナンス時に多段中の最上段以外の触媒担体102を交換する場合、交換対象の触媒担体102とその上段側の触媒担体102とを燃焼器から切断して取り外す必要があり、作業性が悪いうえに、交換の必要がない上段側の触媒担体102も破壊されるので、無駄が多い。
 本発明は、前記課題に鑑みてなされたもので、ガスタービンにおいて、触媒の交換および組立の作業性を向上させることができる触媒燃焼器を提供することを目的としている。
 上記目的を達成するために、本発明にかかる触媒燃焼器は、ガスタービンに用いられる触媒燃焼器であって、多段式の触媒ユニットと、内部に前記触媒ユニットが収納される中空筒状の本体部とを備え、各段の前記触媒ユニットはそれぞれ、前記触媒担体を支持するサポート材を有し、前記触媒ユニットが、前記本体部の外郭を形成するハウジングに対して着脱自在に取り付けられている。ここで、多段式とは、ガスの流れ方向に沿って複数のユニットが配置されている形態をいう。
 この構成によれば、多段式の触媒ユニットが燃焼器に対して着脱自在に取り付けられているので、メンテナンス時に多段中の一つの触媒ユニットを交換する際に、他の触媒ユニットを交換する必要がなくなり、その結果、触媒担体の交換や組立の作業性を向上させることができる。
 本発明において、さらに、前記本体部の内部に配置されたケーシングを備え、前記ケーシングは前記ハウジングに着脱自在に支持され、前記各触媒ユニットが、前記ケーシング内に出し入れ可能に組み込まれていることが好ましい。この構成によれば、ハウジングからケーシングを燃焼器の外部へ取り出したうえで、各触媒ユニットをケーシングから取り外すことができる。このように、外部で交換作業を行うことができるので、作業性が一層向上する。
 ケーシングを備える場合、前記ハウジングおよび前記ケーシングは円筒状であり、前記触媒ユニットは円柱状であることが好ましい。
 ケーシングを備える場合、さらに、前記本体部の軸方向の一端部に着脱自在に連結されたカバー部を備え、前記ケーシングが前記本体部の一端部から本体部の外方に取り出し可能に設定されていることが好ましい。この構成によれば、触媒ユニットが組み込まれたケーシングをハウジングの一端部から軸方向に出し入れできるので、触媒ユニットの交換作業性が向上する。
 ケーシングを備える場合、前記本体部は、軸方向が鉛直であり、その内周面に支持突起が設けられ、前記ケーシングは、上端部に設けられて外側へ突出した第1の鍔部と、下端部に設けられて内側に突出した第2の鍔部とを有し、前記第1の鍔部が前記突起上に載置され、複数の前記触媒ユニットが鉛直方向に重合されて、最下段の触媒ユニットのケースが前記第2の鍔部上に載置される構成とすることができる。この構成によれば、簡単な構造で、複数の触媒ユニットを燃焼器内に組み込むことができる。
 本発明において、前記各触媒ユニットは、ケースと、前記ケースの内部に収納された触媒担体と、前記ケースの内部で前記触媒担体の下流側に配置された前記サポート材とを有していることが好ましい。この構成によれば、ケース内部に触媒担体とサポート材とが収納されてユニット化されているので、各触媒ユニットは、ケース内で触媒担体がサポート材により安定して支持される。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
本発明の一実施形態に係る触媒燃焼器を備えたガスタービンを示す簡略構成図である。 同ガスタービンを示す斜視図である。 同触媒燃焼器を示す概略構造図である。 同触媒燃焼器の触媒ユニットを示す概略構造図である。 従来の多段式の触媒燃焼器を示す概略構造図である。
 以下、本発明の好ましい実施形態を図面に基づいて説明する。図1は本発明の一実施形態にかかる触媒燃焼器を備えたガスタービンエンジンを示す簡略構成図である。このガスタービンエンジンGTは、圧縮機1、白金やパラジウムなどの触媒を含む触媒燃焼器2、およびタービン3を有している。このガスタービンエンジンGTの出力により、発電機とスタータを兼ねる回転機4が駆動される。ガスタービンエンジンGTと回転機4とにより発電装置Eが構成されている。
