RU2549838C2 - Установка бесконтактной подачи энергии и способ бесконтактной подачи энергии - Google Patents

Установка бесконтактной подачи энергии и способ бесконтактной подачи энергии Download PDF

Info

Publication number
RU2549838C2
RU2549838C2 RU2012146191/07A RU2012146191A RU2549838C2 RU 2549838 C2 RU2549838 C2 RU 2549838C2 RU 2012146191/07 A RU2012146191/07 A RU 2012146191/07A RU 2012146191 A RU2012146191 A RU 2012146191A RU 2549838 C2 RU2549838 C2 RU 2549838C2
Authority
RU
Russia
Prior art keywords
energy
resonator
coil
receiving
resonant
Prior art date
Application number
RU2012146191/07A
Other languages
English (en)
Other versions
RU2012146191A (ru
Inventor
Краисорн ТХРОНГНУМТАИ
Тосихиро КАИ
Юсуке МИНАГАВА
Original Assignee
Ниссан Мотор Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ниссан Мотор Ко., Лтд. filed Critical Ниссан Мотор Ко., Лтд.
Publication of RU2012146191A publication Critical patent/RU2012146191A/ru
Application granted granted Critical
Publication of RU2549838C2 publication Critical patent/RU2549838C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Изобретение относится к области электротехники. Установка бесконтактной подачи энергии одного варианта осуществления предоставлена с резонансным блоком для передачи энергии и резонансным блоком для приема энергии, который магнитным образом связывается с резонансным блоком для передачи энергии с помощью резонанса в магнитном поле. Энергия от источника энергии подается резонансному блоку для приема энергии через резонансный блок для передачи энергии, причем резонансный блок для передачи энергии и резонансный блок для приема энергии магнитным образом связаны посредством резонанса в магнитном поле. Один из резонансного блока для передачи энергии и резонансного блока для приема энергии имеет предварительно определенную единственную резонансную частоту, а другой из них имеет множество резонансных частот, в том числе предварительно определенную единственную резонансную частоту. Технический результат - повышение эффективности передачи энергии. 4 н. и 6 з.п. ф-лы, 17 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к установке бесконтактной подачи энергии и способу бесконтактной подачи энергии с помощью резонансного способа.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Способ передачи энергии с помощью резонанса электромагнитного поля между стороной передачи энергии, и стороной приема энергии, известен как бесконтактная (беспроводная) технология передачи энергии. Здесь, множество наборов резонирующих катушек, имеющих одинаковую резонансную частоту, предусмотрены на стороне приема энергии, так что сторона приема энергии может принимать электрическую энергию, передаваемую от стороны передачи энергии надежно и достаточно, даже когда позиция остановки транспортного средства отклоняется от предписанной позиции (см. параграф [0094] и фиг.10 патентной литературы 1).
СПИСОК БИБЛИОГРАФИЧЕСКИХ ССЫЛОК
Патентная литература 1: Публикация японской патентной заявки № 2009-106136
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩЕСТВА ИЗОБРЕТЕНИЯ
Однако, поскольку множественные наборы резонирующих катушек для приема энергии, предусмотренных таким образом, имеют одинаковую резонансную частоту, существует проблема ухудшения эффективности передачи энергии, когда резонансная частота катушек для приема энергии или передачи энергии, установленная первоначально, изменяется вследствие внешнего фактора, такого как окружающие условия.
Технической задачей, которая должна быть решена настоящим изобретением, является предоставление установки бесконтактной подачи энергии и способа бесконтактной подачи энергии, которые способны подавлять ухудшение эффективности передачи энергии в случае относительного изменения в резонансной частоте резонатора для передачи энергии или резонатора для приема энергии.
