RU2550897C2 - Усовершенствованные композитные материалы - Google Patents

Усовершенствованные композитные материалы Download PDF

Info

Publication number
RU2550897C2
RU2550897C2 RU2012112932/05A RU2012112932A RU2550897C2 RU 2550897 C2 RU2550897 C2 RU 2550897C2 RU 2012112932/05 A RU2012112932/05 A RU 2012112932/05A RU 2012112932 A RU2012112932 A RU 2012112932A RU 2550897 C2 RU2550897 C2 RU 2550897C2
Authority
RU
Russia
Prior art keywords
resin
prepreg according
prepreg
particles
carbon particles
Prior art date
Application number
RU2012112932/05A
Other languages
English (en)
Other versions
RU2012112932A (ru
Inventor
Джон КОЗ
Мартин СИММОНС
Original Assignee
Хексел Композитс Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хексел Композитс Лимитед filed Critical Хексел Композитс Лимитед
Publication of RU2012112932A publication Critical patent/RU2012112932A/ru
Application granted granted Critical
Publication of RU2550897C2 publication Critical patent/RU2550897C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0264Polyamide particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к конструкционным композитным материалам и может быть использовано в строительстве, в аэрокосмическом оборудовании. Отверждаемый препрег включает структурный слой электропроводящих волокон и первый внешний слой термореактивной смолы, причем слой смолы, включающий термопластичные частицы и стеклоуглеродные частицы, обеспечивает повышенную электропроводность, механические свойства и стойкость к повреждениям, вызываемыми ударами молнии. 5 н. и 26 з.п. ф-лы, 3 ил.,2 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к усовершенствованным в части электромагнитного отклика композитным материалам, в частности к приданию им стойкости к повреждениям, вызываемым ударами молний.
Уровень техники
Композитные материалы имеют надлежащим образом документированные преимущества по сравнению с традиционными строительными материалами, в частности в обеспечении превосходных механических свойств при очень низкой плотности материалов. В результате использование таких материалов становится все более распространенным, и их области применения включают от промышленности, спорта и досуга до высококачественных аэрокосмических компонентов.
Препреги, структура которых состоит из волокон, пропитанных полимером, например, эпоксидной смолой, широко используют в производстве указанных композитных материалов. Как правило, ряд слоев указанных препрегов складывают желательным образом и полученный многослойный материал отверждают, обычно при воздействии повышенных температур, получая отвержденный композитный многослойный материал.
Обычный композитный материал получают из многослойного материала, содержащего множество пропитанных полимером волоконных слоев, например, углеродных волокон с разделительными слоями полимерной смолы. Хотя углеродные волокна имеют некоторую электропроводность, присутствие разделительных слоев означает, что электропроводность композита проявляется только в плоскости многослойного материала. Электропроводность в направлении, перпендикулярном поверхности многослойного материала, так называемом направлении оси z, является низкой.
Согласно общему мнению, эта низкая электропроводность в направлении оси z способствует уязвимости композитных многослойных материалов к электромагнитным опасностям, в том числе к ударам молний. Удар молнии может вызывать повреждение композитных материалов, которые могут быть достаточно дорогими, и может оказаться катастрофическим при воздействии на конструкции воздушного судна в полете. Таким образом, это представляет особую проблему для конструкций воздушного судна, которые изготовлены из указанных композитных материалов.
Кроме того, композитные материалы для использования в аэрокосмическом оборудовании должны удовлетворять строгим стандартам в отношении механических свойств. Таким образом, никакие улучшения электропроводности не должны отрицательно влиять на механические свойства.
В известной технике предложен широкий выбор технологий и способов для обеспечения защиты указанных композитных материалов от ударов молний, обычно включая введение электропроводящих элементов, за счет которых увеличивается масса композитного материала.
В патентной заявке WO 2008/056123 предложены значительные усовершенствования в отношении устойчивости к удару молнии без существенного увеличения массы или ухудшения механических свойств за счет введения металлических конструктивных элементов в полимерные разделительные слои для улучшения их контакта с соседними волоконными слоями и создания токопроводов в направлении оси z.
В патенте EP 2053078 A1 описан препрег, включающий электропроводящие частицы и термопластичные частицы. Значительным предпочтением пользуются металлические или имеющие металлическое покрытие электропроводящие частицы.
Однако введение металла в препреги оказалось нежелательным вследствие возможных эффектов коррозии, взрывоопасности и различий коэффициентов термического расширения материалов.
Сущность изобретения
Настоящее изобретение относится к отверждаемому препрегу, включающему структурный слой электропроводящих волокон и первый внешний слой термореактивной смолы, причем слой смолы включает термопластичные частицы и стеклоуглеродные частицы.
Авторы настоящего изобретения обнаружили, что стеклоуглеродные частицы в первом внешнем слое обладают таким эффектом, что когда множество таких препрегов складывают вместе, образуя блок препрегов, который включает множество слоев электропроводящих волокон, разделенных полимерными разделительными слоями, создается высокая электропроводность в направлении оси z при одновременном сохранении также и превосходных механических свойств, обусловленных разделительной структурой. Кроме того, поскольку электропроводящие частицы не являются металлическими, преодолеваются проблемы предшествующего уровня техники, которые связаны с использованием металла.