 ガスタービンエンジンGTは、炭鉱で発生するCMM(Coal Mine Methane;炭鉱メタン)などの低カロリーガスを、空気や炭鉱から排出されるVAM(Ventilation Air Methane;炭鉱通気メタン)等と混合するなどして、圧縮機での圧縮によって着火しないように可燃限界濃度以下の作動ガスとして、エンジンに吸入し、含まれている可燃成分を燃料として利用する、希薄燃料吸入ガスタービンである。
 VAMとCMMの混合気のような作動ガスG1が、圧縮機1で圧縮され、その高圧の圧縮ガスG2が触媒燃焼器2に送られる。この圧縮ガスG2が触媒燃焼器2の白金やパラジウムなどの触媒による触媒反応によって燃焼され、これにより発生する高温・高圧の燃焼ガスG3がタービン3に供給されて、タービン3を駆動する。タービン3は圧縮機1に回転軸5を介して連結され、このタービン3により圧縮機1が駆動される。回転軸5と回転機4とは減速機17を介して連結されている。タービン3の回転により回転機4が駆動されて電力が得られる。このようにして、ガスタービンエンジンGTおよび回転機4を含む発電装置Eが構築されている。
 ガスタービンエンジンGTは、さらに、タービン3からの排ガスG4によって圧縮機1から触媒燃焼器2に導入される圧縮ガスG2を加熱する再生器(熱交換器)6と、排ガスG4の温度を高めることにより触媒燃焼器2に流入する圧縮ガスG2の温度を始動時に高めて触媒を活性化させる加温用バーナ7とを備えている。この加温用バーナ7は、圧縮機1によって圧縮されて再生器6に向かう圧縮ガスG2から一部抽出された抽出ガスG20に燃料Fを混合して火炎燃焼させた加温用ガスG5を、タービン3から再生器6に供給される排ガスG4に混入し、加温する。加温用バーナ7には、この加温用バーナ7への抽出ガスG20の供給量を制御する抽気弁8が接続されている。
 再生器6と触媒燃焼器2とは、下流側圧縮ガス通路26により接続されており、再生器6から触媒燃焼器2へ圧縮ガスG2を供給する。タービン3と再生器6とは、中空筒状の排気ダクト25によって連結されている。再生器6から流出した排ガスG4は、図示しないサイレンサを通って消音されたのち、外部に放出される。
 図2は発電装置Eの要部を示す斜視図である。同図に示すように、ガスタービンエンジンGTが基台20に支持された状態でパッケージ22内に収納されており、タービン3の軸方向Cの一端側、図2の左側には、排気ダクト25を介して再生器6が接続され、排気ダクト25の上部に加温用バーナ7が接続されている。タービン3の軸方向Cの他端側、図2の右側には、圧縮機1が接続され、圧縮機1の他端側に減速機17が接続されている。減速機17の他端側には、回転軸5を介して発電機4(図1)が接続されている。
 タービン3の上部に、触媒燃焼器2が接続され、触媒燃焼器2と再生器6は、再生器6から触媒燃焼器2へ圧縮ガスG2を供給する下流側圧縮ガス通路26により接続されている。触媒燃焼器2は、内部に触媒ユニットU1、U2,U3(図3)が収納される中空円筒状の本体部30と、本体部30の上部にボルトにより連結された有底円筒状のカバー部32とを有している。
 さらに、触媒燃焼器2の両側方、すなわち軸方向Cに直交する両側方にそれぞれ、軸方向Cに2本ずつ並んだ鋼製の支柱40が基台20に立設されている。4本の支柱40のうち、触媒燃焼器2の両側で対向している2本ずつが第1の連結部材42、42により連結されており、連結部材42、42の両端部同士が2本の第2の連結部材44,44により連結されている。第1および第2の連結部材42,44の上面は、触媒燃焼器2における本体部30とカバー部32との連結部Aとほぼ同じ高さに位置している。
 図3に示すように、触媒燃焼器2は、多段式、例えば、3段の触媒ユニットU1,U2,U3を有している。3つの触媒ユニットU1,U2,U3のうち最上流、図3の最上部の触媒ユニットU1は着火用で、残り2つが酸化用の触媒ユニットU2,U3である。この触媒燃焼器2は、軸方向、すなわちガスの流動方向が鉛直方向に設定されている。
