RU2572058C2 - Калибровочное устройство для измерительных датчиков, предназначенных для измерения диаметра и других геометрических характеристик цилиндров - Google Patents

Калибровочное устройство для измерительных датчиков, предназначенных для измерения диаметра и других геометрических характеристик цилиндров Download PDF

Info

Publication number
RU2572058C2
RU2572058C2 RU2013104314/28A RU2013104314A RU2572058C2 RU 2572058 C2 RU2572058 C2 RU 2572058C2 RU 2013104314/28 A RU2013104314/28 A RU 2013104314/28A RU 2013104314 A RU2013104314 A RU 2013104314A RU 2572058 C2 RU2572058 C2 RU 2572058C2
Authority
RU
Russia
Prior art keywords
sensors
measurement
protrusions
cylinder
diameter
Prior art date
Application number
RU2013104314/28A
Other languages
English (en)
Other versions
RU2013104314A (ru
Inventor
Фаусто КАНДИАНИ
Паоло ГАБОАРДИ
Клаудио ТРЕВИЗАН
Флавио Стефано БЬЯНЧЕССИ
Original Assignee
ТЕНОВА С.п.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ТЕНОВА С.п.А. filed Critical ТЕНОВА С.п.А.
Publication of RU2013104314A publication Critical patent/RU2013104314A/ru
Application granted granted Critical
Publication of RU2572058C2 publication Critical patent/RU2572058C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/30Bars, blocks, or strips in which the distance between a pair of faces is fixed, although it may be preadjustable, e.g. end measure, feeler strip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/08Measuring arrangements characterised by the use of mechanical techniques for measuring diameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • B24B49/045Specially adapted gauging instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/20Slide gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/30Bars, blocks, or strips in which the distance between a pair of faces is fixed, although it may be preadjustable, e.g. end measure, feeler strip
    • G01B3/303Bars, blocks, or strips in which the distance between a pair of faces is fixed, although it may be preadjustable, e.g. end measure, feeler strip pre-adjustable, e.g. by means of micrometerscrew
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/201Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures for measuring roundness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length-Measuring Instruments Using Mechanical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Изобретение относится к калибровочному устройству (так называемому «подстроечному устройству») для измерительных датчиков, предназначенных для измерения диаметра и других геометрических характеристик цилиндров, таких как округлость, эксцентриситет и сечение. Заявленное калибровочное устройство (30) датчиков для измерения геометрических характеристик цилиндров, выбранных из: диаметра, профиля, ошибок в округлости и эксцентриситете, содержит пару выступов (34, 35), возвратно-поступательно выдвигаемых и/или убираемых с помощью двигателей (36, 37), для выполнения калибровочного измерения, выполняемого с помощью измерительного средства (42, 43, 44, 45), взаимодействующего с указанными выступами (34, 35), причем каждый выступ (34, 35) указанной пары приводится в действие, независимо от других выступов (34, 35), своим собственным двигателем (36, 37) из указанных двигателей (36, 37). Технический результат заключается в повышении точности измерений за счет того, что обеспечивается возможность подстройки во всем диапазоне измерений. 2 з.п. ф-лы, 23 ил.

