RU2572050C2 - Способ очистки поверхностей электродов - Google Patents

Способ очистки поверхностей электродов Download PDF

Info

Publication number
RU2572050C2
RU2572050C2 RU2012153690/28A RU2012153690A RU2572050C2 RU 2572050 C2 RU2572050 C2 RU 2572050C2 RU 2012153690/28 A RU2012153690/28 A RU 2012153690/28A RU 2012153690 A RU2012153690 A RU 2012153690A RU 2572050 C2 RU2572050 C2 RU 2572050C2
Authority
RU
Russia
Prior art keywords
electrodes
voltage
cleaning
time
during
Prior art date
Application number
RU2012153690/28A
Other languages
English (en)
Other versions
RU2012153690A (ru
Inventor
ШЕФФОЛЬД Кристоф
Original Assignee
Динотек ГмбХ,
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47594274&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2572050(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Динотек ГмбХ, filed Critical Динотек ГмбХ,
Publication of RU2012153690A publication Critical patent/RU2012153690A/ru
Application granted granted Critical
Publication of RU2572050C2 publication Critical patent/RU2572050C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/38Cleaning of electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

Использование: для очистки поверхностей электродов. Сущность изобретения заключается в том, что в измерительной ячейке для размещения электролита электродами в течение первого отрезка времени на электроды подают постоянное напряжение с заданной полярностью, а в течение следующего за ним второго отрезка времени на электроды подают постоянное напряжение с обратной полярностью, при этом значение напряжения во время первого и второго отрезков времени удерживают соответственно постоянным. Технический результат: обеспечение возможности создания способа очистки поверхностей электродов, где предварительная поляризация электродов не оказывает отрицательного действия на результат очистки. 9 з.п. ф-лы, 4 ил.