 触媒燃焼器2の本体部30は、その外郭を形成するハウジング50を有し、ハウジング50の下端部がタービン3にボルトで連結されている。このハウジング50に対して、触媒ユニットU1,U2,U3が着脱自在に取り付けられている。すなわち、ハウジング50上部の内面に、内方に突出する環状の支持突起52が溶接によって固定され、本体部30の内部に、円筒状のケーシング54が配置されている。ケーシング54の外径は、支持突起52の内径よりも小さく設定されている。
 ケーシング54の一端部、すなわち図3の上端部に径方向外側へ突出した第1の鍔部56が形成され、ケーシング54の他端部、すなわち図3の下端部に径方向内側へ突出した第2の鍔部58が形成されている。第1の鍔部56の外径は、支持突起52の内径よりも大きく、且つハウジング50の内径よりも小さく設定されており、第1の鍔部56が支持突起52上に載置されて、ボルトにより連結されている。これにより、ケーシング54がハウジング50に着脱自在に支持されている。
 図4に示すように、各触媒ユニットU1~U3は、円筒状のケース60の内部に、円柱状の触媒担体10がシール材62を介して収納されており、円筒状のケース60の内部で、触媒担体10の下流側に円柱状のサポート材64が収納されている。具体的には、ケース60の下流側端部に、径方向内側に延出する鍔状の保持片66が形成されており、サポート材64の外周部が保持片66上に載置されて、ケース60に保持されている。
 触媒担体10は、例えば、ステンレス薄板からなり、目が軸方向を向いたハニカム構造を有している。環状のシール材62は、断熱材からなり、ケース60と触媒担体10との間に介在して、触媒担体10をケース60に保持する。サポート材64は、目が軸方向を向いた、例えば、ステンレスからなるハニカム構造であり、ハニカム構造の目は、触媒担体10よりも粗く設定されている。
 図3に示すように、各触媒ユニットU1,U2,U3のケース60の外径は、ケーシング54の内径よりも若干小さく設定され、各触媒ユニットU1,U2,U3は、ケーシング54内に上方から嵌め込んで組み込まれている。最も下流側の第3の触媒ユニットU3は、そのケース60の保持片66の下面66bが、ケーシング54の第2の鍔部58の上面58aに当接して、ケーシング54に保持される。第1および第2の触媒ユニットU1,U2は、そのケース60の保持片66の下面66bが、下流側の触媒ユニットU2,U3のケース60の上端60aに当接して支持される。こうして、各触媒ユニットU1,U2,U3は、鉛直方向に重合した状態で、ケーシング54内に収納されている。
 上記構成のガスタービンエンジンGTの動作について説明する。始動時には、図1の触媒燃焼器2の温度が活性下限温度よりも低いので、加温用バーナ7の点火により排気ガスG4を昇温させて、再生器6の暖気を行う。これにより、再生器6を通過する圧縮ガスG2を昇温させ、触媒燃焼器2を触媒反応可能な所定温度になるまで昇温させる。定格運転に入ると、排ガスG4の温度が上昇するので、圧縮機1から供給される圧縮ガスG2が、再生器6内での排ガスG4との熱交換によって、触媒燃焼器2の作動に十分な高温となる。その結果、抽気弁8が閉弁されて加温用バーナ7の動作が停止する。
 このとき、図3に示すように、触媒燃焼器2内に流入した圧縮ガスG2は、第1~第3の触媒ユニットU1~U3を順次通過して燃焼し、高温の燃焼ガスG3となって、タービン3に供給される。
 触媒担体10を通過する圧縮ガスG2は高圧であるから、目の細かい触媒担体10の上流側(1次側)と下流側(2次側)とで大きな差圧が発生する。サポート材64は、このような差圧に対して触媒を支えるためのもので、ケース60、ケーシング54および支持突起52と協働して、触媒担体10が軸方向Dに変形するのを阻止している。