В качестве аспекта настоящего изобретения установка бесконтактной подачи энергии включает в себя: резонатор для передачи энергии; и резонатор для приема энергии, сконфигурированный с возможностью магнитным образом быть связанным с резонатором для передачи энергии посредством резонанса магнитного поля. Резонатор для передачи энергии магнитным образом связан с резонатором для приема энергии посредством резонанса магнитного поля, в результате чего, электрическая энергия подается от источника электрической энергии к резонатору для приема энергии через резонатор для передачи энергии. Один из резонатора для передачи энергии и резонатора для приема энергии имеет предварительно определенную единственную резонансную частоту, а другой из резонатора для передачи энергии и резонатора для приема энергии имеет множество резонансных частот, в том числе предварительно определенную единственную резонансную частоту.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения изобретения со ссылками на сопроводительные чертежи, на которых:
Фиг.1 изображает общую схему конфигурации, показывающую систему подачи энергии для электрического транспортного средства, к которой применен первый вариант осуществления настоящего изобретения.
Фиг.2 изображает принципиальную электрическую схему, показывающую подробную конфигурацию системы подачи энергии на фиг.1.
Фиг.3A изображает параллельный резонансный LC-контур и график его импедансной характеристики.
Фиг.3B изображает последовательный резонансный LC-контур и график его импедансной характеристики.
Фиг.3C изображает пару резонансных LC-контуров, имеющих различные резонансные частоты, и график их импедансных характеристик.
Фиг.4(a) изображает график, показывающий импедансную характеристику катушки 1 для передачи энергии на фиг.1 и фиг.2, а фиг.4(b) изображает график, показывающий импедансные характеристики катушки 2 для приема энергии.
Фиг.5 изображает принципиальную электрическую схему, показывающую другой пример катушки 1 для передачи энергии и катушки 2 для приема энергии на фиг.2.
Фиг.6 изображает график, показывающий другой пример импедансной характеристики катушки 1 для передачи энергии и импедансной характеристики катушки 2 для приема энергии на фиг.4.
Фиг.7 изображает схематический чертеж, показывающий пример шагов намотки катушки 1 для передачи энергии и катушки 2 для приема энергии на фиг.2.
Фиг.8 изображает график, показывающий характеристики авторезонанса катушки 1 для передачи энергии и катушки 2 для приема энергии на фиг.7.
Фиг.9 изображает схематический чертеж, показывающий еще один пример намотки катушки 1 для передачи энергии и катушки 2 для приема энергии на фиг.2.
Фиг.10 изображает общий вид, показывающий другой пример расположения катушки 1 для передачи энергии и катушки 2 для приема энергии на фиг.1.
Фиг.11 изображает принципиальную электрическую схему, показывающую другой подробный пример конфигурации системы подачи энергии на фиг.1.
Фиг.12 изображает принципиальную электрическую схему, показывающую еще один подробный пример конфигурации системы подачи энергии на фиг.1.
Фиг.13 изображает принципиальную электрическую схему, показывающую еще один подробный пример конфигурации системы подачи энергии на фиг.1.
Фиг.14 изображает график, показывающий резонансную характеристику катушки 2 для приема энергии на фиг.12.
Фиг.15 изображает принципиальную электрическую схему, показывающую другие примеры конфигурации катушки 1 для передачи энергии или катушки 2 для приема энергии на фиг.1.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[Первый вариант осуществления]
Первый вариант осуществления настоящего изобретения будет описан ниже на основе чертежей. На чертежах одинаковые компоненты обозначены одинаковыми условными обозначениями, и дублирующее объяснение будет опущено. Фиг.1 изображает общую схему конфигурации, показывающую систему подачи энергии для электрического транспортного средства, к которому применен первый вариант осуществления настоящего изобретения, в котором настоящее изобретение осуществлено как система подачи энергии для подачи электрической энергии к приводному электродвигателю MT электрического транспортного средства V.
Установка 10 подачи энергии варианта осуществления включает в себя источник 6 энергии высокочастотного переменного тока, первичную катушку 4, катушку 1 для передачи энергии, катушку 2 для приема энергии, вторичную катушку 5, выпрямитель 7 и устройство 8 аккумулирования электроэнергии. Из установки 10 подачи энергии катушка 2 для приема энергии, вторичная катушка 5, выпрямитель 7 и устройство 8 аккумулирования электроэнергии предусмотрены в электрическом транспортном средстве V, в то время как источник 6 энергии высокочастотного переменного тока, первичная катушка 4 и катушка 1 для передачи энергии предусмотрены за пределами электрического транспортного средства V. Место подачи энергии является примером окружения за пределами электрического транспортного средства V.
Здесь, приводной электродвигатель MT подключен к системе привода (трансмиссии) электрического транспортного средства V. Приводной электродвигатель MT генерирует движущую силу транспортного средства при приеме электрической энергии от устройства 8 аккумулирования электроэнергии и выводит сгенерированную движущую силу транспортного средства к колесам через систему привода. Таким образом, электрическое транспортное средство V движется. Между тем, в случае использования электродвигателя переменного тока в качестве приводного электродвигателя MT, преобразователь энергии, такой как инвертер, который не изображен на фиг.1, предусмотрен между устройством 8 аккумулирования электроэнергии и приводным электродвигателем MT.
Катушка 2 для приема энергии (вторичная саморезонирующая катушка), предусмотренная в электрическом транспортном средстве V, сформирована из LC-катушек, каждая из которых имеет два открытых (неподключенных) конца, и магнитно связана с катушкой 1 для передачи энергии (первичной саморезонирующей катушкой) установки 10 подачи энергии посредством резонанса магнитного поля. Таким образом, катушка 2 для приема энергии может принимать энергию переменного тока от катушки 1 для передачи энергии. В частности, число витков, толщина и шаг намотки катушки 2 для приема энергии устанавливаются соответствующим образом на основе различных условий, включающих в себя напряжение устройства 8 аккумулирования электрической энергии, расстояние для передачи энергии между катушкой 1 для передачи энергии и катушкой 2 для приема энергии, резонансные частоты катушки 1 для передачи энергии и катушки 2 для приема энергии и т.п. Число витков, толщина и шаг намотки катушки 2 для приема энергии установлены так, чтобы достигать большого Q-значения, указывающего силу резонанса между катушкой 1 для передачи энергии и катушкой 2 для приема энергии, а также большого K-значения, указывающего степень связи между ними. Конфигурация катушки 2 для приема энергии, включая установку резонансных частот, будет описана позже.
Вторичная катушка 5 является одновитковой катушкой, чьи два конца соединены с выпрямителем 7, и способна принимать электрическую энергию от катушки 2 для приема энергии посредством электромагнитной индукции. Предпочтительно, чтобы вторичная катушка 5 была расположена соосно с катушкой 2 для приема энергии. Вторичная катушка 5 предусмотрена для того, чтобы исключать изменения в частоте авторезонанса катушки 2 для приема энергии. Вторичная катушка 5 выводит электрическую энергию, принятую от катушки 2 для приема энергии, в выпрямитель 7.
Выпрямитель 7 выпрямляет энергию высокочастотного переменного тока, принятую от вторичной катушки 5, и выводит выпрямленную энергию в устройство 8 аккумулирования электроэнергии. Здесь, вместо выпрямителя 7 также возможно использовать AC/DC-преобразователь (преобразователь переменного тока в постоянный ток), сконфигурированный с возможностью преобразовывать энергию высокочастотного переменного тока, принятую от вторичной катушки 5, в энергию постоянного тока. В этом случае, уровень напряжения энергии постоянного тока устанавливается равным уровню напряжения устройства 8 аккумулирования электроэнергии.
Устройство 8 аккумулирования электроэнергии является заряжаемым и разряжаемым источником энергии постоянного тока, который сформирован из аккумуляторного элемента, использующего литий-ионы или никель-металл гидрид. Напряжение устройства 8 аккумулирования электроэнергии находится в диапазоне приблизительно от 200 до 500 В, например. Устройство 8 аккумулирования электроэнергии способно аккумулировать электрическую энергию, подаваемую от выпрямителя 7, и, более того, аккумулировать рекуперативную энергию, которая сгенерирована приводным электродвигателем MT. Затем, устройство 8 аккумулирования электроэнергии подает накопленную энергию приводному электродвигателю MT. Здесь, конденсатор большой емкости может быть использован в качестве устройства 8 аккумулирования электроэнергии вместо или в дополнение к аккумуляторному элементу. Устройство 8 аккумулирования электроэнергии должно быть только буфером электрической энергии, который способен временно аккумулировать электрическую энергию от выпрямителя 7 или приводного электродвигателя MT; и подавать накопленную электрическую энергию приводному электродвигателю MT.
Между тем, источник 6 энергии высокочастотного переменного тока, установленный за пределами электрического транспортного средства V (в месте подачи энергии), включает в себя системный источник 6a энергии (промышленный источник энергии переменного тока, находящийся в собственности электроэнергетической компании), и преобразователь 6b энергии, например. Преобразователь 6b энергии преобразует энергию переменного тока, принятую от источника 6a энергии переменного тока, в энергию высокочастотного переменного тока, которая может быть передана от катушки 1 для передачи энергии к катушке 2 для приема энергии в электрическом транспортном средстве V, и подает энергию высокочастотного переменного тока, преобразованную таким образом, к первичной катушке 4.
Первичная катушка 4 способна передавать энергию переменного тока катушке 1 для передачи энергии посредством электромагнитной индукции и предпочтительно расположена соосно с катушкой 1 для передачи энергии. Первичная катушка 4 предусмотрена для того, чтобы исключать изменения в частоте авторезонанса катушки 1 для передачи энергии. Более того, первичная катушка 4 выводит электрическую энергию, принятую от преобразователя 6b энергии, к катушке 1 для передачи энергии.
Катушка 1 для передачи энергии установлена поблизости от земли в месте подачи энергии, например. Катушка 1 для передачи энергии сформирована из резонирующих LC-катушек, каждая из которых имеет два открытых (неподключенных) конца, и магнитно связана с катушкой 2 для приема энергии в электрическом транспортном средстве V посредством резонанса магнитного поля. Таким образом, катушка 1 для передачи энергии способна передавать энергию переменного тока катушке 2 для приема энергии. В частности, число витков, толщина и шаг намотки катушки 1 для передачи энергии установлены соответствующим образом на основе различных условий, включающих в себя напряжение устройства 8 аккумулирования электроэнергии, заряжаемого энергией, передаваемой от катушки 1 для передачи энергии, расстояние передачи энергии между катушкой 1 для передачи энергии и катушкой 2 для приема энергии, резонансные частоты катушки 1 для передачи энергии и катушки 2 для приема энергии и т.п., так, чтобы достигать большого Q-значения и большого K-значения. Конфигурация катушки 1 для передачи энергии, включая настройку резонансной частоты, будет описана позже.
Фиг.2 изображает принципиальную схему, дополнительно определяющую систему подачи энергии, показанную на фиг.1. Преобразователь 6b энергии, показанный на фиг.1, может быть реализован как коммутируемый источник энергии, как показано на фиг.2, например. Коммутируемый источник 6b энергии на фиг.2 включает в себя: схему выпрямителя, сформированную из множества диодов и сконфигурированную с возможностью выпрямлять источник 6a энергии переменного тока, и схему прерывателя, снабженную множеством транзисторов и сконфигурированную с возможностью генерировать энергию высокочастотного переменного тока из энергии постоянного тока, полученной посредством выпрямления.
Первичная катушка 4 формирует магнитную связь M между первичной катушкой 4 и каждой из трех резонирующих LC-катушек, включенных в катушку 1 для передачи энергии, и, таким образом, передает энергию переменного тока, сгенерированную посредством преобразователя 6b энергии, катушке 1 для передачи энергии.
Как показано на фиг.2, катушка 1 для передачи энергии включает в себя три резонансных LC-контура, которые взаимно соединены, например, последовательно. Каждый резонансный LC-контур установлен так, чтобы иметь одну авторезонансную частоту f0. Отметим, что авторезонансная частота каждого резонансного LC-контура может быть установлена посредством настройки формы и размера катушки, включая число витков, толщину и шаг намотки катушки.
