RU2560804C1 - Способ изготовления волноводов миллиметрового диапазона - Google Patents

Способ изготовления волноводов миллиметрового диапазона Download PDF

Info

Publication number
RU2560804C1
RU2560804C1 RU2014126133/08A RU2014126133A RU2560804C1 RU 2560804 C1 RU2560804 C1 RU 2560804C1 RU 2014126133/08 A RU2014126133/08 A RU 2014126133/08A RU 2014126133 A RU2014126133 A RU 2014126133A RU 2560804 C1 RU2560804 C1 RU 2560804C1
Authority
RU
Russia
Prior art keywords
waveguide
mandrel
waveguides
current
external surface
Prior art date
Application number
RU2014126133/08A
Other languages
English (en)
Inventor
Татьяна Трофимовна Ереско
Игорь Иванович Хоменко
Иван Иванович Хоменко
Сергей Павлович Ереско
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ)
Priority to RU2014126133/08A priority Critical patent/RU2560804C1/ru
Application granted granted Critical
Publication of RU2560804C1 publication Critical patent/RU2560804C1/ru

Links

Abstract

Изобретение относится к технологии точного приборостроения и может быть использовано для изготовления волноводных трактов постоянного и/или переменного сечения миллиметрового диапазона, применяемых в СВЧ приборах. Достигаемый технический результат - повышение качества токопроводящего покрытия внутреннего канала волновода путем повышения точности и адгезионной прочности внутреннего токопроводящего покрытия равномерно по длине волновода. Способ изготовления волноводов миллиметрового диапазона заключается в изготовлении оправки из алюминиевого сплава, наружная поверхность которой повторяет форму внутреннего канала волновода и имеет требуемые шероховатость поверхности и точность размеров, в нанесении на наружную поверхность оправки металлических слоев для формирования токопроводящего покрытия внутреннего канала и корпуса волновода и дальнейшем вытравливании оправки, а также в анодировании оправки и нанесении на ее наружную поверхность методом вакуумной металлизации слоя серебра, на который далее гальванопластическим методом осаждают слой меди до достижения заданной толщины корпуса волновода.