Description

Изобретение относится к калибровочному устройству (так называемому «подстроечному устройству») для измерительных датчиков, предназначенных для измерения диаметра и других геометрических характеристик цилиндров, таких как, например, округлость, эксцентриситет и сечение.
Пример применения этих датчиков представлен их использованием на шлифовальных станках для цилиндров, используемых в промышленности (например, цилиндров для фрезерных станков, цилиндров для бумажного производства и т.д.).
Существующая технология шлифования цилиндров, предназначена ли она для использования во фрезерных станках для металлов или на заводах по производству бумаги, требует использования измерительных приборов, обычно называемых «датчиками», функция которых заключается в выполнении следующих обследований:
- измерения профиля образующей цилиндра;
- измерение формы сечения цилиндра (эксцентриситет, округлость);
- измерение диаметра (абсолютные измерения).
Измерительные датчики известного типа описаны, например, в патентах США №3391497, №4807400 и №4811524. К уровню техники также относятся технические решения, раскрытые в патентах США №3975828, №4335516, №6061922 и №5551906. Настоящее изобретение относится к калибровочному устройству для калибровки датчиков, предназначенных для осуществления всех вышеперечисленных измерений, но задуманному, в частности, для существенного повышения точности этих датчиков при измерении абсолютного диаметра.
В соответствии с известным уровнем техники, эти устройства представляют собой обычные измерительные инструменты (десятичные циферблатные индикаторы, подвижные датчики), которые используются оператором вручную для осуществления необходимых измерений, но которые теперь являются традиционными в шлифовальных станках для шлифования цилиндров, должны быть оборудованы специальными измерительными инструментами, которые обеспечивают возможность проведения автоматического измерения также и в процессе шлифования, с тем чтобы обеспечить возможность исправления системой управления (CNC) шлифовальным станком различных параметров во время цикла обработки.
Эти датчики можно разделить на следующие семейства:
подвижные датчики и
независимые датчики.
Подвижные датчики имеют характерную особенность в том, что, будучи установленными на тележку держателя шлифовального круга, они могут влиять на вышеуказанные измерения, но они ограничены тем, что перемещение датчика вдоль образующей цилиндра ограничено головкой держателя шлифовального круга. Это означает, что не допускается перемещение цилиндра, независимое от шлифовального круга; это ограничение иногда отражается в длительном времени цикла, в смысле общего времени шлифования и времени измерения цилиндра.
Независимые датчики, с другой стороны, установлены в передней части машины, на определенном основании. Они управляют теми же измерениями, что и подвижные датчики, но с тем преимуществом, что, поскольку датчики перемещаются вдоль образующей цилиндра независимо от шлифовального круга, измерения возможны, когда шлифовальный круг работает. Эта особенность отражается в общем сокращении времени цикла.
Не принимая во внимание различия в работе в терминах измерения скорости, решения, описанные выше, являются сопоставимыми друг с другом как с точки зрения точности, так и с точки зрения погрешности.
В целом можно утверждать, что работа датчиков, описанных в соответствии с известным уровнем техники, является удовлетворительной в отношении измерения профиля и формы сечения цилиндра, тогда как это не может быть сказано в отношении абсолютных измерений диаметра.
Не вдаваясь в детали, которые выходят за рамки этого описания, можно утверждать, что отсутствие точности в абсолютном измерении диаметров датчиками, как правило, связано с накоплением различных видов систематических ошибок, основными из которых являются геометрические ошибки направляющих опорных кронштейнов чувствительных элементов и других механических частей самого датчика, вдобавок, очевидно, к тенденции материалов изменять свой объем в зависимости от температуры.
Чтобы преодолеть недостаток ограниченной точности абсолютных измерений диаметра цилиндра, калибровочные устройства, так называемые «подстроечные устройства», были добавлены в конструкцию этих датчиков, которые представляют собой просто образцовые диски, эталонные стандарты или аналогичные известные измерительные средства. Они обеспечивают возможность выполнения так называемой «подстройки» датчика, то есть чувствительные элементы или сенсоры подводятся к концу кронштейнов датчика в контакт с образцом, имеющим известный размер, после чего выполняют измерение; в это время система управления устанавливает соответствие измерения, отображаемого датчиком, с реальным значением образца, который был измерен; это «фактическое» измерение подходящим образом запоминается в системе управления датчиком и машиной, на которой он собран (CNC), во время настройки самого датчика.
Кроме того, в случае контактных датчиков процедура калибровки также полезна для компенсации влияния износа самого датчика, который скользит по цилиндру; измерение, выполняемое в процессе обработки, когда цилиндр находится, следовательно, во вращении, в действительности повреждает поверхности, а также, поскольку должны быть обнаружены изменения порядка микрона, процедура предварительной установки (калибровка) является фундаментальной.
Это, в теории, обеспечивает возможность значительного улучшения точности измерений, но в действительности это верно только для измерения, осуществляемого в определенных пределах диаметра образца; при значительном отходе от диаметра образца, указанные выше производственные геометрические ошибки датчика повторно вводят систематические ошибки, которые ставят под угрозу точность измерений.
Для того чтобы преодолеть этот недостаток, датчики были выполнены с более чем одним калибровочным образцом или подстроечным диском; это обеспечивает возможность использования датчика в диапазоне различных диаметров, но с описанными выше ограничениями. Следовательно, по отношению к тому, что указано выше, связанному с уровнем техники, для того чтобы всегда выполнять точные измерения, измерительная система должна иметь возможность безграничной «подстройки».
Общей целью настоящего изобретения является устранение недостатков известного уровня техники, обеспечивая калибровочное устройство для измерительных датчиков геометрических параметров, в частности диаметра цилиндров, которые должны использоваться, например, совместно с датчиками шлифовальных станков с функцией компенсации, во всем диапазоне измерений датчика; систематических погрешностей, вносимых в измерения абсолютного диаметра цилиндра, в связи с неизбежными ошибками в прямолинейности направляющих датчика; и, более общо, производственных ошибок конструкций самого датчика, в дополнение к уже упомянутому явлению износа, и в целом всего того, что изменяет положение и форму измерительной системы (колебания температуры).
Указанная выше цель достигается путем использования калибровочного устройства, имеющего характеристики, указанные в прилагаемой формуле изобретения.
Конструктивные и функциональные характеристики настоящего изобретения и его преимущества по отношению к известному уровню техники будут еще более очевидны из следующего описания со ссылкой на прилагаемые схематические чертежи, которые показывают практический вариант выполнения изобретения.
На чертежах:
- Фиг. 1 представляет собой вертикальный схематический вид в разрезе, иллюстрирующий пример калибровочного устройства, изготовляемого в соответствии с изобретением;
- Фиг. 2 представляет собой схематический поперечный разрез, иллюстрирующий пример применения калибровки устройства, изображенного на Фиг. 1, со шлифовальным станком для цилиндров, оснащенным так называемым независимым датчиком; и
- Фиг. 3-23 представляют собой схемы, иллюстрирующие рабочие фазы устройства, изображенного на Фиг. 1, которые будут более подробно объяснены в последующем описании.
Прежде всего, со ссылкой на Фиг. 1 чертежей, калибровочное устройство, выполненное в соответствии с изобретением, обозначено в целом номером позиции 30.
Указанное устройство 30 состоит из несущей конструкции 31, выполненной с возможностью крепления посредством рамы, схематично обозначенной номером позиции 46, например, тележки или подвижной части В датчика, обозначенной в целом номером позиции 47, взаимодействующей со шлифовальным станком, обозначенным в целом номером позиции 32 (Фиг. 2).
Пара выступов 34, 35 установлена поперечно в направлении, указанном стрелкой 33, на несущей конструкции 31, которая выполнена в форме колонны.
Каждый выступ 34, 35 приводится в действие, независимо от других выступов, своим собственным двигателем 36, 37.
Двигатели 36, 37 вращают соответствующие винты 38, 39, которые ввинчиваются в гайки 40, 41, на которых функционально закреплены указанные выше выступы 34, 35.
Выступы 34, 35, следовательно, могут избирательно приводиться в действие для перемещения в направлении стрелки 33 независимо друг от друга.
Каждый выступ 34, 35 имеет считыватель известно типа (также называемый «головкой»), схематически изображенный на чертежах номерами позиций 42, 43, каждый из которых взаимодействует с соответствующей оптической линией 44, 45, закрепленной на несущей конструкции 31.
На схемах Фиг. 3-23 датчик известного типа (например, независимый), схематично изображенный номером позиции 47, также подходит для измерения, среди прочего, диаметра цилиндра 48.
Номер позиции 49 указывает кронштейн датчика 47, причем указанные кронштейны могут, например, иметь чувствительные элементы 51, которые непосредственно вступают в контакт с измеряемым цилиндром, или же сенсоры, не вступающие в контакт. Указанные кронштейны могут скользить в вертикальном направлении вдоль направляющих самого датчика (не показаны на схемах) и взаимодействовать с калибровочным или подстроечным устройством 30, выполненным в соответствии с изобретением, описанным ранее со ссылкой на Фиг. 1 чертежей.
На свободном конце указанных кронштейнов 49 имеются измерительные чувствительные элементы или сенсоры 51, описанные выше, выполненные с возможностью взаимодействия с обоими указанными выше выступами 34, 35, а также с поверхностью цилиндра 48.
Для общей работы иллюстративных датчиков известного типа ссылка может быть сделана, если необходимо, на приведенные выше патенты США.
Работа калибровочного устройства 30, выполненного в соответствии с изобретением, заключается в следующем.
Фиг. 3, 4 представляют собой два схематических вида, соответственно сбоку и сверху, иллюстрирующие датчик 47, поворачивающийся вокруг вертикальной оси 52 в положение, в котором чувствительные элементы или сенсоры 51 кронштейнов 49 находятся вблизи выступов 34, 35 калибровочного устройства 30.
В этой фазе работы положение выступов 34, 35 уже откалибровано (приведением в действие двигателей 36, 37) при номинальном размере, очень близком (например, равным номинальному диаметру, указанному на производственных чертежах цилиндра) диаметру цилиндра 48, который должен быть выявлен. Указанный размер регулируется замкнутым кольцом, посредством считывателей 42, 43, которые при скольжении вдоль оптических линий 44, 45, считывают расстояние между выступами 34, 35.
Кронштейны 49 датчика 47, с помощью устройства приведения в действие, которым оснащены все датчики, затем соответствующим образом приводятся в действие в положении, изображенном на Фиг. 5, 6, чтобы закрыться в направлениях, указанных стрелками 53, в результате чего чувствительные элементы 51 вступают в контакт с выступами 34, 35.
Если элементы 51 представляют собой сенсоры, не находящиеся в контакте, они приводятся в положение, относительно близкое к выступам для обеспечения возможности вхождения в свой диапазон измерения.
Калибровочное измерение (подстроечное измерение), выполненное, таким образом, датчиком 47, очень близко к абсолютному диаметру цилиндра 48, среди которых, в числе других геометрических характеристик, должно быть измерено фактическое значение.
Кронштейны 49 теперь переместились в направлении стрелки 54, приведя их в положение, изображенное на Фиг. 7, 8, а затем повернулись вокруг вертикальной оси 52 в положение, изображенное на Фиг. 9-11, как указано стрелкой 55.
В этом положении кронштейны 49 расположены перпендикулярно цилиндру 48, причем чувствительные элементы или сенсоры 51 лежат в диаметрально противоположных положениях по отношению к тому же цилиндру 48, но на некотором расстоянии от него.
Опорная тележка В датчика 47 перемещается в направлении, указанном стрелкой 57, до тех пор, пока датчик 47 с открытыми кронштейнами 49 не будет приведен в соответствие с концом цилиндра 48, то есть в начале измерительной области цилиндра (Фиг. 12-14).
Теперь перемещаются кронштейны 49 датчика с помощью механизмов, которые имеют все датчики, в направлении стрелки 58, с тем чтобы закрыться на цилиндре 48 в положении, изображенном на Фиг. 15-17.
Таким образом, можно определить как профиль цилиндра 48, так и его абсолютный диаметр в частях цилиндра, предусмотренных измерительным циклом, путем перемещения датчика 47 в направлении, указанном стрелкой 59; а также округлость и эксцентриситет того же самого цилиндра 48, снова в частях, предусмотренных измерительным циклом, как правило: на стороне головки держателя конца стола, в центре стола, на стороне наконечника считывателя конца стола (Фиг. 18-23).
После чего измерительный цикл завершается.
Тем самым достигается цель, указанная в разделе Сущность Изобретения настоящего описания.
Основное преимущество изобретения заключается в том, что благодаря подвижным выступам 34, 35 с регулируемым положением калибровочного устройства 30 можно привести (предварительно установить) кронштейны 49 датчика 47 для измерения близко к тому, что нужно измерить, сводя при этом к минимуму, а на самом деле почти компенсируя систематические ошибки, которые лежат в основе отсутствия точности этих измерений, когда они осуществляются известными системами.
Калибровочное устройство, выполненное в соответствии с известным изобретением, естественно, можно использовать в комбинации с любым датчиком известного типа.
Объем защиты изобретения определяется последующей формулой изобретения.

Claims (3)

1. Калибровочное устройство (30) датчиков для измерения геометрических характеристик цилиндров, выбранных из: диаметра, профиля, ошибок в округлости и эксцентриситете,
отличающееся тем, что указанное калибровочное устройство (30) содержит пару выступов (34, 35), возвратно-поступательно выдвигаемых и/или убираемых с помощью двигателей (36, 37), для выполнения калибровочного измерения, выполняемого с помощью измерительного средства (42, 43, 44, 45), взаимодействующего с указанными выступами (34, 35), причем каждый выступ (34, 35) указанной пары приводится в действие, независимо от других выступов (34, 35), своим собственным двигателем (36, 37) из указанных двигателей (36, 37).
2. Устройство по п. 1, отличающееся тем, что указанные выступы (34, 35) выполнены как одно целое с соответствующими гайками (40, 41), в которые ввинчиваются винты (38, 39), вращаемые указанными двигателями (36, 37).
3. Устройство по п. 1 или 2, отличающееся тем, что указанные измерительные средства содержат считыватели (42, 43), выполненные как одно целое с указанными выступами (34, 35) и взаимодействующие с оптическими линиями (34, 35), выполненными как одно целое с несущей конструкцией (31) указанного калибровочного устройства (30).
RU2013104314/28A 2010-08-02 2011-07-07 Калибровочное устройство для измерительных датчиков, предназначенных для измерения диаметра и других геометрических характеристик цилиндров RU2572058C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI2010A001457 2010-08-02
ITMI2010A001457A IT1401502B1 (it) 2010-08-02 2010-08-02 Dispositivo di taratura per calibri di misura del diametro e delle altre caratteristiche geometriche di cilindri
PCT/EP2011/003443 WO2012016628A1 (en) 2010-08-02 2011-07-07 Calibration device for measurement gauges of the diameter and other geometrical characteristics of cylinders

Publications (2)

Publication Number Publication Date
RU2013104314A RU2013104314A (ru) 2014-09-10
RU2572058C2 true RU2572058C2 (ru) 2015-12-27

Family

ID=43739488

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013104314/28A RU2572058C2 (ru) 2010-08-02 2011-07-07 Калибровочное устройство для измерительных датчиков, предназначенных для измерения диаметра и других геометрических характеристик цилиндров

Country Status (10)

Country Link
US (1) US9109872B2 (ru)
EP (1) EP2601476B1 (ru)
JP (1) JP5847819B2 (ru)
KR (1) KR101848107B1 (ru)
CN (1) CN103052862B (ru)
CA (1) CA2805518C (ru)
IT (1) IT1401502B1 (ru)
RU (1) RU2572058C2 (ru)
UA (1) UA112414C2 (ru)
WO (1) WO2012016628A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068740A (ja) * 2013-09-30 2015-04-13 株式会社東京精密 真円度測定装置
CN104858781B (zh) * 2014-02-24 2017-07-04 昆山华辰重机有限公司 轧辊磨床激光精密测距仪
US10139324B2 (en) * 2014-08-07 2018-11-27 Illinois Tool Works Inc. Automatic transverse strain extensometer architecture
US9897428B2 (en) 2014-12-22 2018-02-20 Monte Hieb Diametral measurement system for evaluation of cylindrical objects, including rock cores
EP3048414B1 (de) * 2015-01-20 2017-12-20 Sturm Maschinen- & Anlagenbau GmbH Prüfanlage und Verfahren zum Untersuchen eines Hohlkörpers
RU177502U1 (ru) * 2017-05-22 2018-02-28 Акционерное общество "Завод МетроСтандарт" Устройство для калибровки индикаторов и нутромеров
TWI633281B (zh) * 2017-11-17 2018-08-21 財團法人工業技術研究院 量測夾持裝置及量測方法
RU2687891C1 (ru) * 2018-08-30 2019-05-16 Акционерное общество "Научно-производственное предприятие "Радиосвязь" (АО "НПП "Радиосвязь") Прибор для контроля измерительного усилия и погрешности измерительных головок

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975828A (en) * 1975-01-08 1976-08-24 Caterpillar Tractor Co. Adjustable master setting gauge
US4335516A (en) * 1980-03-24 1982-06-22 Oriel Corporation Power driven micrometer
US6061922A (en) * 1996-12-30 2000-05-16 Tzeng; Lee Ching Length correction device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3391497A (en) 1964-11-17 1968-07-09 Farrel Corp Roll grinding and gaging apparatus
JPS6054908U (ja) * 1983-09-22 1985-04-17 株式会社 富士電機総合研究所 伸び計の校正装置
FR2587477A1 (fr) 1985-09-19 1987-03-20 Girardier Jean Pierre Micrometre a affichage numerique
IT1191690B (it) 1986-03-20 1988-03-23 Giustina International Spa Apparato di misura indipendente per macchine rettificatrici per cilindri e simili con organi di controllo strutturale e superficiale
IT1191688B (it) 1986-03-20 1988-03-23 Giustina International Spa Macchina rettificatrice per cilindri con organi di rilievo e controllo dimensionale e superficiale
US5551906A (en) * 1994-11-23 1996-09-03 Voith Sulzer Paper Technology North America Inc. Caliper assembly for grinder
JPH08184428A (ja) * 1994-12-28 1996-07-16 Ando Electric Co Ltd 汎用内径測定器と汎用内径測定器をもつ測定装置
JP3701449B2 (ja) * 1997-10-21 2005-09-28 東芝機械株式会社 ロール計測方法およびその装置
JP2000136924A (ja) 1998-11-04 2000-05-16 Kubota Corp 接触式管内径測定装置の校正装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975828A (en) * 1975-01-08 1976-08-24 Caterpillar Tractor Co. Adjustable master setting gauge
US4335516A (en) * 1980-03-24 1982-06-22 Oriel Corporation Power driven micrometer
US6061922A (en) * 1996-12-30 2000-05-16 Tzeng; Lee Ching Length correction device

Also Published As

Publication number Publication date
KR101848107B1 (ko) 2018-04-11
CA2805518A1 (en) 2012-02-09
UA112414C2 (uk) 2016-09-12
US9109872B2 (en) 2015-08-18
WO2012016628A1 (en) 2012-02-09
CN103052862B (zh) 2016-06-29
EP2601476A1 (en) 2013-06-12
CN103052862A (zh) 2013-04-17
IT1401502B1 (it) 2013-07-26
US20130125615A1 (en) 2013-05-23
RU2013104314A (ru) 2014-09-10
CA2805518C (en) 2018-08-07
EP2601476B1 (en) 2014-06-18
JP2013537629A (ja) 2013-10-03
JP5847819B2 (ja) 2016-01-27
KR20130094774A (ko) 2013-08-26
ITMI20101457A1 (it) 2012-02-03

Similar Documents

Publication Publication Date Title
RU2572058C2 (ru) Калибровочное устройство для измерительных датчиков, предназначенных для измерения диаметра и других геометрических характеристик цилиндров
EP2341311B1 (en) Surface texture measuring device
US7366637B2 (en) Form measuring instrument
JP5113086B2 (ja) 工作機械の変位を補正する方法及び装置
RU2389574C2 (ru) Приспособление и способ центровки загрузочных устройств и калибров в прокатной клети
JP2014533207A (ja) 工作機械およびワークピース測定方法
CN202101656U (zh) 双测头结构
JP4828072B2 (ja) 研削箇所におけるクランクピンの寸法、形状の偏りを計測するための装置及び方法
JP5851436B2 (ja) 加工装置及び加工方法
CN103358221A (zh) 用于正被机加工的工件的探针的测量头
JPH04233403A (ja) 回転対称的な工作物のための検査装置
CN117260389A (zh) 多传感器融合驱动的大型深孔零件形状误差在位测量系统
CN203550937U (zh) 一种大尺寸带表直角垂直度测量检具
CN107529473B (zh) 一种圆柱体变焦凸轮加工精度检测装置及其应用方法
CA2596265C (en) Shape-measuring assembly for a grinding machine
CN109282742A (zh) 盲孔深度大于2米的孔内径测量装置及测量方法
JPH11123656A (ja) ロール計測方法およびその装置
JP2010253604A (ja) 走査運動誤差測定方法
CN209085524U (zh) 盲孔深度大于2米的孔内径测量装置
CN113251909A (zh) 用于转轴位移测量的电涡流传感器的标定装置与方法
JP2015083986A (ja) 真円度測定装置
JP2015068740A (ja) 真円度測定装置
JP2968149B2 (ja) 円筒形状測定方法
RU2769010C1 (ru) Универсальный горизонтальный длиномер
RU2198378C2 (ru) Сферометр универсальный моторикина г.п.