Description

Изобретение относится к способу очистки поверхностей электродов в устройстве для определения составных веществ электролита с расположенными в измерительной ячейке для размещения электролита электродами, причем в течение первого отрезка времени на электроды подают постоянное напряжение с заданной полярностью, и причем в течение следующего за ним второго отрезка времени на электроды подают постоянное напряжение с обратной полярностью.
Существует множество способов измерения для определения составных веществ электролита. Так US 5,470,484 А описывает способ регулирования количества подаваемых в раствор чистящих средств, причем напряжение подается по эталонному электроду и рабочему электроду, которые погружены в раствор. Протекающий через рабочий электрод ток измеряется и преобразуется в регулирующий сигнал, который показывает концентрацию химиката в растворе. Регулирующий сигнал берется за основу регулировки скорости подачи химиката.
Результат измерений в существенной мере зависит от размера активной поверхности электрода. Если она изменяется, например, из-за отложений постороннего материала на поверхности электрода, то на результат измерения оказывается невольное воздействие. Поэтому следует регулярно очищать электроды.
Наряду с механическими способами очистки, такими как истирание песком или корундом или очистка ультразвуком, также предлагались электролитические способы очистки.
Так из ЕР 1452858 В1 известен способ такого рода очистки поверхностей электродов в измерительном устройстве, в котором между электродами подается постоянный ток заданной полярности с регулируемой для заданной характеристики, прежде всего постоянной, силой тока. Во время второго отрезка времени такой же продолжительности полярность меняется на обратную. За счет заданного, по своей характеристики обратного течения тока на поверхностях электродов попеременно создается водород и кислород. За счет переключения направления тока предотвращаются и устраняются осаждения веществ на поверхностях электродов. Однако при этом предварительная поляризация электродов мешает успеху очистки.
СН 672845 А описывает способ очистки для индикаторного электрода титратора, в котором на индикаторный электрод подается переменное напряжение для того, чтобы на электродах образовывался как йод, так и водород. Как окисляющее действие йода, так и образование пузырей при возникновении водорода производят сильный поверхностно-активный эффект.
Задача настоящего изобретения заключается в том, чтобы предложить улучшенный способ очистки поверхностей электродов, в котором, прежде всего, предварительная поляризация электродов не оказывает отрицательного действия на результат очистки.
Согласно изобретению эта задача в способе с признаками п.1 формулы изобретения решена по существу за счет того, что значение напряжения во время первого и второго отрезков времени поддерживается соответственно постоянным. Однако на основании изменяющейся во время очистки поляризации электродов при этом изменяется протекающий между электродами ток. Поскольку подается постоянное напряжение, возможно имеющаяся предварительная поляризация электродов не сказывается отрицательно на успехе очистки. В зависимости от выбранной полярности на одном электроде образуется водород, а на другом электроде - кислород. За счет изменения полярности это приводит к образованию кислорода и водорода на соответственно другом электроде. Оба газа активны в отношении восстановления и окисления и разрушают отложения, которые образовались на электродах. Так кислород окисляет, например, органические отложения, в то время как водород восстанавливает известь, ржавчину и двуокись марганца и разрушает отложения жира. Возникающие при этом газовые пузыри отбивают загрязнения от поверхностей электродов, поэтому, наряду с химической очисткой, одновременно достигается также и механическая очистка.
Согласно предпочтительному усовершенствованию изобретения первый и второй временные отрезки имеют различную продолжительность. Прежде всего, продолжительность временного отрезка с постоянно положительным постоянным напряжением примерно в два раза больше продолжительности временного отреза с отрицательным постоянным напряжением. За счет этого при разложении воды может быть образовано одинаковое количество молекул O2 и Н2 на поверхности электродов.
Удивительным образом было выявлено, что особо хороший результат очистки достигается в том числе тогда, когда первый и второй временные отрезки вместе длятся менее одной секунды. За счет быстрого изменения полярности в краткие сроки достигается эффективное снятие отложений с электродов.
Согласно одному усовершенствованию изобретения первый и второй временные отрезки образуют цикл очистки, который повторяется многократно, прежде всего 10 раз. Было выявлено, что в результате этого могут пошагово и полностью сниматься также и толстые или многослойные отложения.
При этом большим преимуществом было измерение во время цикла очистки протекающего между электродами тока и корректировка напряжения в зависимости от тока между электродами после первого цикла очистки и/или после дальнейших циклов очистки. За счет этого можно установить поданную постоянную амплитуду напряжения во время следующих друг за другом циклов очистки на оптимальное для очистки значение.
Для того чтобы электроды по завершении очистки по возможности сразу снова были доступны для точного измерения, электроды после очистки в цикле поляризации поляризуются, предпочтительным образом, заново. При этой новой поляризации на электроды подается электрическое напряжение, за счет которого происходит восстановление оксидов, отложившихся во время очистки на поверхности электродов. Напряжение согласно изобретению пошагово приближается к рабочему напряжению, которое используется во время стандартного режима работы при определении составных веществ. Это рабочее напряжение обычно явно ниже значения напряжения для очистки электродов. Активная новая поляризация электродов приводит к тому, что слой поляризации, который необходим на электродах для стандартного режима работы устройства и который утрачивается во время очистки, снова быстро восстанавливается. Если новая поляризация не выполняется активно, то самостоятельное образование слоя поляризации может длиться до одного часа.
К тому же удивительным образом было установлено, что на основании информации, которая собирается во время новой поляризации, можно проверить работоспособность измерительной системы. Для этого, например, во время новой поляризации протекающий между электродами ток измеряется и сравнивается с предварительно известными значениями калибровки устройства. Так возможные ошибки, такие как дефект сенсора, прерывания кабелей или ошибки, могут распознаваться в системе анализа.