Description

Изобретение относится к технологии точного приборостроения и может быть использовано при изготовлении волноводных трактов постоянного и (или) переменного сечения миллиметрового диапазона для СВЧ приборов.
При изготовлении волноводов используются методы порошковой металлургии, точного литья, формообразования с использованием низкотемпературной плазмы, обработки и неразъемного соединения металлов (деформирование заготовки, многостороннее деформирование, холодное выдавливание, гибка, высокотемпературная пайка, аргонодуговая, диффузионная, электронно-лучевая, микроплазменная, лазерная сварка, электроэрозионная и электрохимическая обработка), а также гальванопластические и некоторые другие методы (И.П. Бушминский «Изготовление элементов конструкции СВЧ. Волноводы и волноводные устройства»: Учебное пособие. - М.: Высшая школа. 1974. 304 с.).
Все вышеперечисленные методы заключаются в том, что вначале изготавливают сам волновод, а затем приступают к обработке внутреннего канала и нанесению на его поверхность гальваническим методом токопроводящего покрытия из серебра. Однако небольшие по размеру и сложные по конфигурации каналы обработать равномерно практически невозможно, отсюда и один основной недостаток: несоответствие параметров проводящих характеристик волноводов требованиям ГОСТ 19158-73.
Известен способ изготовления гибких металлических волноводов, описанный в авторском свидетельстве СССР №74153, Кл. C25D 1/02. Способ основан на применении электрических методов наращивания металлических пленок на оправку с последующим удалением этой оправки вытравливанием. Для получения необходимой формы и механических качеств волновода на оправку, изготовленную из алюминиевого сплава, гальванически осаждают пленки цинка толщиною 1-2 мк, меди - 2-3 мк, серебра - 25-30 мк и вновь меди - 100-150 мк, затем просушивают. После этого к оправке припаивают фланцы, изделие обезжиривают, декапируют, наносят слой латуни толщиной 5-10 мк и снова просушивают. Затем обматывают гибкий волновод полосами из сырой резины, вулканизируют резиновый слой, а затем вытравливают оправку. После чего выполняют обычную подготовку под токопроводящее покрытие и наносят гальваническим методом на внутреннюю поверхность волновода слой серебра толщиной 15 мк.
Недостатком этого способа является пористость внутреннего токопроводящего слоя волновода, присущая покрытиям, нанесенным гальваническим методом. При гальваническом покрытии возможно насыщение покрытия водородом, что ведет к ухудшению плотности покрытия и снижению его адгезионной прочности.
Кроме того, токопроводящий слой загрязнен химическими соединениями, сопровождающими гальванический процесс.
Задачей изобретения является повышение качества токопроводящего покрытия внутреннего канала волновода.
Поставленная задача достигается тем, что в способе изготовления волноводов миллиметрового диапазона, включающем изготовление оправки из алюминиевого сплава, наружная поверхность которой повторяет форму внутреннего канала волновода и имеет требуемые шероховатость поверхности и точность размеров, нанесение на оправку металлических слоев для формирования токопроводящего покрытия внутреннего канала и корпуса волновода и дальнейшее вытравливание оправки, согласно изобретению, изготовленную оправку анодируют и наносят на ее наружную поверхность методом вакуумной металлизации слой серебра, на который далее гальванопластическим методом осаждают слой меди до достижения заданной толщины корпуса волновода.
Предлагаемый способ осуществляется следующим образом.
Например, для получения волновода с параметром шероховатости внутренней поверхности Ra=0,08 мкм изготавливают оправку из алюминиевого сплава, например Д16, Д6, Д7, АД1, АМг6, наружная поверхность которой повторяет форму внутреннего канала волновода. Оправку изготавливают с применением механического точения и шлифования.
Для обеспечения требуемой шероховатости поверхности производят:
- Полирование на бязевых кругах с пастой ГОИ;
- Обезжиривание в уайт-спирите;
- Электрополировку в электролите, в состав которого входят:
- фосфорная кислота - 1100÷1300 (г/л);
- хромовый ангидрид - 130÷180 (г/л);
- серная кислота - 100÷150 (г/л)/
Режимы электрополировки: температура t=70-80°C, плотность тока - 10 А/дм2, напряжение - 12 B; продолжительность - 5-10 мин при реверсе тока, или 3-5 мин - без реверса тока.
- Промывку в водном растворе, содержащем: калий бихромат - 10-15 (г/л), сода кальцинированная (Na2CO3) - 15-20 (г/л), при температуре - 80°C, в течение 30-40 сек;
- Анодирование в растворе кислоты 20% H2SO4 при плотности тока 1 А/дм2 и напряжении 12-18 В в течение 15-20 мин., с пропиткой в растворе жидкого стекла (Na2O×SiO2×nH2O);
- Промывку в дистиллированной воде при температуре 25-30°C;
- Сушку при 50-60°C;
- Обезжиривание бензином БР-1 (калоша).
При этом шероховатость наружной поверхности оправки обеспечивается равной требуемой, а именно: Ra=0,08 мкм.
Затем проводят операцию вакуумной металлизации наружной поверхности оправки, осуществляемую в два этапа:
- Помещают оправку в вакуумную камеру и предварительно производят обработку оправки в тлеющем разряде при остаточном давлении 1×10-2-1×10-3 мм рт.ст. в течение 20-25 мин;
- При достижении давления в вакуумной камере 1×10-4 мм рт.ст. оправку нагревают до температуры 200-250°C. По мере стабилизации давления вакуума на уровне 5×10-5 мм рт.ст. начинают испарение серебра, при этом ток нагревателя равен 380-390 A, температура испарителя - 1000-1100°C, время испарения - 40-50 мин, толщина нанесенного токопроводящего слоя серебра - 10 мкм.
Далее дают оправке остыть в среде вакуума до температуры 30-40°C, после чего вынимают оправку из камеры и взвешивают на аналитических весах.
Затем производят наращивание корпуса волновода гальванопластическим осаждением слоя меди на слой серебра, до достижения требуемой толщины корпуса, осуществляя контроль промежуточным взвешиванием.
Медный электролит для гальванопластических работ приготавливают на основе медного купороса с добавлением серной кислоты, повышающей электропроводность электролита. Для приготовления медного электролита используют сульфат меди (медный купорос) 150-180 г на 1 л воды при t=60-80°C. После охлаждения до температуры t=30-40°C электролит фильтруют и затем в него медленно, тонкой струей вливают серную кислоту, во избежание быстрого разогревания электролита и его разбрызгивания. В медных сульфатных ваннах содержание серной кислоты поддерживают в пределах 35-40 г/л.
После наращивания корпуса волновода до требуемых размеров по толщине согласно ОСТ 5.9941-84 «Элементы СВЧ волноводные. Изготовление гальванопластическое» припаивают фланцы, производят взвешивание волновода с оправкой и осуществляют вытравливание оправки из алюминиевого сплава горячим раствором щелочи NaOH (300 г/л при температуре 90-100°C) до полного ее растворения, контролируя процесс по времени растворения контрольного образца или контролируя массу волновода.
Далее промывают волновод (изделие) вначале в горячей воде при t=60-80°C, затем в холодной воде при температуре 20°C.
В дальнейшем производят сушку продувкой горячим воздухом при температуре t=50-70°C.
Параметры волноводов определены ОСТ-4.054.009.-77. «Устройства СВЧ. Волноводные линии. Детали и сборочные единицы изготовления методом гальванопластики».
Изготовленный данным способом волновод круглого сечения диаметром 10 мм длиной 120 мм имеет высокую адгезию токопроводящего покрытия с корпусом волновода. Адгезию определяли методом нанесения сетки 4-6 параллельных линий до основного металла на расстоянии 2-3 мм и 4-6 параллельных линий, перпендикулярных к ним на образцах-свидетелях согласно ГОСТ 9.302-79, отслоений не наблюдалось. Шероховатость токопроводящего покрытия составила Ra=0,8 мкм.
Заявленный способ обеспечивает возможность изготовления волноводов миллиметрового диапазона с поперечным сечением практически любой конфигурации, при этом внутреннее токопроводящее покрытие имеет равномерно высокую точность и адгезионную прочность по длине волновода. Кроме того, способ обладает высокой производительностью при одновременном снижении трудоемкости.