 つぎに、触媒燃焼器2の交換方法について説明する。まず、図2に示すパッケージ22の側壁の扉23を開いて、パッケージ22の外部から仮設の搬出用レール24を接続する。つづいて、触媒燃焼器2の本体部30とカバー部32との連結を、ボルトを緩めて解除し、パッケージ22の天井に設けたクレーンによってカバー部32を吊り上げ、本体部30から取り外す。さらに、触媒燃焼器2の本体部30を、ボルトを緩めてタービン3から切り離す。2本の第1の連結部材42,42に移動自在に取り付けられたローラのような搬出器具(図示せず)に、本体部30の上端の鍔部(フランジ)を載せて、第1の連結部材42および搬出用レール24に沿って、触媒燃焼器2の本体部30をパッケージ22から側方に取り出す。
 パッケージ22の外部で、図3に示す触媒燃焼器2の本体部30の第1の鍔部56と支持突起52とを連結するボルトを緩めて、ケーシング54を本体部30の上方へ取り出す。つづいて、ケーシング54から、触媒ユニットU1,U2,U3のうち、不具合のある触媒ユニットを取り出して、交換する。
 触媒ユニットを交換後、上記と逆の手順で、触媒ユニットU1,U2,U3をケーシング54に収納した後、ケーシング54を本体部30内に挿入して、ケーシング54の第1の鍔部56と支持突起52とをボルト連結する。
 不具合のある触媒ユニットは、各触媒ユニットU1,U2,U3の入口と出口の温度差を熱電対のような温度計により測定することで検出できる。
 上記構成において、多段式の触媒ユニットU1,U2,U3が燃焼器2に対して着脱自在に取り付けられているので、メンテナンス時に多段中の一つの触媒ユニットを交換する際に、他の触媒ユニットU1,U2,U3を交換する必要がなくなるから、触媒担体10の交換や組立の作業性を向上させることができる。
 また、ハウジング50からケーシング54を燃焼器2の外部へ取り出したうえで、各触媒ユニットU1,U2,U3をケーシング54から取り外すことができる。このように、外部で交換作業を行うことができるので、作業性が一層向上する。具体的には、各触媒ユニットU1,U2,U3は、ケーシング54内に上方から嵌め込みにより組み込まれているので、ハウジング50からケーシング54を取り外すことで、各触媒ユニットU1,U2,U3を燃焼器2から取り外すことができるので、作業性が一層向上する。
 さらに、触媒ユニットU1,U2,U3が組み込まれたケーシング54をハウジング50の一端部から軸方向に出し入れできるので、触媒ユニットU1,U2,U3の交換作業性が向上する。また、カバー部32を取り外した後、ケーシング54を本体部30から、本体部30の軸方向Dに取り出すようにしているので、燃焼器2の構造が簡単になる。
 また、ケース60内部に触媒担体10とサポート材64とが収納されてユニット化されているので、各触媒ユニットU1,U2,U3は、ケース60内で触媒担体10がサポート材64により安定して支持される。
 上記実施形態では、本体部30からケーシング54を本体部30の軸方向Dに取り出しているが、これに限定されず、例えば、径方向に取り出してもよい。この場合は、本体部30のハウジング50を径方向に2つ割りとなった部材で構成するか、またはハウジング50にケーシング54取り出し用の扉を設け、フォークリフト等を用いてケーシング54を取り出す。また、触媒ユニットの段数は3段に限定されず、2段、あるいは4段以上であってもよい。
 さらに、上記実施形態では、吸気としてCMMとVAMの混合気を用いているが、これに限定されず、吸気として空気を用い、触媒燃焼器2に燃料を供給して燃焼させる通常のガスタービンにも適用することができる。また、ケース、ユニット、ハウジングは円筒状に限られるものではなく、四角形のような角筒状でもよい。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。
1 圧縮機
2 主燃焼器(触媒燃焼器)
3 タービン
6 再生器
10 触媒担体
30 本体部
32 カバー部
50 ハウジング
52 支持突起
54 ケーシング
56 第1の鍔部
58 第2の鍔部
60 ケース
64 サポート材
GT ガスタービン
U1、U2,U3 触媒ユニット