Если в измерительной ячейке в качестве электролита используется вода, то в одной предпочтительной форме осуществления изобретения предусматривается, что абсолютное значение напряжения, поданного в первом и втором временном интервала, больше напряжения разложения воды, которое составляет прим. 1,8 В. В усовершенствовании этой изобретательской мысли абсолютное значение напряжения, поданного в первом и втором временных интервалах, составляет от примерно 5 до примерно 15 В, предпочтительным образом в диапазоне от примерно 7,5 до 10 В и, прежде всего, примерно 8 В. За счет этого можно достичь особенно хорошего результата очистки.
Изобретение далее разъясняется более подробно при помощи примера осуществления и чертежа. При этом все описанные и/или наглядно показанные признаки сами по себе или в любой комбинации представляют собой предмет изобретения, независимо от его описания в пунктах формулы изобретения или их взаимосвязей.
Показано на:
фиг.1 - схематически конструкция устройства для определения составных веществ электролита,
фиг.2 - характеристика потенциалов на электроде во время цикла очистка,
фиг.3 - характеристика напряжения одного цикла поляризации,
фиг.4 - представленный на фиг.3 цикл поляризации с наложенным измерительным сигналом для функциональной проверки.
На фиг.1 схематически показано устройство 1 для определения составных веществ электролита с помощью измерительной ячейки 2, в которой расположен измерительный электрод 3 и противоположный ему противоэлектрод или рабочий электрод 4. Перед измерительным электродом 3 расположен соотнесенный с ним эталонный электрод 5. Блок 6 управления управляет потенциостатом 7, который может соединять переключатель 8, управляемый блоком 6 управления, с противоэлектродом 4 или эталонным электродом 5. Измерительный электрод 3 соединен с измерительным входом 9 и может соединяться с заземлением 11 посредством переключателя 10, управляемого блоком 6 управления.
В измерительной ячейке 2 находится электролит, составные вещества которого должны быть определены, например вода, содержание хлора в которой должно непрерывно определяться. Процесс измерения для определения составных веществ электролита прерывается с определенными заданными интервалами времени блоком 6 управления, и электроды 3, 4 посредством переключения переключателей 8, 10 соединяются с потенциостатом 7, служащим в качестве источника постоянного напряжения для очистки поверхности электрода.
Для осуществления предлагаемого способа очистки на поверхности электродов 3, 4 посредством потенциостата 7 между измерительным электродом 3 и противоэлектродом 4 подается постоянное напряжение. После предварительно заданного отрезка времени полярность меняется и на измерительный электрод 3 и противоэлектрод 4 подается обратное, опять же постоянное напряжение. Оба отрезка времени образуют цикл очистки, который предпочтительным образом длится максимально 1 секунду. Этот цикл очистки повторяется несколько раз, прежде всего 10 раз.
На фиг.2 показана распределенная во времени характеристика потенциала на одном из электродов 2, 3 во время цикла очистки. Отрезок 12 времени, во время которого подается положительное напряжение, в два раза больше, чем отрезок 13 времени с отрицательным напряжением. За счет этого при использовании воды в качестве электролита на соответствующем электроде 3 или же 4 образуется равное количество водорода и кислорода. Абсолютное значение напряжения при этом явно выше напряжения разложения воды, прежде всего примерно 8 В.
После завершения способа очистки электроды поляризуются заново. За счет этого на поверхностях электродов происходит восстановление отложенных оксидов и активно образуется слой поляризации, который необходим для корректного определения составных веществ электролита. Цикл поляризации имеет, как показано на фиг.3, несколько отрезков, которые следуют друг за другом во времени и в течение которых напряжение изменяется пошагово. Во время первого отрезка 14 согласно изобретению подается напряжение примерно -1000 мВ. Затем следует второй отрезок 15, на котором напряжение снижено до 0 мВ. На третьем отрезке 16 подается напряжение -500 мВ. За ним опять же следует четвертый отрезок 17 с 0 мВ. Наконец, в течение пятого отрезка 18 на электроды 3, 4 подается необходимое рабочее напряжение от примерно - 100 до -1000 мВ. Предпочтительно отрезки 14-18 времени имеют примерно одинаковую продолжительность и имеют, например, продолжительность в 10-60 сек. Это завершает активное новое построение слоя поляризации. Теперь можно сразу же снова начинать нормальный режим измерения с изначально надежными результатами. Напряжение для новой поляризации устанавливается в зависимости от измеряемого вещества.
На фиг.4 показан представленный на фиг.3 цикл поляризации с записанным во время измерения и представленным с наложением сигналом 19 измерения. В качестве сигнала 19 измерения служит электрический ток, который течет между электродами 3, 4 во время цикла повторной поляризации и, например, регистрируется измерительным входом 9. Характеристика измерительного сигнала во время отрезков 14, 16 и 18 времени зависит от проводимости электролита, в то время как измерительный сигнал во время отрезков 15 и 17 времени, когда между электродами нет напряжения, основан на так называемом гальваническом эффекте. Характеристика измерительного сигнала 19 характерна для состояния функционирования измерительной ячейки 2 и тем самым устройства 1. Поэтому для проверки работоспособности измерительной ячейки 2 может использоваться характеристика измерительного сигнала 19, прежде всего максимально достигнутая сила электрического тока, а также характеристики его затухания. Это может происходить, например, за счет сравнения с известной из калибровки характеристикой кривой или за счет сравнения с известными значениями для электрического тока во время отрезка времени новой поляризации.
С помощью изобретения предоставляется возможность очистки поверхностей электродов в измерительной ячейке 2, во время которой предварительная поляризация электродов 3, 4 не мешает успеху очистки. К тому же можно простым способом проверить работоспособность всей системы.
СПИСОК ССЫЛОЧНЫХ ОБОЗНАЧЕНИЙ
1 Устройство для определения составных веществ электролита
2 Измерительная ячейка
3 Измерительный электрод
4 Противоэлектрод
5 Эталонный электрод
6 Блок управления
7 Потенциостат
8 Переключатель
9 Измерительный вход
10 Переключатель
11 Заземление
12 Первый отрезок времени
13 Второй отрезок времени
14-18 Отрезки времени во время новой поляризации
19 Измерительный сигнал