Считается, что превосходные механические свойства, обусловленные разделительной структурой, возникают вследствие ее слоистой (ламинарной) компоновки. Стеклоуглеродные частицы находятся в разделительных слоях и своим действием обеспечивают электрическое соединение между соседними слоями электропроводящих волокон. Таким образом, предпочтительно, по меньшей мере, 90% мас. стеклоуглеродных частиц расположены во внешнем слое смолы или полимерном разделительном слое, если образуется блок из указанных препрегов.
Таким образом, в другом аспекте настоящее изобретение также относится к блоку препрегов, который включает множество препрегов, как определено в настоящем описании, и, следовательно, включает множество структурных слоев электропроводящих волокон и множество полимерных разделительных слоев, образованных первым внешним слоем.
Например, такой блок может включать от 4 до 200 структурных слоев с соответствующим числом полимерных слоев. Подходящие разделительные структуры описаны в патенте EP 0274899.
В предпочтительном варианте осуществления препрег включает второй внешний слой смолы, образующий лицевую сторону препрега, которая не образована первым внешним слоем. Второй внешний слой обычно имеет такой же состав, как первый внешний слой, и предпочтительно его толщина такая же, как у первого внешнего слоя. В данном варианте осуществления первый и второй внешний слой объединяют с получением разделительного слоя, когда складывают вместе множество таких препрегов.
Такие разделительные слои предпочтительно имеют среднюю толщину от 15 до 50 мкм. Если препрег включает только первый внешний слой смолы, то он образует весь разделительной слой в блоке препрегов и, таким образом, у него также средняя толщина составляет предпочтительно от 15 до 50 мкм. Если препрег содержит как первый, так и второй внешний слой смолы, то они объединяются, образуя разделительной слой, и, следовательно, объединенная толщина первого и второго внешнего слоя смолы составляет от 15 до 50 мкм.
После изготовления блок препрегов отверждают под действием повышенной температуры и необязательно повышенного давления, чтобы получить отвержденный многослойный материал. Можно использовать известные способы отверждения, в том числе способы отверждения с помощью вакуумного мешка, автоклава или пресса.
Термопластичные частицы придают упругую прочность полученному многослойному материалу и могут состоять из широкого круга материалов, включая полиамиды, сополиамиды, полиимиды, арамиды, поликетоны, полиэфирэфиркетоны, полиариленэфиры, сложные полиэфиры, полиуретаны и полисульфоны. Предпочтительно термопластичные частицы включают полиамид. Предпочтительный материалы включают полиамид 6, полиамид 6/12 и полиамид 12.
Термопластичные частицы могут присутствовать в широком интервале уровней, однако было обнаружено, что предпочтительным является уровень от 5 до 20% в расчете на полную массу смолы в препреге, предпочтительнее от 10 до 20%. Предпочтительно, по меньшей мере, 90% мас. термопластичных частиц находится во внешнем слое смолы или в полимерном разделительном слое, если образуется блок таких препрегов.
Термопластичные частицы могут быть сферическими или несферическими, пористыми или непористыми. Однако показано, что пористые несферические, даже имеющие неправильную форму более жесткие частицы обеспечивают хорошие результаты, в частности, в отношении ударной вязкости. Например, предпочтительными являются частицы, сферичность которых составляет от 0,5 до 0,9.
Сферичность представляет собой меру того, насколько сферической является частица. Это отношение площади поверхности сферы, имеющей такой же объем, как данная частица, к площади поверхности данной частицы. Таким образом, для сферических частиц сферичность равна 1. Ее можно вычислить по формуле ψ = (6Vp)2/3π1/3/Ap, где Vp представляет собой объем частицы, и Ap представляет собой площадь поверхности частицы.
Другой удобной мерой формы частицы является соотношение геометрических размеров. В настоящем описании оно определяется как соотношение наибольшего диаметра поперечного сечения и наименьшего диаметра поперечного сечения. Таким образом, сферическая частица имеет соотношение геометрических размеров, равное 1:1. Термопластичные частицы предпочтительно имеют соотношение геометрических размеров от 3:1 до 1,2:1.
Предпочтительно термопластичные частицы имеют медианный размер частиц d50 от 5 до 50 мкм, предпочтительно от 10 до 30 мкм.
Углерод присутствует во многих формах, включая графитовые хлопья, графитовые порошки, графитовые частицы, графеновые листы, фуллерены, технический углерод и углеродные нановолокна. Однако только стеклообразные углеродные (стеклоуглеродные) частицы являются подходящими для использовании в настоящем изобретении. Стеклоуглерод обычно является неграфитизируемым и, по меньшей мере, на 70% образован связями sp2, предпочтительно, по меньшей мере, на 80%, предпочтительнее, по меньшей мере, на 90% и наиболее предпочтительно практически на 100% образован связями sp2.
Стеклоуглеродные частицы являются очень твердыми и не разрушаются в процессе смешивания с полимером. Стеклоуглеродные частицы имеют очень низкую или нулевую пористость и являются сплошными и не содержат полостей. Хотя они и являются более легкими, полые частицы могут ухудшать механические свойства композита за счет введения полостей.
Стеклоуглеродные частицы предназначены для создания мостиков между соседними слоями волоконных слоев. Однако чрезмерное количество таких частиц может отрицательно повлиять на механические свойства полученного многослойного материала. Таким образом, стеклоуглеродные частицы предпочтительно присутствуют на уровне от 0,3 до 2,0% мас. в расчете на полную массу смолы в препреге, предпочтительно от 0,5 до 1,5% мас., предпочтительнее от 0,5 до 1,0% мас.
Предпочтительно стеклоуглеродные частицы имеют медианный размер частиц d50 от 10 до 50 мкм, предпочтительнее от 20 до 40 мкм.
Было обнаружено, в частности, что узкое распределение частиц по размерам представляет собой особое преимущество, и, следовательно, предпочтительно, чтобы размер, по меньшей мере, 50% мас. стеклоуглеродных частиц находился в пределах 5 мкм от медианного размера частиц.