Claims (6)

  1.  ガスタービンに用いられる触媒燃焼器であって、
     多段式の触媒ユニットと、
     内部に前記触媒ユニットが収納される中空筒状の本体部と、
     を備え、
     各段の前記触媒ユニットはそれぞれ、前記触媒担体を支持するサポート材を有し、
     前記触媒ユニットが、前記本体部の外郭を形成するハウジングに対して着脱自在に取り付けられている触媒燃焼器。
  2.  請求項1に記載の触媒燃焼器において、さらに、前記本体部の内部に配置されたケーシングを備え、
     前記ケーシングは前記ハウジングに着脱自在に支持され、
     前記各触媒ユニットが、前記ケーシング内に出し入れ可能に組み込まれている触媒燃焼器。
  3.  請求項2に記載の触媒燃焼器において、前記ハウジングおよび前記ケーシングは円筒状であり、前記触媒ユニットは円柱状である触媒燃焼器。
  4.  請求項2または3に記載の触媒燃焼器において、さらに、前記本体部の軸方向の一端部に着脱自在に連結されたカバー部を備え、
     前記ケーシングが前記本体部の一端部から本体部の外方に取り出し可能に設定されている触媒燃焼器。
  5.  請求項2,3または4に記載の触媒燃焼器において、前記本体部は、軸方向が鉛直であり、その内周面に支持突起が設けられ、着脱自在に連結されたカバー部を備え、
     前記ケーシングは、上端部に設けられて外側へ突出した第1の鍔部と、下端部に設けられて内側に突出した第2の鍔部とを有し、
     前記第1の鍔部が前記突起上に支持載置され、複数の前記触媒ユニットが鉛直方向に重合されて、最下段の触媒ユニットのケースが前記第2の鍔部上に載置されている触媒燃焼器。
  6.  請求項1から5のいずれか一項に記載の触媒燃焼器において、前記各触媒ユニットは、ケースと、前記ケースの内部に収納された触媒担体と、前記ケースの内部で前記触媒担体の下流側に配置された前記サポート材とを有している触媒燃焼器。
PCT/JP2012/081995 2011-12-27 2012-12-11 ガスタービンにおける触媒燃焼器 WO2013099582A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2012359391A AU2012359391A1 (en) 2011-12-27 2012-12-11 Catalytic combustor in gas turbine engine
RU2014129646A RU2014129646A (ru) 2011-12-27 2012-12-11 Каталитическая камера сгорания в газотурбинном двигателе
CN201280063258.5A CN104011468A (zh) 2011-12-27 2012-12-11 燃气轮机中的催化燃烧器
US14/316,230 US20140308174A1 (en) 2011-12-27 2014-06-26 Catalytic combustor in gas turbine engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-285244 2011-12-27
JP2011285244 2011-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/316,230 Continuation US20140308174A1 (en) 2011-12-27 2014-06-26 Catalytic combustor in gas turbine engine