Claims (10)

1. Способ очистки поверхностей электродов в устройстве (1) для определения составных веществ электролита с расположенными в измерительной ячейке (2) для размещения электролита электродами (3, 4), причем в течение первого отрезка (12) времени на электроды (3, 4) подают постоянное напряжение с заданной полярностью, и причем в течение следующего за ним второго отрезка (13) времени на электроды (3, 4) подают постоянное напряжение с обратной полярностью, отличающийся тем, что значение напряжения во время первого (12) и второго (13) отрезков времени удерживают соответственно постоянным.
2. Способ по п.1, отличающийся тем, что первый (12) и второй (13) отрезки времени имеют различную продолжительность.
3. Способ по п.2, отличающийся тем, что длина отрезка времени с положительным постоянным напряжением (12) примерно в два раза больше, чем продолжительность отрезка времени с отрицательным постоянным напряжением (13).
4. Способ по одному из пп.1-3, отличающийся тем, что первый (12) и второй (13) отрезки времени вместе длятся менее одной секунды.
5. Способ по одному из пп.1-3, отличающийся тем, что первый (12) и второй (13) отрезки времени образуют цикл очистки, который повторяют несколько раз, прежде всего 10 раз.
6. Способ по п.5, отличающийся тем, что во время цикла очистки измеряют протекающий между электродами (3, 4) ток и что напряжение между электродами (3, 4) корректируют в зависимости от тока между электродами (3, 4) после первого цикла очистки и/или после дальнейших циклов очистки.
7. Способ по одному из пп.1-3, отличающийся тем, что электроды (3, 4) после очистки поляризуют заново.
8. Способ по п.7, отличающийся тем, что во время новой поляризации измеряют протекающий между электродами (3, 4) электрический ток и на основании сигнала тока оценивают работоспособность измерительного устройства (1).
9. Способ по одному из пп.1-3, отличающийся тем, что абсолютное значение поданного во время первого (12) и второго (13) отрезков времени напряжения больше, чем напряжение разложения воды.
10. Способ по п.9, отличающийся тем, что абсолютное значение поданного во время первого (12) и второго (13) отрезков времени напряжения составляет примерно 5-15 В.
RU2012153690/28A 2011-12-13 2012-12-12 Способ очистки поверхностей электродов RU2572050C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011120819.8 2011-12-13
DE201110120819 DE102011120819A1 (de) 2011-12-13 2011-12-13 Verfahren zum Reinigen von Elektrodenoberflächen

Publications (2)

Publication Number Publication Date
RU2012153690A RU2012153690A (ru) 2014-06-20
RU2572050C2 true RU2572050C2 (ru) 2015-12-27

Family

ID=47594274

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012153690/28A RU2572050C2 (ru) 2011-12-13 2012-12-12 Способ очистки поверхностей электродов

Country Status (3)

Country Link
EP (1) EP2605007B2 (ru)
DE (1) DE102011120819A1 (ru)
RU (1) RU2572050C2 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018004450A1 (de) 2018-06-05 2019-12-05 Ecm Gmbh Verfahren zur Aktivhaltung und Reaktivierung von elektrochemischen Sensoren und eine Vorrichtung zur Durchführung des Verfahrens
DE102018113640A1 (de) 2018-06-07 2019-12-12 Prominent Gmbh Verfahren zur Reinigung, Konditionierung, Kalibration und/oder Justage eines amperometrischen Sensors
GB2582582B (en) * 2019-03-26 2021-03-31 Kalium Health Ltd Conditioning an ion-selective electrode
CN111392823B (zh) * 2020-04-15 2021-04-23 中南大学 一种电絮凝过程的优化控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059406A (en) * 1976-07-12 1977-11-22 E D T Supplies Limited Electrochemical detector system
US4566949A (en) * 1983-10-19 1986-01-28 Hewlett-Packard Company Method of operating a self cleaning electrochemical detector
WO1988007194A1 (en) * 1987-03-14 1988-09-22 Tecan Ag Analytische Instrumente Process for cleaning the indicator electrode of a titrator for the determination of water content by the k. fischer method and device for carrying out the process
RU2207558C2 (ru) * 1999-01-29 2003-06-27 Государственное унитарное предприятие "Уральский научно-исследовательский химический институт с опытным заводом" Способ очистки измерительного электрода
EP1452858A3 (de) * 2003-03-01 2005-02-02 Dr- A. Kuntze Gmbh Verfahren zum Reinigen von Elektrodenoberflächen sowie Vorrichtung zur Durchführung des Verfahrens