Стеклоуглеродные частицы могут быть сферическими или несферическими. Однако было обнаружено, что сферические стеклоуглеродные частицы обеспечивают превосходную электропроводность и хорошую прочность частиц. Например, предпочтительными являются частицы, у которых сферичность составляет, по меньшей мере, 0,95. Другими словами, стеклоуглеродные частицы предпочтительно имеют соотношение геометрических размеров, составляющее менее чем 1,1:1.
Чтобы стеклоуглеродные частицы могли осуществлять свою мостиковую функцию, соотношение медианного размера углеродных частиц и средней толщины промежуточного слоя составляет от 0,9:1 до 1,5:1, предпочтительнее от 1:1 до 1,3:1.
Было обнаружено, что соотношение между количествами термопластичных частиц и стеклоуглеродных частиц является важным для достижения, как хорошей электропроводности, так и хорошей жесткости. Таким образом, массовое соотношение термопластичных частиц и стеклоуглеродных частиц составляет предпочтительно от 3:1 до 50:1, предпочтительнее от 3:1 до 40:1, еще предпочтительнее от 5:1 до 30:1, наиболее предпочтительно от 8:1 до 20:1.
Волокна в структурных волоконных слоях могут иметь одинаковое направление, иметь форму ткани или быть многоосными. Предпочтительно волокна являются однонаправленными, и их ориентация изменяется в массе блока препрегов и/или многослойного материала, например путем расположения волокон в соседних слоях во взаимно перпендикулярных направлениях, образуя так называемое расположение 0/90, что означает углы между соседними волоконными слоями. Разумеется, возможны и другие расположения, в том числе 0/+45/-45/90, среди многочисленных других расположений.
Волокна могут включать содержащие трещины (т.е. разрываемые при растяжении), селективно прерывистые или непрерывные волокна.
Электропроводящие волокна можно изготавливать из широкого разнообразия материалов, включая металлизированное стекло, углерод, графит, металлизированные полимеры и их смеси. Предпочтительными являются углеродные волокна.
Термореактивную смолу можно выбирать из тех, которые традиционно известны в технике, включая такие смолы, как фенолформальдегидные, мочевиноформальдегидные, 1,3,5-триазин-2,4,6-триаминовые (меламиновые), бисмалеимидные, эпоксидные, винилэфирные, бензоксазиновые, сложнополиэфирные, ненасыщенные сложнополиэфирные, цианатоэфирные смолы или их смеси.
Особенно предпочтительными являются эпоксидные смолы, например, однофункциональные, бифункциональные, трифункциональные или тетрафункциональные эпоксидные смолы. Предпочтительные бифункциональные эпоксидные смолы включают диглицидиловый эфир бисфенола F (например, Araldite GY 281), диглицидиловый эфир бисфенола A, диглицидилдигидроксинафталин и их смеси. В высокой степени предпочтительной эпоксидной смолой является трифункциональная эпоксидная смола, содержащая, по меньшей мере, одно метазамещенное фенильное кольцо в своей основной цепи (например, Araldite MY 0600). Предпочтительной тетрафункциональной эпоксидной смолой является тетраглицидилдиаминодифенилметан (например, Araldite MY721). Смеси би- и трифункциональных эпоксидных смол также являются в высокой степени предпочтительными.
Термореактивная смола может также включать один или более отвердителей. Подходящие отвердители включают ангидриды, в частности ангидриды поликарбоновых кислот; амины, в частности ароматические амины, например, 1,3-диаминобензол, 4,4'-диаминодифенилметан и, в частности, сульфоны, например 4,4'-диаминодифенилсульфон (4,4'-DDS) и 3,3'-диаминодифенилсульфон (3,3'-DDS), а также фенолформальдегидные смолы. Предпочтительные отвердители представляют собой аминосульфоны, в частности 4,4'-DDS и 3,3'-DDS.
Дополнительные примеры типа и структуры смолы и волокон можно найти в патентной заявке WO 2008/056123.
Препреги согласно настоящему изобретению изготовляют, как правило, введением слоя структурных волокон в контакт с одним или несколькими слоями смолы, обычно при повышенной температуре, таким образом, чтобы смола затекала в пустоты между волокнами и пропитывала их.
В одном варианте осуществления приготовляют смесь смолы, термопластичных частиц и стеклоуглеродных частиц. Затем из данной смеси изготавливают листы и вводят их в контакт с одной или обеими сторонами структурных волокон. Вследствие размера частиц, они не пропитывают волокна смолой и вместо этого фильтруются, оставаясь во внешнем слое смолы. Так как данный способ включает только одну стадию нанесения смолы, его называют термином «одностадийный способ».
В другом варианте осуществления смоле, не содержащей частиц, придают форму листов и вводят их в контакт с одной или обеими сторонами структурных волокон. Эта смола пропитывает волокна и остается в небольшом или нулевом количестве на внешних поверхностях. После этого смолу, содержащую термопластичные частицы и стеклоуглеродные частицы, вводят в контакт с одной или обеими поверхностями пропитанных структурных волокон. Данная смесь остается на внешней поверхности и больше не пропитывает волокна. Так как в данном способе используют две стадии нанесения смолы, его называют термином «двухстадийный способ».
Двухстадийный способ является предпочтительным, потому что с большей вероятностью приводит к лучше упорядоченному многослойному материалу вследствие того, что частицы не разрушают волокна. Таким способом можно получить в результате превосходные механические свойства.
Кроме того, предпочтительно применять двухстадийный способ для препрега, у которого как первый, так и второй внешний слои состоят из смолы. В данном варианте осуществления два слоя смолы приводят в контакт с двумя сторонами структурных волокон. Смола пропитывает волокна и остается в небольшом или нулевом количестве на внешних поверхностях. После этого смолу, содержащую термопластичные частицы и стеклоуглеродные частицы, вводят в контакт с обеими сторонами пропитанных структурных волокон. Данный способ называют термином «четырехпленочный способ», потому что наносят четыре пленки смолы.
Настоящее изобретение является особенно подходящим для применения в аэрокосмической промышленности, в частности для изготовления панелей корпусов воздушных судов.
Помимо устойчивости к удару молнии, также желательно ослаблять или предотвращать явление, известное под названием «свечение вблизи острия» или «коронный разряд», после удара молнии. Это явление вызвано накоплением электрического заряда на краях композитной структуры и может становиться источником возгорания.
Было обнаружено, что композитные материалы для использования в конструкциях, относящихся к корпусу воздушного судна, могут пострадать от указанной проблемы коронного разряда. Эта проблема является особенно опасной, если композитные материалы предназначены для изготовления деталей конструкции топливного резервуара.
Таким образом, настоящее изобретение идеально пригодно в получении отвержденного многослойного материала для композитного компонента топливного бака воздушного судна.
Далее настоящее изобретение будет проиллюстрировано посредством примера и со ссылкой на следующие чертежи, в которых
Фиг.1 представляет изображение поперечного сечения через отвержденный композитный многослойный материал согласно настоящему изобретению.
Фиг.2 представляет изображение поперечного сечения через другой отвержденный композитный многослойный материал согласно настоящему изобретению.
Фиг.3 представляет изображение поперечного сечения через еще один отвержденный композитный многослойный материал согласно настоящему изобретению.
Примеры
Изготавливали рулоны из препрега (10×0,3 м), используя различные количества и типы углеродных частиц. Один препрег, не содержащий стеклоуглерода, использовали для сравнения.
Изготавливали семь резистивных панелей в виде 12-слойных материалов, используя слои 0/90, и отверждали их при 180°C в течение 2 часов в автоклаве при давлении 3 бар (0,3 МПа). Ниже в таблице 1 приведены данные о сопротивлении препрегов, содержащих углеродные микросферы, и сравнительного препрега, не содержащего микросфер. Сопротивление измеряли, вырезая из панели квадратные образцы (35×35 мм) и покрывая золотом каждую поверхность квадратов. На позолоченные образцы помещали электроды и измеряли ток (А), используя источник питания с известным напряжением. Сопротивление вычисляли по закону Ома (R=V/I).
Таблица 1
Материал (% мас.) 1 2 3 4 5 6 7 8
Araldite MY 0600 (трифункциональная эпоксидная смола) 27,96 27,92 27,85 27,71 27,85 27,71 27,85 27,00
Araldite GY 281 (бифункциональная эпоксидная смола) 24,78 24,74 24,68 24,56 24,68 24,56 24,68 24,80
PES 5003P (усилитель жесткости) 15,00 14,97 14,93 14,85 14,93 14,85 14,93 15,01
Orgasol DNatl 1002D (усиливающие жесткость частицы) 13,48 13,46 13,43 13,36 13,43 13,36 13,43 13,50
4,4'-диаминодифенилсульфон (ароматический отвердитель) 18,68 18,66 18,61 18,52 18,61 18,52 18,61 18,70
Углеродные частицы первого типа 0,10 0,25 0,50 1,00 - - - -
Углеродные частицы второго типа - - - - 0,50 1,00 - -
Углеродные частицы третьего типа - - - - - - 0,50 -
Сопротивление (Ом) 1,30 0,63 0,35 0,28 1,36 1,11 0,40 7,5
Araldite MY 0600 и GY 281 поставляет фирма Huntsman (Великобритания). PES 5003P поставляет фирма Sumitomo. Orgasol DNatl 1002D поставляет фирма Arkema. 4,4' DDS поставляет фирма Huntsman (Великобритания).
Углеродные частицы первого типа представляют собой высокосферические частицы типа 1 с размером от 20 до 50 мкм от фирмы Alfa Aesar (США); их сферичность превышает 0,99, и медианный размер d50 составляет 30 мкм. Углеродные частицы второго типа представляют собой имеющие неправильную форму частицы Sigradur G с размерами от 20 до 50 мкм от фирмы HTW Hochtemperatur-Workstoffe GmbH; их сферичность составляет приблизительно 0,65, и медианный размер d50 составляет 29,3 мкм. Углеродные частицы третьего типа также представляют собой высокосферические с размером от 20 до 50 мкм от фирмы HTW; их сферичность превышает 0,99, и медианный размер d50 составляет 30,5 мкм. Размеры частиц определяли с помощью лазерного анализатора размера частиц Mastersizer от фирмы Malvern Instruments, используя длиннофокусную линзу с фокусным расстоянием 300 мм и толщину излучающего слоя 2,40 мм.
Как видно, многослойные материалы, включающие стеклоуглеродные частицы, проявляют значительное уменьшение электрического сопротивления. Также заметно, что это падение сопротивления является более значительным для сферических частиц, чем для частиц неправильной формы. Считается, что это обусловлено меньшим числом контактов, образуемых между соседними структурными слоями при использовании частиц неправильной формы.
Фиг.1, 2 и 3 представляют поперечное сечение через отвержденный многослойный материал согласно примерам 4, 3 и 6, соответственно.
Данные изображения показывают слои однонаправленных углеродных волокон, ориентированных перпендикулярно плоскости изображения 10, и однонаправленных углеродных волокон, ориентированных параллельно плоскости изображения 12. Эти слои углеродных волокон разделяет промежуточный слой смолы 14. В промежуточном слое смолы 14 диспергированы придающие жесткость частицы, имеющие неправильную форму. Кроме того, в промежуточном слое диспергированы стеклоуглеродные частицы 16 с высокой степенью сферичности.
Образцы, полученные согласно примерам 3 и 7 и сравнительному примеру 8, подвергали разнообразным механическим испытаниям. Результаты представлены ниже в таблице 2.
Таблица 2
Механическое свойство Сравнительный пример 8 Пример 3 Пример 7
Температура стеклования Log E' (°C) (ASTM D7028) 182,0 178,9 183,7
Квазиизотропное пробивное сжатие (МПа) (ASTM D6484/D6484M) 296 300 291
Направленное пробивное напряжение (МПа) (ASTM D5766) 794 845 816
Предел прочности на растяжение (МПа) (ASTM D3039) 3227 3234 3014
Модуль упругости (Юнга) (ГПа) (ASTM D3039) 181,2 186,4 185,6
Перпендикулярное сопротивление развитию трещины GIc (Дж/м2) (ASTM D5528) 301,0 302,5 449
Параллельное сопротивление развитию трещины GIIc (Дж/м2) 2023 2608 1440
Сопротивление межслойному сдвигу (МПа) (ASTM D2344) 104 106 92,5*
Прочность на сжатие после удара 30 Дж (МПа) (ASTM D7137) 285,4 310,4 276
* измерено с использованием другой испытательной установки.
Как видно, добавление стеклоуглеродных частиц согласно настоящему изобретению не оказывает заметного воздействия на механические свойства.

Claims (31)

1. Отверждаемый препрег, включающий структурный слой электропроводящих волокон и первый внешний слой термореактивной смолы, причем слой смолы включает термопластичные частицы и стеклоуглеродные частицы,
где термореактивная смола выбрана из группы, включающей фенолформальдегидные, мочевиноформальдегидные, 1,3,5-триазин-2,4,6-триаминовые (меламиновые), бисмалеимидные, эпоксидные, винилэфирные, бензоксазиновые, сложнополиэфирные, ненасыщенные сложнополиэфирные, цианатоэфирные смолы или их смеси; и
термопластичные частицы состоят из термопластичного материала, выбранного из группы, включающей полиамиды, сополиамиды, полиимиды, арамиды, поликетоны, полиэфирэфиркетоны, полиариленэфиры, сложные полиэфиры, полиуретаны и полисульфоны.
2. Препрег по п. 1, который включает второй внешний слой смолы, образующий лицевую поверхность препрега, которую не образует первый внешний слой.
3. Препрег по п. 1 или 2, в котором полная толщина первого и, если он присутствует, второго внешнего слоя смолы составляет от 15 до 50 мкм.
4. Препрег по п. 1 или 2, в котором термопластичные частицы включают полиамид.
5. Препрег по п. 4, в котором термопластичные частицы включают полиамид 6, полиамид 6/12, полиамид 12 или их смеси.
6. Препрег по п. 1 или 2, в котором термопластичные частицы присутствуют на уровне от 5 до 20% в расчете на полную массу смолы в препреге, предпочтительно от 10 до 20%.
7. Препрег по п. 1 или 2, в котором термопластичные частицы имеют сферичность от 0,5 до 0,9.
8. Препрег по п. 1 или 2, в котором термопластичные частицы имеют медианный размер частиц d50 от 5 до 50 мкм.
9. Препрег по п. 8, в котором термопластичные частицы имеют медианный размер частиц d50 от 10 до 30 мкм.
10. Препрег по п. 1 или п. 2, в котором стеклоуглеродные частицы присутствуют на уровне от 0,3 до 2,0% мас. в расчете на полную массу смолы в препреге.
11. Препрег по п. 10, в котором стеклоуглеродные частицы присутствуют на уровне от 0,5 до 1,5% мас. в расчете на полную массу смолы в препреге.
12. Препрег по п. 10, в котором стеклоуглеродные частицы присутствуют на уровне от 0,5 до 1,0% мас. в расчете на полную массу смолы в препреге.
13. Препрег по п. 1 или 2, в котором стеклоуглеродные частицы имеют медианный размер частиц d50 от 10 до 50 мкм.
14. Препрег по п. 13, в котором стеклоуглеродные частицы имеют медианный размер частиц d50 от 20 до 40 мкм.
15. Препрег по п. 1 или 2, в котором размер, по меньшей мере, 50% мас. стеклоуглеродных частиц находится в пределах 5 мкм от медианного размера частиц.
16. Препрег по п. 1 или 2, в котором стеклоуглеродные частицы имеют сферичность, составляющую, по меньшей мере, 0,95.
17. Препрег по п. 1 или 2, в котором соотношение медианного размера углеродных частиц и средней толщины промежуточного слоя составляет от 0,9:1 до 1,5:1.
18. Препрег по п. 17, в котором соотношение медианного размера углеродных частиц и средней толщины промежуточного слоя составляет от 1:1 до 1,3:1.
19. Препрег по п. 1 или 2, в котором массовое соотношение термопластичных частиц и стеклоуглеродных частиц составляет от 3:1 до 50:1.
20. Препрег по п. 19, в котором массовое соотношение термопластичных частиц и стеклоуглеродных частиц составляет от 3:1 до 40:1.
21. Препрег по п. 19, в котором массовое соотношение термопластичных частиц и стеклоуглеродных частиц составляет от 5:1 до 30:1.
22. Препрег по п. 19, в котором массовое соотношение термопластичных частиц и стеклоуглеродных частиц составляет от 8:1 до 20:1.
23. Препрег по п. 1 или 2, в котором смола включает бифункциональную эпоксидную смолу.
24. Препрег по п. 1 или 2, в котором смола включает трифункциональную эпоксидную смолу, содержащую, по меньшей мере, одно мета-замещенное фенильное кольцо в своей основной цепи.
25. Препрег по п. 1 или 2, в котором смола включает отвердитель, выбранный из группы, включающей: ангидриды, в частности ангидриды поликарбоновых кислот; амины, в частности ароматические амины и ароматические аминосульфоны; и фенолформальдегидные смолы.
26. Препрег по п. 25, в котором отвердитель представляет собой аминосульфоновый отвердитель, в частности, такой как 4,4′-диаминодифенилсульфон или 3,3′-диаминодифенилсульфон.
27. Блок препрегов, включающий множество препрегов по любому из пп. 1-26 и, таким образом, включающий множество структурных слоев электропроводящих волокон и множество разделительных слоев смолы, состоящих из первого и, если он присутствует, второго внешнего слоя смолы, определенных как указано в п. 1 или 2.
28. Отвержденный композитный многослойный материал, получаемый способом воздействия на препрег или блок препрегов по любому из п.п. 1-27 повышенной температуры и, необязательно, повышенного давления, для получения отвержденного многослойного материала.
29. Конструкция, относящаяся к корпусу воздушного судна, включающая отвержденный композитный многослойный материал по п. 28.
30. Конструкция, относящаяся к корпусу воздушного судна по п. 29, которая представляет собой деталь топливного бака воздушного судна.
31. Способ изготовления препрега по любому из пп. 1-26, включающий приведение в контакт смолы, определенной как указано в п. 1, не содержащий частиц, с одной или обеими поверхностями структурных волокон, пропитку волокон смолой, последующее приведение в контакт смолы, определенной, как указано в п. 1, содержащей термопластичные частицы и стеклоуглеродные частицы, определенные как указано в п. 1, с одной или обеими поверхностями пропитанных структурных волокон.
RU2012112932/05A 2009-09-04 2010-09-02 Усовершенствованные композитные материалы RU2550897C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0915366A GB2473226A (en) 2009-09-04 2009-09-04 Composite materials
GB0915366.9 2009-09-04
PCT/GB2010/051452 WO2011027160A1 (en) 2009-09-04 2010-09-02 Improvements in composite materials

Publications (2)

Publication Number Publication Date
RU2012112932A RU2012112932A (ru) 2013-10-10
RU2550897C2 true RU2550897C2 (ru) 2015-05-20

Family

ID=41203120

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012112932/05A RU2550897C2 (ru) 2009-09-04 2010-09-02 Усовершенствованные композитные материалы

Country Status (11)

Country Link
US (2) US20120141763A1 (ru)
EP (1) EP2473557B1 (ru)
JP (1) JP5744876B2 (ru)
CN (1) CN102482438B (ru)
AU (1) AU2010291017B2 (ru)
BR (1) BR112012003936B1 (ru)
CA (1) CA2769557C (ru)
ES (1) ES2535468T3 (ru)
GB (1) GB2473226A (ru)
RU (1) RU2550897C2 (ru)
WO (1) WO2011027160A1 (ru)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468499A1 (en) 2010-12-21 2012-06-27 Hexcel Composites Limited Improvements in composite materials
GB2471318A (en) * 2009-06-26 2010-12-29 Hexcel Composites Ltd Conductive prepreg
FR2964462B1 (fr) * 2010-09-06 2013-05-03 Airbus Operations Sas Dispositif et procede de detection d'etincelage
US9840338B2 (en) 2010-12-03 2017-12-12 The Boeing Company Electric charge dissipation system for aircraft
US9802714B2 (en) * 2010-12-03 2017-10-31 The Boeing Company Electric charge dissipation system for aircraft
US9481145B2 (en) * 2011-03-17 2016-11-01 Toray Industries, Inc. Prepreg, method of manufacturing prepreg, and carbon fiber-reinforced composite material
GB201307898D0 (en) * 2012-06-14 2013-06-12 Hexcel Composites Ltd Improvements in composite materials
WO2014050896A1 (ja) * 2012-09-26 2014-04-03 東邦テナックス株式会社 プリプレグ及びその製造方法
JP5852542B2 (ja) * 2012-10-10 2016-02-03 綾羽株式会社 炭素繊維強化複合材用織物およびその製造方法
GB2510835A (en) * 2013-02-13 2014-08-20 Hexcel Composites Ltd Fire retardant epoxy resin formulations and their use
US9631061B2 (en) * 2013-08-01 2017-04-25 Teijin Limited Fiber-reinforced composite material and method for producing the same
JP6291223B2 (ja) * 2013-11-19 2018-03-14 Jxtgエネルギー株式会社 繊維強化複合材料の製造方法、プリプレグ、粒子含有樹脂組成物及び繊維強化複合材料
GB201322093D0 (en) * 2013-12-13 2014-01-29 Cytec Ind Inc Compositive materials with electrically conductive and delamination resistant properties
GB2522841B (en) * 2013-12-20 2018-08-15 Hexcel Composites Ltd Composite structure
EP3255083B1 (en) * 2015-02-05 2021-09-15 Toray Industries, Inc. Preform, fiber-reinforced composite material, and method for manufacturing fiber-reinforced composite material
US20170021596A1 (en) * 2015-05-05 2017-01-26 Sunrez Corp. Fiber Reinforced Core
US10472473B2 (en) 2015-05-26 2019-11-12 The Boeing Company Enhancing z-conductivity in carbon fiber reinforced plastic composite layups
JP6647622B2 (ja) * 2015-08-31 2020-02-14 株式会社Subaru 爆発性スパーク評価システム及び爆発性スパーク評価方法
GB201522539D0 (en) 2015-12-21 2016-02-03 Hexcel Composites Ltd Improvements in or relating to electrically conducting materials
CN105620713B (zh) * 2016-01-26 2018-10-23 无锡格菲电子薄膜科技有限公司 一种带有表面氦气阻隔层的蒙皮及其制备方法
JP6519492B2 (ja) * 2016-01-29 2019-05-29 東レ株式会社 プリプレグおよび繊維強化複合材料
JP6272598B1 (ja) 2016-04-13 2018-01-31 東邦テナックス株式会社 プリプレグおよび繊維強化複合材料、並びに表面改質強化繊維
RU2640553C2 (ru) * 2016-04-26 2018-01-09 Общество С Ограниченной Ответственностью "Анизопринт" Композитная армирующая нить, препрег, лента для 3D печати и установки для их изготовления
EP3272919B1 (en) * 2016-07-18 2019-03-27 Airbus Operations GmbH Structural component with an electrical transmission device, method for providing a structural component with an electrical transmission device, electrical wiring system and aircraft component
US11076514B1 (en) * 2016-10-04 2021-07-27 Triton Systems, Inc. Metalized fiber mat
US11225942B2 (en) * 2017-07-05 2022-01-18 General Electric Company Enhanced through-thickness resin infusion for a wind turbine composite laminate
CN107618249B (zh) * 2017-08-03 2019-11-12 无锡格菲电子薄膜科技有限公司 生长有石墨烯薄膜的基底的自动覆膜方法及其设备
US20190063067A1 (en) * 2017-08-28 2019-02-28 TopFiberRoof, LLC Flexible Elastomer And Fiberglass Layered Building Element
CN109467726A (zh) * 2018-10-16 2019-03-15 厦门大学 采用玻璃微珠增强纤维/树脂基复合材料层合板层间强度的增强方法
HU231363B1 (hu) 2018-12-13 2023-03-28 Kompozitor Kft Csökkentett éghetőségű javított fenol-furán gyantakészítmény, előimpregnált szálerősítésű kompozit anyag előállítása és annak alkalmazása
US11192988B2 (en) 2019-02-13 2021-12-07 Kompozitor Kft. Phenol-furan resin composition
CN110696467B (zh) * 2019-10-25 2021-08-31 苏州和福汽车饰件有限公司 一种阻燃耐磨型复合皮革及其制备方法
JP2022049935A (ja) * 2020-09-17 2022-03-30 三菱重工航空エンジン株式会社 プリプレグの製造方法及び複合材の成形方法
EP4378669A1 (en) 2021-07-27 2024-06-05 Toray Industries, Inc. Carbon fiber-reinforced composite material
WO2023074733A1 (ja) 2021-10-27 2023-05-04 東レ株式会社 炭素繊維強化複合材料
LU501121B1 (en) * 2021-12-29 2023-06-29 Luxembourg Inst Science & Tech List Method for manufacturing a composite filament and use thereof
GB2623775A (en) 2022-10-26 2024-05-01 Hexcel Composites Ltd Improved unidirectional prepregs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2003137750A (ru) * 2003-12-30 2005-06-10 Федеральное государственное унитарное предпри тие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") (RU) Многослойное молниезащитное покрытие
WO2008056123A1 (en) * 2006-11-06 2008-05-15 Hexcel Composites Limited Improved composite materials
EP2053078A1 (en) * 2006-08-07 2009-04-29 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274899B1 (en) 1986-12-25 1994-02-09 Toray Industries, Inc. Highly tough composite materials
JPH0834864A (ja) * 1994-07-22 1996-02-06 Nippon Steel Chem Co Ltd 耐衝撃性プリプレグ
JP2001220114A (ja) * 2000-02-14 2001-08-14 Tokai Carbon Co Ltd 球状炭素微粒子
TW511099B (en) * 2000-08-04 2002-11-21 Sekisui Chemical Co Ltd Conductive fine particles, method for plating fine particles, and substrate structural body
US7431981B2 (en) * 2002-11-04 2008-10-07 The Boeing Company Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
US6989197B2 (en) * 2002-11-04 2006-01-24 The Boeing Company Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
US20040101642A1 (en) * 2002-11-26 2004-05-27 Quillen Donna Rice Glassy carbon thermoplastic compositions
US7452920B2 (en) * 2004-09-17 2008-11-18 Uchicago Argonne, Llc Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom
US20060182949A1 (en) * 2005-02-17 2006-08-17 3M Innovative Properties Company Surfacing and/or joining method
JP2006328208A (ja) * 2005-05-26 2006-12-07 Daicel Degussa Ltd 真球状熱可塑性樹脂微粒子の製造法
CA2624511A1 (en) * 2005-09-29 2007-04-12 Airbus Espana, S.L. Method of protecting fuel tanks manufactured with composites against electrical discharges
WO2008038591A1 (en) * 2006-09-28 2008-04-03 Toray Industries, Inc. Process for producing composite prepreg base, layered base, and fiber-reinforced plastic
GB0619401D0 (en) * 2006-10-02 2006-11-08 Hexcel Composites Ltd Composite materials with improved performance
JP5359125B2 (ja) * 2007-08-29 2013-12-04 東レ株式会社 プリプレグおよび炭素繊維強化複合材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2003137750A (ru) * 2003-12-30 2005-06-10 Федеральное государственное унитарное предпри тие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") (RU) Многослойное молниезащитное покрытие
EP2053078A1 (en) * 2006-08-07 2009-04-29 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
WO2008056123A1 (en) * 2006-11-06 2008-05-15 Hexcel Composites Limited Improved composite materials