Publications (1)

Publication Number Publication Date
WO2013099582A1 true WO2013099582A1 (ja) 2013-07-04

Family

ID=48697075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081995 WO2013099582A1 (ja) 2011-12-27 2012-12-11 ガスタービンにおける触媒燃焼器

Country Status (6)

Country Link
US (1) US20140308174A1 (ja)
JP (1) JPWO2013099582A1 (ja)
CN (1) CN104011468A (ja)
AU (1) AU2012359391A1 (ja)
RU (1) RU2014129646A (ja)
WO (1) WO2013099582A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014027914A2 (pt) * 2012-05-09 2017-06-27 Ecaps Ab reator, motor de foguete, e, uso de um reator
KR102072729B1 (ko) * 2012-05-09 2020-02-03 이삽스 에이비 암모늄 디니트라미드계 액체 단일추진제용 개선된 리액터 및 이 리액터를 포함하는 분사기
JP6485942B2 (ja) * 2014-09-25 2019-03-20 三菱日立パワーシステムズ株式会社 燃焼器、ガスタービン
EP4033081B1 (en) * 2021-01-22 2024-06-26 Volvo Truck Corporation A method for replacing an exhaust aftertreatment component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161423A (en) * 1981-03-05 1982-10-05 Westinghouse Electric Corp Catalyst combustor for stationary gas turbine
JPH0261407A (ja) * 1988-07-11 1990-03-01 Imperial Chem Ind Plc <Ici> 触媒燃焼
JPH07301419A (ja) * 1994-05-06 1995-11-14 Osaka Gas Co Ltd 触媒燃焼装置
JP2002512673A (ja) * 1996-06-10 2002-04-23 カタリティカ,インコーポレイテッド 触媒用支持構造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143568A (en) * 1975-06-05 1976-12-09 Asahi Glass Co Ltd A process for removing nitrogen oxides from exhaust combustion gas and a reactor for it
US4154568A (en) * 1977-05-24 1979-05-15 Acurex Corporation Catalytic combustion process and apparatus
JP2659504B2 (ja) * 1991-12-26 1997-09-30 大阪瓦斯株式会社 触媒燃焼装置
GB9212794D0 (en) * 1992-06-16 1992-07-29 Ici Plc Catalytic combustion
US6116014A (en) * 1995-06-05 2000-09-12 Catalytica, Inc. Support structure for a catalyst in a combustion reaction chamber
CN1112539C (zh) * 1996-06-10 2003-06-25 卡塔鲁逖克公司 催化剂用的支承结构
US6217832B1 (en) * 1998-04-30 2001-04-17 Catalytica, Inc. Support structures for a catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161423A (en) * 1981-03-05 1982-10-05 Westinghouse Electric Corp Catalyst combustor for stationary gas turbine
JPH0261407A (ja) * 1988-07-11 1990-03-01 Imperial Chem Ind Plc <Ici> 触媒燃焼
JPH07301419A (ja) * 1994-05-06 1995-11-14 Osaka Gas Co Ltd 触媒燃焼装置
JP2002512673A (ja) * 1996-06-10 2002-04-23 カタリティカ,インコーポレイテッド 触媒用支持構造

Also Published As

Publication number Publication date
CN104011468A (zh) 2014-08-27
AU2012359391A1 (en) 2014-07-17
US20140308174A1 (en) 2014-10-16
JPWO2013099582A1 (ja) 2015-04-30
RU2014129646A (ru) 2016-02-20

Similar Documents

Publication Publication Date Title
US8505304B2 (en) Fuel nozzle detachable burner tube with baffle plate assembly
US10092886B2 (en) Fluid mixer and heat exchange system using same
EP2741005B1 (en) A fuel nozzle for a combustor of a gas turbine engine
CN102472493B (zh) 燃气轮机燃烧器及燃气轮机
AU2011230790B2 (en) Lean-fuel intake gas turbine
JP2011530034A (ja) 代替作動流体でガスタービンエンジンを作動させるシステム及び方法
JP2011530033A (ja) 代替作動流体でガスタービンエンジンを作動させるシステム及び方法
JP2010019247A (ja) 希薄燃料吸入ガスタービン
WO2013099582A1 (ja) ガスタービンにおける触媒燃焼器
JP2008274774A (ja) ガスタービン燃焼器およびガスタービン
US6829896B2 (en) Catalytic oxidation module for a gas turbine engine
CN103075747B (zh) 用于涡轮发动机中的燃料喷射组件及其组装方法
JP2012047181A (ja) ガスタービン燃焼器およびガスタービン
US9423136B2 (en) Bundled tube fuel injector aft plate retention
US20140308175A1 (en) Catalytic combustor in gas turbine engine
JP2017516007A (ja) ガスタービン燃焼器の固有振動数を変化させる予混合器アセンブリ及び機構
US9360214B2 (en) Catalytic combustion air heating system
US11041623B2 (en) Gas turbine combustor with heat exchanger between rich combustion zone and secondary combustion zone
RU2171903C1 (ru) Модульная передвижная газотурбинная теплофикационная установка и жаротрубный котел для нее
US7509807B2 (en) Concentric catalytic combustor
Rabovitser Partial oxidation gas turbine for power and hydrogen co-production from coal-derived fuel in industrial applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012359391

Country of ref document: AU

Date of ref document: 20121211

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201408501

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2014129646

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12862029

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12862029

Country of ref document: EP

Kind code of ref document: A1