Claims (1)

  1. Способ изготовления волноводов миллиметрового диапазона, включающий изготовление оправки из алюминиевого сплава, наружная поверхность которой повторяет форму внутреннего канала волновода и имеет требуемые шероховатость поверхности и точность размеров, нанесение на оправку металлических слоев для формирования токопроводящего покрытия внутреннего канала и корпуса волновода и дальнейшее вытравливание оправки, отличающийся тем, что изготовленную оправку анодируют и наносят на ее наружную поверхность методом вакуумной металлизации слой серебра, на который далее гальванопластическим методом осаждают слой меди до достижения заданной толщины корпуса волновода.
RU2014126133/08A 2014-06-26 2014-06-26 Способ изготовления волноводов миллиметрового диапазона RU2560804C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014126133/08A RU2560804C1 (ru) 2014-06-26 2014-06-26 Способ изготовления волноводов миллиметрового диапазона

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014126133/08A RU2560804C1 (ru) 2014-06-26 2014-06-26 Способ изготовления волноводов миллиметрового диапазона

Publications (1)

Publication Number Publication Date
RU2560804C1 true RU2560804C1 (ru) 2015-08-20

Family

ID=53880844

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014126133/08A RU2560804C1 (ru) 2014-06-26 2014-06-26 Способ изготовления волноводов миллиметрового диапазона

Country Status (1)

Country Link
RU (1) RU2560804C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2081479C1 (ru) * 1990-01-15 1997-06-10 Научно-исследовательский институт полупроводниковых приборов Устройство свч
RU2130215C1 (ru) * 1992-08-14 1999-05-10 Государственное научно-производственное предприятие "НИИПП" Способ создания монолитной интегральной свч схемы
US6048748A (en) * 1999-01-14 2000-04-11 Hewlett-Packard Company Advanced semiconductor devices fabricated with passivated high aluminum content III-V materials
RU2151457C1 (ru) * 1991-05-15 2000-06-20 Миннесота Майнинг Энд Мэнюфекчуринг Компани Способ изготовления омического контактного слоя и полупроводниковое устройство ii-vi групп

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2081479C1 (ru) * 1990-01-15 1997-06-10 Научно-исследовательский институт полупроводниковых приборов Устройство свч
RU2151457C1 (ru) * 1991-05-15 2000-06-20 Миннесота Майнинг Энд Мэнюфекчуринг Компани Способ изготовления омического контактного слоя и полупроводниковое устройство ii-vi групп
RU2130215C1 (ru) * 1992-08-14 1999-05-10 Государственное научно-производственное предприятие "НИИПП" Способ создания монолитной интегральной свч схемы
US6048748A (en) * 1999-01-14 2000-04-11 Hewlett-Packard Company Advanced semiconductor devices fabricated with passivated high aluminum content III-V materials

Similar Documents

Publication Publication Date Title
JP2009526130A (ja) 陽極酸化アルミニウム、誘電体および方法
UA86764C2 (ru) способ получения керамического покрытия и композиционное изделие с керамическим покрытием
US8852448B2 (en) Method for fabricating 3D structure having hydrophobic surface by dipping method
US20210052008A1 (en) Plated silicon-based electronic cigarette atomizing chip and preparation method thereof
CN109112602A (zh) 一种提高陶瓷涂层与金属基体结合力的激光方法
CN104532320A (zh) 一种铝、钛合金微弧陶瓷膜的制备方法
TWI598005B (zh) 厚銅層與其形成方法
RU2560804C1 (ru) Способ изготовления волноводов миллиметрового диапазона
CN111591953B (zh) 针状微电极及其制备方法
CN103862748B (zh) 一种铝合金与聚苯硫醚热性树脂复合材料及其制备方法
KR101819918B1 (ko) 고속 플라즈마 전해산화 공정
CN101509135B (zh) 钨铜合金热沉基片耐焊金属膜层的制作方法
TWI585245B (zh) 單面薄型金屬基板之製造方法
GB2123616A (en) Circuit boards and method of manufacture thereof
CN112701436B (zh) 带有盲孔和通孔的陶瓷介质滤波器的均匀电镀增厚方法
CN113755927A (zh) 镁钕合金零件及其复合氧化处理方法
WO2020204745A1 (ru) Способ формирования медных проводников для печатной платы
KR20090093122A (ko) 알에프 장비의 도금 방법 및 이에 의해 제조된 알에프 장비
JP5438485B2 (ja) 表面処理部材
RU2460162C1 (ru) Способ изготовления сборных изделий и способ подготовки сборных изделий перед нанесением покрытия на их поверхности
Devyatkina et al. Deposition of protective-decorative coatings onto aluminum alloys
RU2022496C1 (ru) Способ изготовления печатной платы
JP2008153556A (ja) 電気回路用放熱基板の製造方法
RU2769533C1 (ru) Способ покрытия элементов коаксиального свч-переключателя
RU2694430C1 (ru) Способ получения диэлектрического слоя на поверхности алюминиевой подложки

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170627