Also Published As

Publication number Publication date
GB0915366D0 (en) 2009-10-07
AU2010291017B2 (en) 2014-09-18
EP2473557A1 (en) 2012-07-11
CN102482438B (zh) 2014-10-15
GB2473226A (en) 2011-03-09
BR112012003936A2 (pt) 2016-03-29
JP2013503930A (ja) 2013-02-04
CA2769557C (en) 2016-08-30
CN102482438A (zh) 2012-05-30
CA2769557A1 (en) 2011-03-10
RU2012112932A (ru) 2013-10-10
BR112012003936B1 (pt) 2020-11-03
JP5744876B2 (ja) 2015-07-08
EP2473557B1 (en) 2015-02-25
ES2535468T3 (es) 2015-05-11
US20120141763A1 (en) 2012-06-07
WO2011027160A1 (en) 2011-03-10
US20130330514A1 (en) 2013-12-12
AU2010291017A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
RU2550897C2 (ru) Усовершенствованные композитные материалы
ES2446946T3 (es) Materiales compuestos mejorados
CN105813833B (zh) 具有导电性和抗分层性质的复合材料
US9174410B2 (en) Composite materials
JP5681803B2 (ja) ポリエーテルスルホンで高靭化させたエポキシ樹脂の耐溶媒性の改善
CN107584843B (zh) 改进的复合材料
KR101813958B1 (ko) 복합 물질을 제조하는 방법
JP5761828B2 (ja) 耐溶媒性熱可塑性高靭化エポキシ
RU2533148C1 (ru) Улучшение композитных материалов
RU2720793C1 (ru) Сохранение компрессионной прочности упрочненных термопластиком эпоксидных композитов в горячих и влажных условиях

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200903