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496454A (en) * 1983-10-19 1985-01-29 Hewlett-Packard Company Self cleaning electrochemical detector and cell for flowing stream analysis
EP0140287B1 (de) * 1983-11-02 1989-02-22 Heraeus Elektroden GmbH Umpolbare Elektrode
US5470484A (en) 1994-01-13 1995-11-28 Buckman Laboratories International, Inc. Method and apparatus for controlling the feed of water treatment chemicals using a voltammetric sensor
JPH09311116A (ja) * 1996-05-22 1997-12-02 Omron Corp 生化学測定器
IL133084A (en) 1999-11-22 2003-12-10 B H Technologies 1998 Ltd Method for removal of solid deposits from electrode surfaces in water disinfecting system using electrolytic cells and a device for use thereof
US6627053B2 (en) 1999-12-14 2003-09-30 Sanyo Electric Co., Ltd. Water treatment device
US20030019748A1 (en) * 2001-06-19 2003-01-30 Elena Viltchinskaia Method and apparatus for stripping voltammetric and potent iometric detection and measurement of contamination in liquids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059406A (en) * 1976-07-12 1977-11-22 E D T Supplies Limited Electrochemical detector system
US4566949A (en) * 1983-10-19 1986-01-28 Hewlett-Packard Company Method of operating a self cleaning electrochemical detector
WO1988007194A1 (en) * 1987-03-14 1988-09-22 Tecan Ag Analytische Instrumente Process for cleaning the indicator electrode of a titrator for the determination of water content by the k. fischer method and device for carrying out the process
RU2207558C2 (ru) * 1999-01-29 2003-06-27 Государственное унитарное предприятие "Уральский научно-исследовательский химический институт с опытным заводом" Способ очистки измерительного электрода
EP1452858A3 (de) * 2003-03-01 2005-02-02 Dr- A. Kuntze Gmbh Verfahren zum Reinigen von Elektrodenoberflächen sowie Vorrichtung zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
DE102011120819A1 (de) 2013-06-13
RU2012153690A (ru) 2014-06-20
EP2605007B1 (de) 2017-03-29
EP2605007B2 (de) 2019-08-21
EP2605007A1 (de) 2013-06-19

Similar Documents

Publication Publication Date Title
US5162077A (en) Device for in situ cleaning a fouled sensor membrane of deposits
RU2572050C2 (ru) Способ очистки поверхностей электродов
US8298391B2 (en) Amperometric sensor
JP3361237B2 (ja) 残留塩素測定方法及び装置並びに残留塩素検出プローブ
JP2002330752A (ja) 微生物数測定装置
JP3390154B2 (ja) 残留塩素計およびこれを利用する浄水装置
JP5892422B2 (ja) 分極抵抗測定方法
JP4414277B2 (ja) 酸化還元電流測定装置および酸化還元電流測定装置の洗浄方法
WO2014007340A1 (ja) 電解処理水生成装置および電解処理水生成方法
EP0552208B1 (en) Electrokinetic potential measurement
JP2006167706A (ja) イオン水生成装置
JP2022114416A (ja) 電気化学測定装置及び電気化学測定方法
JP3917297B2 (ja) 残留塩素計およびこの残留塩素計を用いた液体殺菌装置
JP3328215B2 (ja) 残留塩素測定装置
JPH11270860A (ja) 不凍液劣化検知機能付き床暖房装置
JPH042903B2 (ru)
JP2008058025A (ja) 残留塩素濃度計
JP5181352B2 (ja) 残留遊離塩素濃度の測定方法及び装置
US20230280309A1 (en) Systems, Devices, and Methods for Electrochemical Water Analysis
JP7227714B2 (ja) 電気化学測定装置及びその洗浄方法
JPH02296143A (ja) 溶存二酸化塩素の測定方法
JP4806951B2 (ja) イオン水生成装置
WO2009009448A1 (en) Amperometric sensor
EP0608037A2 (en) Method and apparatus for on-line monitoring the quality of a purified metal sulphate solution
JP3917296B2 (ja) 残留塩素計の洗浄方法

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant