RU2577379C1 - Обработка сточной воды от коксования - Google Patents

Обработка сточной воды от коксования Download PDF

Info

Publication number
RU2577379C1
RU2577379C1 RU2014126363/05A RU2014126363A RU2577379C1 RU 2577379 C1 RU2577379 C1 RU 2577379C1 RU 2014126363/05 A RU2014126363/05 A RU 2014126363/05A RU 2014126363 A RU2014126363 A RU 2014126363A RU 2577379 C1 RU2577379 C1 RU 2577379C1
Authority
RU
Russia
Prior art keywords
coking
wastewater
aforementioned
resin
solution
Prior art date
Application number
RU2014126363/05A
Other languages
English (en)
Inventor
Цзяньго ЦАЙ
Чжэн ЧЖАН
Чжаохой ЯНЬ
Сяньжуй ВАН
Original Assignee
Ром Энд Хаас Компани
ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ром Энд Хаас Компани, ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи filed Critical Ром Энд Хаас Компани
Application granted granted Critical
Publication of RU2577379C1 publication Critical patent/RU2577379C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

Изобретение относится к способу обработки сточной воды, которая образуется в коксовой промышленности. Способ обработки сточной воды от коксования включает пропускание сточной воды от коксования через последовательные стадии в таком порядке: коагуляция, удаление частиц и сильноосновная анионообменная смола стирольного типа. Технический результат - эффективная очистка сточной воды от коксования до норм содержания загрязняющих веществ в сточной воде от предприятий черной металлургии с максимальным снижением химической потребности в кислороде. 7 з.п. ф-лы, 5 табл., 4 пр.

Description

Область и уровень техники, к которым относится изобретение
Настоящее изобретение относится к способу обработки сточной воды, которая образуется в коксовой промышленности. В частности, настоящее изобретение относится к способу обработки сточной воды от коксования, включающему анионообменную смолу для уменьшения химической потребности в кислороде (COD).
Введение
Кокс представляет собой восстанавливающий реагент, широко используемый в черной металлургии. Китай является крупнейшим производителем кокса, и китайские коксовые заводы в 2009 году произвели более 207 миллионов тонн сточной воды от коксования. Сточная вода от коксования является высокотоксичной и канцерогенной, а также содержит множество неорганических и органических компонентов, включающих фенольные, ароматические, гетероциклические и полициклические соединения. Согласно китайскому государственному кодексу GB 13456-92 «Стандарт содержания загрязняющих веществ в сточной воде от предприятий черной металлургии», первый класс предельного значения COD в сточной воде от коксования составляет 100 мг/л.
В настоящее время для обработки сточной воды от коксования на большинстве коксовых заводов используется сочетание биологического разложения и коагуляции. Однако такой гибридный способ может снижать COD только до 300 мг/л, что не удовлетворяет даже условиям второго класса предельного значения COD (150 мг/л) согласно стандарту GB 13456-92.
Для обработки также используется каталитическое окисление. Китайская патентная заявка CN 101781039 A описывает способ обработки, включающий каталитическое окисление, коагуляционную седиментацию, ультрафильтрацию и обратный осмос. Однако для данного способа окисления требуются очень высокие эксплуатационные расходы (OPEX) в целях соблюдения предельного значения COD в сточной воде. Британский патент GB 741232 описывает способ, в котором используется анионообменная смола, имеющая поры нормального размера для удаления тиоцианата и тиосульфата, причем активированная щелочью анионообменная смола, имеющая поры, которые являются достаточно крупными, чтобы обеспечивать пропускание анионов красящего вещества, и активированный уголь для удаления красящих веществ. Активированная щелочью анионообменная смола, имеющая поры большого размера, используется для предварительной обработки активированного угля. Китайская патентная заявка CN 101544430 A описывает способ обработки сточной воды от коксования, включающий пять различных ионообменных смол, которые снижают COD до 60 мг/л. Однако использующие множество смол способы являются сложными и дорогостоящими в отношении обслуживания и регенерации.
Оказывается желательной разработка способа обработки сточной воды от коксования для соблюдения ограничений на сброс сточных вод при сокращении расходов.
Сущность изобретения
Авторы настоящего изобретения неожиданно обнаружили способ снижения COD посредством использования анионообменной смолы и, таким образом, обнаружили способ обработки сточной воды от коксования. Сточная вода после такой обработки может соответствовать ограничениям на сброс сточных вод согласно китайскому государственному кодексу GB 13456-92.
Согласно первому аспекту, настоящее изобретение предлагает способ обработки сточной воды от коксования, включающий пропускание сточной воды от коксования через последовательные стадии в таком порядке: коагуляция, удаление частиц и ионообменная смола.
Предпочтительно изобретенный способ включает пропускание сточной воды от коксования через последовательные стадии в таком порядке: коагуляция, седиментация, многослойная фильтрация, ультрафильтрация, сильноосновная анионообменная смола и обратный осмос.
Согласно второму аспекту, настоящее изобретение предлагает способ регенерации в отношении анионообменной смолы, используемой для обработки сточной воды от коксования, причем вышеупомянутый способ включает стадии контакта вышеупомянутой смолы в таком порядке: первый раствор HCl, раствор соли/щелочи и второй раствор HCl.
Подробное описание изобретения
При использовании в настоящем документе, если не определено другое условие, все процентные доли (%) представляют собой массовые доли по отношению к суммарной массе раствора или композиции. Представленные ниже описания разнообразных ингредиентов не являются ограничительными.
Далее представлены используемые в описании единицы/сокращения.
Единица Полное наименование
м метр
мкм микрон
мм миллиметр
м2 квадратный метр
м3 кубический метр
МПа мегапаскаль
мин минута
ч час
л литр
мл (или см3) миллилитр
г/т часть на миллион
и/или и/или в качестве альтернативы
Ионный обмен означает обратимую химическую реакцию, в которой ион, связанный с неподвижной твердой частицей, обменивается на одноименно заряженный ион из раствора. Эти твердые ионообменные частицы представляют собой встречающиеся в природе неорганические материалы, такие как цеолиты, или синтезированные органические полимеры. Синтетические органические полимеры называются ионообменными смолами и широко используются в настоящее время в различных процессах разделения, очистки и удаления загрязнений.
На основании заряженных подвижных ионов, которые содержит смола, ионообменные смолы можно классифицировать как катионообменные смолы, содержащие положительно заряженные подвижные ионы, доступные для обмена, и анионообменные смолы, содержащие отрицательно заряженные ионы.
Основная анионообменная смола может высвобождать отрицательно заряженные ионы, такие как OH- или Cl-, в качестве обменных ионов и проявляет химические свойства, подобные щелочи. Основная анионообменная смола предпочтительно представляет собой смолу, содержащую первичные, вторичные или третичные аминогруппы или четвертичные соли аммония в качестве обменных групп. Более предпочтительным является смола стирольного типа, такая как сшитый сополимер стирола и дивинилбензола. Другие предпочтительные смолы включают сшитый сополимер акрила и дивинилбензола и целлюлозный полимер, содержащий аминогруппы в качестве ионообменных групп. Наиболее предпочтительной является зернистая смола, которую составляет сшитый сополимер стирола и дивинилбензола содержащий аминогруппы в качестве ионообменных групп.
Сильноосновная анионообменная смола, которая содержит диссоциированные в высокой степени и обмениваемые группы (такие как OH-), которые способны легко обмениваться во всем интервале значений pH.
Соответственно, обменная емкость сильноосновных смол не зависит от значения pH раствора. Предпочтительно сильноосновные анионообменные смолы представляют собой анионообменные смолы, которые содержат четвертичные аммониевые функциональные группы. Примеры сильноосновных анионообменных смол согласно настоящему изобретению включают, но не ограничиваются этим, функционализированные сополимеры стирола и дивинилбензол или полиакрилата с кватернизированной аммониевой функциональной группой. Примеры сильноосновных смол типа, используемого согласно настоящему изобретению, такие как смолы AMBERLITE™ WR60, AMBERLITE™ WR61, AMBERSEP™ WR64, AMBERLITE™ WR73 или AMBERLITE™ WR77 можно приобрести у Dow Chemical Company. AMBERSEP и AMBERLITE представляют собой товарные знаки Dow Chemical Company.
Процесс регенерации имеет решающее значение для сохранения эффективности смол. В способе согласно настоящему изобретению для регенерации смолы используются неорганические кислоты и щелочи. Предпочтительно используются три цикла промывания: во-первых, раствор неорганической кислоты вводят в контакт со смолой; во-вторых, вводят раствор соли и щелочи; в-третьих, вводят раствор неорганической кислоты. Между двумя циклами промывания вводят деионизированную воду (DIW) для промывания смолы. Предпочтительно раствор неорганической кислоты содержит от 0,2 до 20% неорганической кислоты, предпочтительнее от 0,5 до 15% неорганической кислоты и наиболее предпочтительно от 1 до 10% неорганической кислоты. Раствор соли/щелочи содержит предпочтительно от 0,2 до 30% соли и от 0,2 до 20% щелочи, предпочтительнее от 0,5 до 25% соли и от 0,5 до 15% щелочи и наиболее предпочтительно от 1 до 20% соли и от 1 до 10% щелочи. Предпочтительнее раствор неорганической кислоты включает HCl; раствор соли/щелочи включает KCl и/или NaCl и NaOH и/или KOH.
Процесс коагуляции (включая флокуляцию) используется, в первую очередь, для удаления мутности из воды при обработке сточной воды, что инициируется посредством добавления химических коагулянтов. Причина заключается в том, что химические коагулянты могут нейтрализовать электрические заряды, которые переносят мелкие частицы в воде, и, таким образом, позволяют частицам ближе подходить друг к другу и образовывать большие скопления и хлопья. Химические коагулянты, как правило, включают первичные коагулянты и вспомогательные коагулянты. Первичные коагулянты могут нейтрализовать электрические заряды, переносимые частицами в воде. Вспомогательные коагулянты могут повышать плотность хлопьев, а также тягучесть, что уменьшает возможность разрушения в течение последующих процессов смешивания и осаждения.
Химические коагулянты могут представлять собой соли металлов, такие как сульфат железа(II) (FeSO4·7H2O), сульфат железа(III) (Fe2(SO4)3·9H2O), хлорид железа(III) (FeCl3·6H2O), квасцы (двойной сульфат алюминия и калия), карбонат кальция или силикат натрия, а также катионные, анионные или неионные полимеры.
Удаление частиц представляет собой способ обработки, в котором из сточной воды удаляются суспендированные частицы. Удаление частиц можно осуществлять многими способами. Согласно настоящему изобретению, удаление частиц предпочтительно осуществляется посредством седиментации и/или фильтрации.
Седиментация представляет собой способ обработки, в котором скорость потока воды уменьшается ниже скорости суспензии суспендированных частиц, и, таким образом, частицы осаждаются под действием силы тяжести. Данный способ также называется терминами «осветление» или «осаждение». Предпочтительно седиментация следует за коагуляцией (включающей флокуляцию) и предшествует фильтрации. Седиментация в настоящем изобретении используется для уменьшения концентрации суспендированных частиц в воде, что снижает нагрузку на последующие фильтры.
Фильтрация представляет собой способ обработки, в котором суспендированные частицы удаляются из воды посредством пропускания воды через среду, такую как песок или мембрана. Согласно настоящему изобретению, фильтрация предпочтительно осуществляется как многослойная фильтрация (MMF) и/или ультрафильтрация (UF).
Многослойная фильтрация осуществляется посредством многослойного фильтра, который включает множество сред, таких как активированный уголь и кварцевый песок. Например, активированный уголь представляет собой беспламенный уголь, у которого размер частиц составляет от 0,2 до 5 мм, предпочтительно от 0,5 до 2 мм, предпочтительнее от 0,8 до 1,2 мм; у кварцевого песка размер частиц составляет от 0,1 до 10 мм, предпочтительно от 0,3 до 3 мм, предпочтительнее от 0,6 до 0,8 мм. Многослойный фильтр может также включать другие среды, такие как гранат или смола.
Ультрафильтрацию осуществляют, используя ультрафильтр, который представляет собой мембранный фильтр. Предпочтительно ультрафильтр содержит мембрану с размером пор от 0,005 до 0,08 мкм; размер пор предпочтительнее составляет от 0,01 до 0,05 мкм, и наиболее предпочтительный ультрафильтр относится к типу полого волокна и содержит мембрану из поливинилиденфторида (PVDF) с размером пор, составляющим 0,03 мкм.
Предпочтительно содержание суспендированных частиц в сточной воде следует сокращать до менее чем 1 части на миллион перед контактом с ионообменной смолой.
Обратный осмос (RO) представляет собой способ обработки, в котором многие типы крупных молекул и ионов удаляются из сточной воды посредством селективной обратноосмотической мембраны под давлением. Обратноосмотическую мембрану можно изготавливать из множества материалов, и предпочтительно она представляет собой полиамидную композитную мембрану. Значение COD в воде, вытекающей из смолы в изобретенном способе, снижается и соответствует требованиям к сбросу сточных вод согласно стандарту GB 13456-92. Обратный осмос используется в качестве глубокой обработки после смолы. Вытекающую воду после обратного осмоса можно использовать в качестве технической воды, такой как рециркулирующая конденсационная вода.
Биологическая обработка представляет собой способ обработки, в котором сточную воду обрабатывают посредством биологического ферментативного гидролиза под действием бактерий, которые снижают химическую потребность в кислороде (COD) и биологическую потребность в кислороде (BOD). Как правило, этот способ можно классифицировать как анаэробный способ и аэробный способ. В большинстве случаев используются оба способа. Биологическую обработку можно осуществлять в пруду или биореакторе. Согласно настоящему изобретению, биологическая обработка используется как предварительная обработка перед коагуляцией и другими процедурами. Предпочтительная биологическая обработка, используемая согласно настоящему изобретению, представляет собой способ A2O способ, который также называется A-A/O (анаэробно-аноксично-кислородный), такой как способ, который описали Xing Xiangjun и др. в статье «Технологическое управление процессом A-A/O в системе обработки сточной воды от коксования», Environmental Engineering (Экологическая технология), т. 23(2), апрель 2005 г.
Метод исследования
COD определяют в исследовании методом COD Cr согласно китайскому промышленному кодексу HJ/T399-2007, «Качество воды - определение химической потребности в кислороде - быстрое разложение - спектрофотометрический метод».
Исследование статической адсорбции представляет собой метод исследования, которым определяется смола, которая имеет лучшую адсорбционную способность в неподвижной сточной воде. Исследуемую смолу выдерживают в растворе сточной воды в течение периода времени, предназначенного для адсорбции. На основании значений COD до и после обработки можно оценить эффективность адсорбции. Данный способ описан ниже в примере 1.
Пример 1
Сравнительное исследование было предназначено для определения эффективности снижения COD различными ионообменными смолами.
Исследование статической адсорбции осуществляли для сравнения эффективности исследуемых смол и выбирали смолу, которая имела максимальную способность адсорбции органических соединений в сточной воде от коксования. По 2 мл каждой смолы точно отмеряли и переносили в коническую колбу объемом 250 мл, содержащей 100 мл сточной воды от коксования. Колбы полностью герметизировали и встряхивали в инкубационном встряхивающем устройстве модели G25 от компании New Brunswick Scientific Co. Inc. при 130 об/мин в течение 24 часов. После этого определяли COD воды в колбах.
Пять различных типов смолы использовали в исследовании статической адсорбции. Исходное значение COD сточной воды от коксования составляло 152,3 мг/л. Показатели статической адсорбции представлены в таблице 1.
Таблица 1
Показатели статической адсорбции смол различных типов
Модель Тип адсорбента COD после статической адсорбции, мг/л Эффективность снижения COD, %
AMBERLITETM
WR60
неполярный адсорбент 77,4 49,2
AMBERLITETM
WR61
акриловый сильноосновный анионный (SBA) 61,1 59,9
AMBERSEPTM WR64 стирольный SBA 20,4 86,6
AMBERLITETM слабоосновный 97,7 35,9
WR73 слабоосновный анионный (WBA)
AMBERLITETM
WR77
сильнокислый катионный (SAC) 108,3 28,9
AMBERLITE и AMBERSEP представляют собой товарные знаки Dow Chemical Company.
Можно видеть, что сильноосновная анионообменная смола (AMBERSEP™ WR64) обеспечивает максимальную эффективность снижения COD.
Пример 2
Сточную воду от коксования, полученную на различных коксовых заводах в Китае, пропускали через фильтровальную бумагу и анионообменную смолу AMBERSEP™ WR64, поставляемую от Dow Chemical Company. Результаты исследования представлены в таблице 2. Условия адсорбции представляли собой следующие: реактор с неподвижным слоем, соотношение высоты и диаметра 4:1, объем слоя 15 мл; температура адсорбции 25°C, скорость потока 6 объемов слоя (BV) в час. Исходное значение COD составляло 150 мг/л, и по 144 BV сточной воды использовали в каждом процессе адсорбции.
Таблица 2
Эффективность обработки сточной воды от коксования из различных источников
COD, мг/л Внешний вид
Входящий поток Вытекающий поток Входящий поток Вытекающий поток
Коксовый завод A 70-160 ~40 коричневый бесцветный
Коксовый завод B 150-200 ~50 коричневый бесцветный
Коксовый завод C 200-300 ~75 коричневый бесцветный
Коксовый завод D 250-300 ~85 коричневый бесцветный
Как можно видеть в таблице 2, анионообменная смола значительно уменьшает COD в сточной воде от коксования от более чем 150 мг/л до менее чем 100 мг/л и, таким образом, соответствует ограничениям на сброс сточных вод согласно стандарту GB 13456-92. При этом красящие вещества также удаляются из сточной воды.
Пример 3
Блок анионообменной смолы AMBERSEP™ WR64, у которого BV составляет 90 л, подвергали процессу регенерации. Сначала смолу вводили в процесс адсорбции: сточную воду от коксования, полученную на коксовом заводе E, пропускали через смолу. Условия адсорбции представляли собой следующие: реактор с неподвижным слоем, соотношение высоты и диаметра 4:1, объем слоя 15 мл; температура адсорбции 25°C, скорость потока 6 BV/ч. Исходное значение COD составляло 150 мг/л, и по 144 BV сточной воды использовали в каждом процессе адсорбции.
Различные процессы десорбции осуществляли при температуре от 25 до 65°C и скорости потока от 0,1 до 4 BV/ч. Во-первых, от 0,5 до 4 BV 1-10% HCl пропускали через колонку, содержащую смолу. Во-вторых, от 0,5 до 4 BV деионизированной воды (DIW) пропускали через колонку, содержащую смолу. В-третьих, от 0,5 до 4 BV раствора 1-20% соли/1-10% щелочи пропускали через колонку, содержащую смолу. В-четвертых, от 0,5 до 4BV DIW пропускали через колонку, содержащую смолу. В-пятых, от 0,5 до 4 BV 1-10% HCl пропускали через колонку, содержащую смолу. Наконец, от 0,5 до 4 BV DIW пропускали через колонку, содержащую смолу.
Процесс десорбции 1: температура десорбции составляла 25°C, и скорость потока составляла 0,1 BV/ч. Во-первых, 0,5 BV 1% HCl пропускали через колонку, содержащую ионообменную смолу (IER). Во-вторых, 0,5BV DIW пропускали через колонку, содержащую смолу. В-третьих, 0,5BV раствора 1% NaCl/10% NaOH пропускали через колонку, содержащую смолу. В-четвертых, 0,5 BV DIW пропускали через колонку, содержащую смолу. В-пятых, 0,5 BV 1% HCl пропускали через колонку, содержащую смолу. Наконец, 0,5 BV DIW пропускали через колонку, содержащую смолу.
Процесс десорбции 2: температура десорбции составляла 65°C, и скорость потока составляла 4 BV/ч. Во-первых, 4 BV 10% HCl пропускали через колонку, содержащую IER. Во-вторых, 4BV DIW пропускали через колонку, содержащую смолу. В-третьих, 4 BV раствора 20% NaCl/1% NaOH пропускали через колонку, содержащую смолу. В-четвертых, 4 BV DIW пропускали через колонку, содержащую смолу. В-пятых, 4 BV 10% HCl пропускали через колонку, содержащую смолу. Наконец, 0,5 BV DIW пропускали через колонку, содержащую смолу.
Процесс десорбции 3: температура десорбции составляла 45°C, и скорость потока составляла 1 BV/ч. Во-первых, 1 BV 5% HCl пропускали через колонку, содержащую IER. Во-вторых, 1 BV DIW пропускали через колонку, содержащую смолу. В-третьих, 1 BV раствора 15% NaCl/5% NaOH пропускали через колонку, содержащую смолу. В-четвертых, 1 BV DIW пропускали через колонку, содержащую смолу. В-пятых, 1 BV 10% HCl пропускали через колонку, содержащую смолу. Наконец, IBV DIW пропускали через колонку, содержащую смолу.
Процесс десорбции 4: температура десорбции составляла 50°C, и скорость потока составляла 0,5 BV/ч. Во-первых, 1 BV 5% HCl пропускали через колонку, содержащую IER. Во-вторых, 0,5 BV DIW пропускали через колонку, содержащую смолу. В-третьих, 1 BV раствора 8% NaCl/5% NaOH пропускали через колонку, содержащую смолу. В-четвертых, 3 BV DIW пропускали через колонку, содержащую смолу. В-пятых, 1 BV 5% HCl пропускали через колонку, содержащую смолу. Наконец, 1 BV DIW пропускали через колонку, содержащую смолу.
Процесс десорбции 5: температура десорбции составляла 30єC, и скорость потока составляла 3 BV/ч. Во-первых, 1 BV 5% HCl пропускали через колонку, содержащую IER. Во-вторых, 1 BV DIW пропускали через колонку, содержащую смолу. В-третьих, 2 BV раствора 10% NaCl/10% NaOH пропускали через колонку, содержащую смолу. В-четвертых, 1 BV DIW пропускали через колонку, содержащую смолу. В-пятых, 1 BV 5% HCl пропускали через колонку, содержащую смолу. Наконец, 1 BV DIW пропускали через колонку, содержащую смолу.
Процесс десорбции 6: температура десорбции составляла 40єC, и скорость потока составляла 0,5 BV/ч. Во-первых, 1 BV 5% HCl пропускали через колонку, содержащую IER. Во-вторых, 0,5 BV DIW пропускали через колонку, содержащую смолу. В-третьих, 1 BV раствора 10% NaCl/3% NaOH пропускали через колонку, содержащую смолу. В-четвертых, 1 BV DIW пропускали через колонку, содержащую смолу. В-пятых, 2 BV 5% HCl пропускали через колонку, содержащую смолу. Наконец, 1 BV DIW пропускали через колонку, содержащую смолу.
После каждого процесса десорбции повторяли процесс адсорбции, как описано выше. В вытекающей воде (всего 144 BV) определяли COD, и результаты представлены ниже в таблице 3.
Таблица 3
Значение COD в вытекающем потоке повторного процесса адсорбции после различных процессов десорбции
Десорбция Процесс 1 Процесс 2 Процесс 3 Процесс 4 Процесс 5 Процесс 6
COD в вытекающем потоке, мг/л 95,6 98,4 62,3 38,5 58,1 45,7
Как можно видеть в таблице 3, смола после обработки в процессе десорбции 4 обеспечивала наименьший уровень COD в вытекающем потоке после повторного процесса адсорбции, и это показывает, что процесс десорбции 4 обеспечивает наилучшую эффективность регенерации.
Пример 4
В двухмесячном исследовании 1000 м3 сточной воды от коксования, полученной на коксовом заводе C и предварительно прошедшей через анаэробно-аноксично-кислородный процесс A20, последовательно пропускали через коагуляцию, седиментацию, многослойную фильтрацию (MMF), ультрафильтрацию (UF), анионообменную смолу и обратный осмос (RO). Если не определены другие условия, скорость потока составляла 1,0 м3/ч. Предметы оборудования и условия работы перечислены ниже.
Таблица 4
Список оборудования в процессе обработки сточной воды
Коагуляция
Коагулянт Полимерный хлорид алюминия (PAC)
Доза 100 мг/л
Многослойная фильтрация (MMF)
Диаметр ⌀ 750 мм
Фильтровальные материалы Беспламенный уголь (размер частиц от 0,8 до 1,2 мм, высота 400 мм)
Кварцевый песок (размер частиц от 0,6 до 0,8 мм, высота 400 мм)
Ультрафильтрация (UF)
Модель Модель SFP2660, поставляемая компанией Dow Chemical
Тип Полое волокно (внешнее давление)
Материал мембраны Поливинилиденфторид (PVDF)
Размер пор 0,03 мкм
Площадь 33 м2
Внутренний диаметр волокна 0,70 мм
Внешний диаметр волокна 1,30 мм
Рабочее значение pH 2-11
Рабочая температура 1~40°C
Максимальное давление входящего потока 0,6 МПа
Блок ионообменной смолы
Смола AMBERSEP™ WR64
Объем слоя 90L
Максимальная рабочая температура 60°C
Максимальная глубина слоя 700 мм
Скорость исходного потока до 120 BV/ч
Скорость подачи 0,5 м3
Продолжительность цикла адсорбции 24 ч
Скорость потока десорбции 45 л/ч
Рабочая температура десорбции 50°C
Обратный осмос (RO)
Модель BW30-365FR, поставляемая компанией Dow Chemical
Тип мембраны Полиамидная композитная мембрана
Эффективная площадь 34 м2
Поток 13~24 л/(м2·ч)
Максимальное рабочее давление 4,1 МПа
Максимальная скорость входящего потока 19 м3
Максимальная температура входящего потока 45°C
Максимальный индекс плотности взвешенных частиц (SDI) входящего потока 5,0
Максимальная мутность входящего потока Нефелометрическая единица мутности (NTU)
Содержание остаточного хлора <0,1 части на миллион
Рабочий интервал pH 2~11
Интервал pH химического промывания 1~11
Сточную воду от коксования предварительно подвергали биологической обработке, и она имела COD на уровне 250 мг/л. Значения COD и содержания суспендированных твердых веществ в выходящем потоке из каждого блока представлены ниже в таблице 5.
Таблица 5
Результаты исследования выходящих потоков из блоков обработки
Блок обработки COD, 250 мг/л Содержание суспендированных твердых веществ, мг/л
Биологическая обработка 250 50
Коагуляционная седиментация 210 10
Многослойная фильтрация (MMF) 200 3
Ультрафильтрация (UF) 175 0,3
Ионообменная смола 55 0,3
Обратный осмос (RO) 3 0,05
Можно видеть, что значение COD снизилось до менее чем 60 мг/л после обработки анионообменной смолой.
Эксплуатационные расходы на уменьшение COD посредством изобретенного способа с использованием анионообменной смолы (после ультрафильтрационной обработки) оказываются значительно ниже по сравнению с окислительными процессами, например, приблизительно на 24% ниже по сравнению с микроволновым окислением и окислением Фентона (Fenton) и приблизительно на 48% ниже по сравнению с окислением посредством озона O3 и биологического аэрированного фильтра (BAF).

Claims (8)

1. Способ обработки сточной воды от коксования, включающий пропускание сточной воды от коксования через последовательные стадии в таком порядке:
1) коагуляция,
2) удаление частиц и
3) сильноосновная анионообменная смола стирольного типа.
2. Способ по п. 1, в котором вышеупомянутое удаление частиц осуществляют посредством седиментации, многослойной фильтрации, ультрафильтрации или сочетания любых перечисленных выше процессов.
3. Способ по п. 1, в котором сточная вода от коксования предварительно подвергается биологической обработке.
4. Способ по п. 1, дополнительно включающий стадию пропускания сточной воды от коксования через обратный осмос.
5. Способ по п. 1, дополнительно включающий стадию регенерации вышеупомянутой ионообменной смолы, который включает контакт вышеупомянутой смолы со следующими растворами в таком порядке:
1) первый раствор HCl,
2) раствор соли/щелочи, и
3) второй раствор HCl.
6. Способ по п. 5, в котором вышеупомянутая соль представляет собой NaCl или KCl и вышеупомянутая щелочь представляет собой NaOH или KOH.
7. Способ по п. 5, в котором вышеупомянутый раствор соли/щелочи включает от 1 до 20 мас.% соли и от 1 до 10 мас.% щелочи по отношению к суммарной массе вышеупомянутого раствора.
8. Способ по п. 5, в котором вышеупомянутый первый раствор HCl и вышеупомянутый второй раствор HCl отдельно включают от 1 до 10 мас.% HCl по отношению к суммарной массе вышеупомянутого раствора.
RU2014126363/05A 2011-11-30 2011-11-30 Обработка сточной воды от коксования RU2577379C1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/083226 WO2013078639A1 (en) 2011-11-30 2011-11-30 Coking wastewater treatment

Publications (1)

Publication Number Publication Date
RU2577379C1 true RU2577379C1 (ru) 2016-03-20

Family

ID=48534620

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014126363/05A RU2577379C1 (ru) 2011-11-30 2011-11-30 Обработка сточной воды от коксования

Country Status (10)

Country Link
US (1) US20150076061A1 (ru)
JP (1) JP5902824B2 (ru)
KR (1) KR20140096094A (ru)
CN (1) CN104024168B (ru)
BR (1) BR112014012729A8 (ru)
CA (1) CA2856588A1 (ru)
IN (1) IN2014CN03939A (ru)
MX (1) MX2014006543A (ru)
RU (1) RU2577379C1 (ru)
WO (1) WO2013078639A1 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936240B (zh) * 2014-05-14 2015-05-20 山东盛阳集团有限公司 一种焦化废水的处理方法
CN105016445A (zh) * 2015-07-31 2015-11-04 石家庄开发区德赛化工有限公司 焦化废水混凝吸附剂及其用途
CN107352735A (zh) * 2017-07-11 2017-11-17 河南中鸿集团煤化有限公司 一种焦化废水深度处理的方法
CN107473463A (zh) * 2017-10-18 2017-12-15 高景瑞 一种用于处理焦化废水的混凝剂及用其处理焦化废水的方法
CN107983417B (zh) * 2017-12-19 2021-05-28 南京工程学院 一种离子交换树脂担载纳米金催化剂及其制备方法
CN108187743B (zh) * 2018-01-17 2021-06-25 南京工程学院 一种离子交换树脂担载纳米金钯合金催化剂及其制备方法
CN108545849A (zh) * 2018-05-10 2018-09-18 南京赢点色谱分离技术有限公司 一种处理针状焦生产工艺所产生含酚废水的方法
CN109052594B (zh) * 2018-08-15 2021-12-03 鞍钢栗田(鞍山)水处理有限公司 适合焦化酚氰废水的除氰降氮脱色剂及制备、使用方法
CN109626740A (zh) * 2018-12-31 2019-04-16 萍乡市华星环保工程技术有限公司 一种焦化废水和化工废水的生化处理方法
CN110237832B (zh) * 2019-05-29 2021-12-21 江苏南大环保科技有限公司 一种焦化尾水吸附树脂的再生方法
CN110586202A (zh) * 2019-09-24 2019-12-20 凯瑞环保科技股份有限公司 一种处理焦化废水用的阴离子交换树脂及其制备方法
CN110894131A (zh) * 2019-12-17 2020-03-20 安徽建筑大学 一种单污泥生物絮凝吸附-水解酸化-生物脱氮污水处理系统及方法
CN113772881A (zh) * 2021-08-28 2021-12-10 北京百灵天地环保科技股份有限公司 一种酚氰废水的氧化处理方法
CN114772808B (zh) * 2022-04-28 2023-11-07 南京大学 纳滤-电化学法处理树脂脱附液并回收利用的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU960128A1 (ru) * 1981-02-13 1982-09-23 Сибирский Филиал Научно-Производственного Объединения По Техническому Обслуживанию И Энерготехнологическому Оборудованию Предприятий Химической Промышленности Способ переработки надсмольных вод
RU2027682C1 (ru) * 1991-04-08 1995-01-27 Восточный научно-исследовательский углехимический институт Способ оборотного водоснабжения коксохимического производства
RU2049740C1 (ru) * 1993-05-25 1995-12-10 Восточный научно-исследовательский углехимический институт Система оборотного водоснабжения коксохимического производства
CN101045593A (zh) * 2007-04-26 2007-10-03 陈启松 一种焦化废水零排放处理方法及其装置
CN101544430A (zh) * 2009-05-05 2009-09-30 中化镇江焦化有限公司 一种炼焦废水的二次处理方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391089A (en) * 1977-01-24 1978-08-10 Itochu Seito Kk Method of regenerating anion exchange resin used in saccharose purification
JPS5561998A (en) * 1978-11-04 1980-05-10 Ebara Infilco Co Ltd Treatment method for flue gas desulfurization and denitrification waste water
JPS56147680A (en) * 1980-04-16 1981-11-16 Kurita Water Ind Ltd Treatment of waste water
US4511676A (en) * 1983-08-08 1985-04-16 Betz Laboratories, Inc. Method for cleaning organically fouled anion exchange resins using diethylene glycol compound or derivative
US4654442A (en) * 1983-12-30 1987-03-31 Union Oil Company Of California Methods for removing biuret from urea
US4676908A (en) * 1984-11-19 1987-06-30 Hankin Management Services Ltd. Waste water treatment
JPH0771669B2 (ja) * 1990-08-29 1995-08-02 日本錬水株式会社 超純水の製造法
GB9125594D0 (en) * 1991-12-02 1992-01-29 Courtaulds Plc Purifying solutions
US6426007B1 (en) * 1999-04-29 2002-07-30 International Business Machines Corporation Removal of soluble metals in waste water from aqueous cleaning and etching processes
US6245128B1 (en) * 1999-06-15 2001-06-12 Mobil Oil Corporation Process for the reclamation of spent alkanolamine solution
US6416668B1 (en) * 1999-09-01 2002-07-09 Riad A. Al-Samadi Water treatment process for membranes
US6448299B1 (en) * 2000-01-25 2002-09-10 U.T. Battelle, Llc Regeneration of strong-base anion-exchange resins by sequential chemical displacement
JP2001293380A (ja) * 2000-04-13 2001-10-23 Ito En Ltd イオン交換樹脂の製造方法及び再生方法
WO2006116533A2 (en) * 2005-04-27 2006-11-02 Hw Process Technologies, Inc. Treating produced waters
JP5233138B2 (ja) * 2007-03-20 2013-07-10 栗田工業株式会社 純水製造装置からの濃縮廃水の処理方法および前記濃縮廃水の処理装置。
JP2009165985A (ja) * 2008-01-17 2009-07-30 Nippon Rensui Co Ltd イオン交換樹脂の再生方法及びイオン交換樹脂再生装置
CN101723548B (zh) * 2009-12-10 2011-08-24 上海宝钢化工有限公司 一种焦化废水回用处理系统
CN101723532B (zh) * 2009-12-10 2012-07-04 上海宝钢化工有限公司 焦化废水回用工艺产生浓水的处理系统
JP2011230038A (ja) * 2010-04-26 2011-11-17 Japan Organo Co Ltd 水処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU960128A1 (ru) * 1981-02-13 1982-09-23 Сибирский Филиал Научно-Производственного Объединения По Техническому Обслуживанию И Энерготехнологическому Оборудованию Предприятий Химической Промышленности Способ переработки надсмольных вод
RU2027682C1 (ru) * 1991-04-08 1995-01-27 Восточный научно-исследовательский углехимический институт Способ оборотного водоснабжения коксохимического производства
RU2049740C1 (ru) * 1993-05-25 1995-12-10 Восточный научно-исследовательский углехимический институт Система оборотного водоснабжения коксохимического производства
CN101045593A (zh) * 2007-04-26 2007-10-03 陈启松 一种焦化废水零排放处理方法及其装置
CN101544430A (zh) * 2009-05-05 2009-09-30 中化镇江焦化有限公司 一种炼焦废水的二次处理方法

Also Published As

Publication number Publication date
BR112014012729A2 (pt) 2017-06-13
WO2013078639A1 (en) 2013-06-06
CN104024168A (zh) 2014-09-03
KR20140096094A (ko) 2014-08-04
JP2015504368A (ja) 2015-02-12
CA2856588A1 (en) 2013-06-06
JP5902824B2 (ja) 2016-04-13
US20150076061A1 (en) 2015-03-19
IN2014CN03939A (ru) 2015-09-04
BR112014012729A8 (pt) 2017-06-20
MX2014006543A (es) 2014-07-09
CN104024168B (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
RU2577379C1 (ru) Обработка сточной воды от коксования
Gunatilake Methods of removing heavy metals from industrial wastewater
Cui et al. Natural organic matter removal and fouling control in low-pressure membrane filtration for water treatment
Ng et al. Arsenic removal technologies for drinking water treatment
Davoodbeygi et al. A review on hybrid membrane-adsorption systems for intensified water and wastewater treatment: Process configurations, separation targets, and materials applied
CN104108813B (zh) 炼化污水脱盐一体化处理工艺及装置
CN101786767A (zh) 臭氧氧化法与膜分离技术相结合的焦化废水深度处理工艺
CN105540971A (zh) 一种用于碎煤加压气化工业废水深度处理及高回收率的工艺
Hua et al. Physico‐Chemical Processes
Pillai Adsorption in water and used water purification
Verdickt et al. Applicability of ion exchange for NOM removal from a sulfate-rich surface water incorporating full reuse of the brine
Drikas et al. Removal of natural organic matter-a fresh approach
Hadoudi et al. Sorption of bisphenol A from aqueous solutions using natural adsorbents: isotherm, kinetic and effect of temperature
CN206437968U (zh) 一种高盐废水处理回用的系统
Liriano-Jorge et al. TiO2 Photocatalyst Nanoparticle Separation: Flocculation in Different Matrices and Use of Powdered Activated Carbon as a Precoat in Low‐Cost Fabric Filtration
Zhang et al. Feasibility investigation of refinery wastewater treatment by combination of PACs and coagulant with ultrafiltration
Yu et al. Physico‐chemical processes
US9133047B2 (en) Decontamination system with insoluble additives
RU2399412C2 (ru) Способ получения сорбента для очистки природных и сточных вод
CN107585965A (zh) 一种大型工业用污水处理装置
Manna et al. Opportunities and Challenges in Heavy Metal Removal from Water
WO2022141423A1 (en) Method for treating organic compounds from industrial wastewaters with resins
Nthunya et al. Emerging nanoenhanced membrane-based hybrid processes for complex industrial wastewater treatment
CN211847574U (zh) 中水深度处理设备
CN210528647U (zh) 一种含砷制酸废水处理装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181201