Между тем, катушка 2 для приема энергии включает в себя три резонансных LC-контура L21C21, L22C22, L23C23, которые взаимно соединены, например, последовательно. Три резонансных LC-контура L21C21, L22C22, L23C23 установлены так, чтобы иметь возможность принимать энергию переменного тока, передаваемую от соответствующих резонансных контуров LС катушки 1 для передачи энергии.
Тем временем, вторичная катушка 5 включает в себя катушку LR, которая формирует магнитную связь M между вторичной катушкой 5 и катушками L21, L22, L23 в соответствующих трех резонансных LC-контурах L21C21, L22C22, L23C23. Таким образом, вторичная катушка 5 способна принимать энергию переменного тока от катушки 2 для приема энергии. Выпрямитель 7 может быть реализован с помощью схемы, включающей в себя множество диодов для выпрямления принятой электрической энергии. Таким образом, энергия переменного тока, принятая посредством трех резонансных LC-контуров L21C21, L22C22, L23C23, способна передаваться к нагрузкам, таким как устройство 8 аккумулирования электроэнергии и электродвигатель MT.
На фиг.2, источник 6a энергии переменного тока и преобразователь 6b энергии составляют "структуру, включающую в себя коммутируемый источник энергии"; первичная катушка 4 и катушка 1 для передачи энергии составляют "резонатор со стороны передачи энергии"; катушка 2 для приема энергии и вторичная катушка 5 составляют "мультирезонатор со стороны приема энергии"; и выпрямитель 7 и нагрузки (8, MT) составляют схему нагрузки.
Далее будет описан принцип передачи энергии в соответствии с резонансным способом. Резонансный способ - это способ передачи электрической энергии беспроводным образом от одной катушки к другой катушке посредством приведения двух резонирующих LC-катушек, имеющих одинаковую собственную частоту, в резонанс через магнитное поле.
В частности, как показано на фиг.1, энергия высокочастотного переменного тока вводится из источника 6 энергии высокочастотного переменного тока в первичную катушку 4. Таким образом, магнитное поле генерируется в первичной катушке 4, и энергия высокочастотного переменного тока генерируется в катушке 1 для передачи энергии посредством электромагнитной индукции. Каждая из катушки 1 для передачи энергии и катушки 2 для приема энергии функционирует как резонансный LC-контур с помощью индуктивности L самой катушки и конструктивной емкости C между проводами проводника. Катушка 2 для приема энергии имеет ту же резонансную частоту, что и катушка 1 для передачи энергии, и, следовательно, магнитным образом связывается с катушкой 1 для передачи энергии посредством резонанса магнитного поля. Как следствие, энергия переменного тока передается от катушки 1 для передачи энергии к катушке 2 для приема энергии. Затем, магнитное поле генерируется в катушке 2 для приема энергии при приеме энергии переменного тока. Магнитное поле в катушке 2 для приема энергии генерирует энергию высокочастотного переменного тока во вторичной катушке 5 посредством электромагнитной индукции. Энергия переменного тока во вторичной катушке 5 выпрямляется в энергию постоянного тока посредством выпрямителя 7 и затем подается к устройству 8 аккумулирования электрической энергии.
Между тем, резонансный LC-контур, в котором конденсатор C и катушка L подключены параллельно, показан в верхней части на фиг.3A, а импедансная характеристика (частота f - импеданс Z) параллельного резонансного LC-контура показана в нижней части на фиг.3A. На фиг.3A f0 обозначает резонансную частоту, а Δf обозначает половину ширины резонансной частоты. В формуле (1) и формуле (2) "L" обозначает индуктивность катушки L, "C" обозначает конструктивную емкость между проводами проводника катушки L, а "R" обозначает значение паразитного сопротивления катушки L.
[Выражение 1]
Figure 00000001
Как очевидно из формулы (1) и формулы (2), паразитное сопротивление становится меньше, когда потери на катушке L становятся меньше. Как следствие, половина ширины Δf резонансной частоты становится уже, и параллельный резонансный LC-контур, следовательно, показывает крутую резонансную характеристику.
Резонансный LC-контур, в котором конденсатор C и катушка L подключены последовательно(также называемый противорезонансным контуром), показан в верхней части на фиг.3B, а импедансная характеристика (частота f - импеданс Z) последовательного резонансного LC-контура показана в нижней части на фиг.3B. Импедансная характеристика, показанная на фиг.3B, отличается от характеристики на фиг.3A, тем, что минимальное значение появляется на фиг.3B вместо точки максимума на фиг.3A. В остальном, последовательный резонансный LC-контур, показанный на фиг.3B, демонстрирует импедансную характеристику, аналогичную характеристике параллельного резонансного LC-контура, показанной на фиг.3A. В частности, в последовательном резонансном LC-контуре паразитное сопротивление становится меньше, когда потери на катушке L становятся меньше. Как следствие, половина ширины Δf резонансной частоты становится уже, и последовательный резонансный LC-контур, следовательно, демонстрирует крутую резонансную характеристику.
Резонанс означает состояние, когда пара резонансных LC-контуров, настроенных так, чтобы иметь одинаковую резонансную частоту, обмениваются энергией с высокой эффективностью с помощью резонансной частоты. Изобретатели настоящего изобретения определили в результате обширных исследований. В частности, как показано на фиг.3C, например, даже если резонансная частота f01 резонансного LC-контура L1C1 отличается от резонансной частоты f02 другого резонансного LC-контура L2C2, резонансные контуры могут все еще обмениваться энергией с высокой эффективностью похожим образом посредством резонанса, когда диапазоны их половин ширины Δf1 и Δf2 перекрывают друг друга.
Импедансные характеристики катушки 1 для передачи энергии и катушки 2 для приема энергии задаются, как описано ниже, на основе вышеупомянутого знания, полученного изобретателями. Фиг.4(a) изображает импедансную характеристику катушки 1 для передачи энергии, а фиг.4(b) показывает импедансную характеристику катушки 2 для приема энергии.
Все три резонансных LC-контура, составляющих катушку 1 для передачи энергии, показанных на фиг.2, включают в себя катушки L одного и того же типа. Три резонансных LC-контура, следовательно, имеют одинаковые значения индуктивности L катушки L, паразитной емкости C катушки L и паразитного сопротивления R катушки L. Соответственно, катушка 1 для передачи энергии имеет единственную резонансную частоту f0, как показано в формуле (1). Здесь, предпочтительно использовать катушки L, имеющие небольшое паразитное сопротивление R, для того, чтобы улучшать эффективность передачи энергии. Когда паразитное сопротивление R катушек L уменьшается, половина ширины Δf резонансной частоты становится уже, как показано в формуле (2), и параллельный резонансный LC-контур, следовательно, показывает крутую резонансную характеристику. В результате, возможно улучшить безопасность, поскольку энергия не передается объектам или электронным устройствам, имеющим резонансные частоты за пределами половины ширины Δf.
В отличие от этого, три резонансных LC-контура, составляющих катушку 2 для приема энергии, показанные на фиг.2, соответственно, включают в себя катушки L различных типов. Три резонансных LC-контура, следовательно, имеют различные значения индуктивности L катушки L, паразитной емкости C катушки L и паразитного сопротивления R катушки L. Соответственно, катушка 2 для приема энергии имеет множество резонансных частот f1, f2, f3, как показано в формуле (1). Когда соотношение между тремя резонансными частотами f1, f2, f3 катушки 2 для приема энергии определяется как f1 < f2 < f3, резонансная частота f0 катушки 1 для передачи энергии предпочтительно устанавливается в частоту, которая, по меньшей мере, удовлетворяет соотношению f1 < f0 < f3.
Пунктирные линии на фиг.4(b) изображают соответствующие импедансные характеристики трех резонансных LC-контуров, составляющих катушку 2 для приема энергии. Сплошная линия на фиг.4(b) изображает общую импедансную характеристику трех резонансных LC-контуров, объединяющую импедансные характеристики трех резонансных LC-контуров вместе, которая получена в результате резонанса при соответствующих резонансных частотах f1, f2, f3 резонансных LC-контуров. Поскольку три резонансных LC-контура, составляющих катушку 2 для приема энергии, имеют различные резонансные частоты f1, f2, f3, частотная характеристика (половина ширины Δf) резонансных LC-контуров на стороне приема энергии, в целом, может быть сделана шире без увеличения паразитного сопротивления R каждой из катушек L21, L22, L23. Затем, такой мультирезонансный контур, имеющий расширенную частотную характеристику, применяется к мультирезонатору на стороне приема энергии. Как следствие, даже когда резонансная частота f0 резонансного LC-контура на стороне передачи энергии изменяется по некоторой причине, этот резонансный LC-контур будет входить в резонанс с одним из резонансных LC-контуров на стороне приема энергии. Таким образом, возможно передавать энергию, в то же время подавляя ухудшение эффективности передачи энергии.
Между тем, катушка 1 для передачи энергии, показанная на фиг.2, включает в себя три резонансных LC-контура, имеющих одинаковую резонансную частоту f0. Причина состоит в том, что: катушка 2 для приема энергии включает в себя три резонансных LC-контура, установленных со взаимно различными резонансными частотами f1, f2, f3; и катушка 1 для передачи энергии может быть расположена настолько близко к этим трем резонансным LC-контурам, насколько возможно. Это делает возможным подавлять ухудшение эффективности передачи энергии, приписываемое расстоянию между катушкой 1 для передачи энергии и катушкой 2 для приема энергии.
[Второй вариант осуществления]
Число резонансных LC-контуров, составляющих какую-либо из катушки 1 для передачи энергии и катушки 2 для приема энергии, не ограничивается только примером, показанным на фиг.2. Например, как показано на фиг.5, резонансный LC-контур, составляющий катушку 1 для передачи энергии, может быть сформирован из одной катушки L и одного конденсатора C. В этом случае, предпочтительно увеличивать диаметр катушки так, что катушка может быть расположена настолько близко, насколько возможно, к множеству резонансных LC-контуров, которые составляют катушку 2 для приема энергии. Здесь, резонансные контуры катушки 2 для приема энергии должны включать в себя, по меньшей мере, два резонансных LC-контура для того, чтобы производить множество резонансных частот.
[Третий вариант осуществления]
В системе подачи энергии, показанной на фиг.2, резонансные частоты f1, f2, f3 катушки 2 для приема энергии могут быть установлены, как описано ниже. Аналогично фиг.4(a), фиг.6(a) изображает импедансную характеристику резонансных LC-контуров, составляющих катушку 1 для передачи энергии. Аналогично фиг.4(b), фиг.6(b) показывает импедансные характеристики резонансных LC-контуров, составляющих катушку 2 для приема энергии. В частности, пунктирные линии на фиг.6(b) показывают соответствующие импедансные характеристики трех резонансных LC-контуров, составляющих катушку 2 для приема энергии. Сплошная линия на фиг.6(b) показывает общую импедансную характеристику трех резонансных LC-контуров, полученных объединением импедансных характеристик трех резонансных LC-контуров вместе. По меньшей мере, одна из резонансных частот f1, f2, f3 трех резонансных LC-контуров установлена в диапазоне половины ширины Δf соседней из резонансных частот. Соответственно, объединенная импедансная характеристика резонансных LC-контуров, указанная с помощью сплошной линии на фиг.6(b), может быть отрегулирована, чтобы иметь относительно плоскую характеристику в предварительно определенном частотном диапазоне. Таким образом, возможно реализовывать относительно широкую половину ширины Δf, в то же время исключая увеличение потерь на катушке L, свойственных увеличению паразитного сопротивления R. В примере на фиг.6(b), каждая из резонансных частот f1, f2, f3 трех резонансных LC-контуров установлена в диапазоне половины ширины Δf резонансной частоты, соседней с ней.
Действия электрических схем, показанных на фиг.2, являются такими, как описано ниже. В частности, резонансная частота резонансных LC-контуров катушки 1 для передачи энергии установлена в f0, а резонансные частоты трех резонансных LC-контуров катушки 2 для приема энергии установлены в f1, f2, f3, соответственно. Более того, f2 установлена, например, равной f0. В этом случае, три резонансных LC-контура катушки 1 для передачи энергии входят в резонанс с резонансным LC-контуром в середине, имеющем резонансную частоту f2, из трех резонансных LC-контуров катушки 2 для приема энергии и передают энергию ему с высокой эффективностью. Между тем, диапазон полуширины Δf резонансного LC-контура в середине, имеющего резонансную частоту f2, перекрывает диапазоны резонансных LC-контуров на обоих концах, каждый из которых имеет резонансную частоту либо меньшую, либо большую, чем f2 (резонансную частоту f1 или f3).
По этой причине, энергия передается с высокой эффективностью от резонансного LC-контура в середине, имеющего резонансную частоту f2, к резонансным LC-контурам по обеим сторонам. Как следствие, энергия может быть эффективно передана от всех резонансных LC-контуров катушки 1 для передачи энергии всем резонансным LC-контурам катушки 2 для приема энергии.
Как описано выше, половины ширины Δf множества резонансных LC-контуров, составляющих катушку 2 для приема энергии, установлены, чтобы перекрывать друг друга. Соответственно, даже в случае изменения в резонансной частоте f0 резонансных LC-контуров катушки 1 для передачи энергии, энергия переменного тока может эффективно передаваться, пока изменение попадает в предварительно определенный диапазон, т.е. в диапазон объединенной половины ширины Δf (см. фиг.6) резонансных LC-контуров, составляющих катушку 2 для приема энергии.
[Четвертый вариант осуществления]
Фиг.7 изображает катушку 1 для передачи энергии и катушку 2 для приема энергии, к которым применен четвертый вариант осуществления настоящего изобретения. Аналогично системе подачи энергии, показанной на фиг.1, система подачи энергии четвертого варианта осуществления включает в себя коммутируемый источник 6 энергии, первичную катушку 4, катушку 1 для передачи энергии (резонансный LC-контур), катушку 2 для приема энергии (резонансный LC-контур), вторичную катушку 5 и схему 8 нагрузки. Каждая из катушки 1 для передачи энергии и катушки 2 для приема энергии использует саморезонирующий контур, сформированный из собственной индуктивности L и паразитной емкости C.
Более того, для того, чтобы устанавливать катушку 1 для передачи энергии в однорезонансной структуре, катушка 1 для передачи энергии четвертого варианта осуществления применяет катушку, подготовленную посредством наматывания провода равномерно (с шагом), как показано на фиг.7. Поскольку провод равномерно намотан, факторы паразитной емкости между шагами провода распределены равномерно, таким образом, катушка 1 для передачи энергии показывает характеристику авторезонанса однорезонансной структуры, как показано на фиг.8. С другой стороны, катушка 2 для приема энергии применяет катушку, подготовленную посредством наматывания провода неравномерно, или подготовленную посредством постепенного изменения шагов провода, например. Шаги провода могут изменяться в диапазоне от a-1,5d до a+1,5d, например. Таким образом, значения паразитной емкости между шагами провода постепенно изменяются. Как следствие, катушка 2 для приема энергии показывает мультирезонансную характеристику, имеющую более крупную половину ширины Δf, как показано на фиг.8. В примере, показанном на фиг.7, шаги провода катушки 2 для приема энергии определяют арифметические прогрессии. Однако, изобретение не ограничено только этой конфигурацией. Аналогичный результат может также быть получен с помощью геометрических прогрессий или последовательностей, имеющих форму обратного числа геометрических прогрессий, например. Между тем, фиг.9 изображает пример катушки 2 для приема энергии, которая намотана трехмерно неравномерным образом. Эта конфигурация может также получать аналогичное действие и результат.
[Пятый вариант осуществления]
Фиг.10 изображает общий вид, показывающий катушки 1 для передачи энергии и катушки 2 для приема энергии, к которым применен пятый вариант осуществления настоящего изобретения. Каждая катушка 1 для передачи энергии пятого варианта осуществления является однорезонансной катушкой, подготовленной посредством наматывания провода равномерно (с шагом а), как показано на фиг.7 или фиг.9. Три катушки 1 для передачи энергии расположены поблизости от земли места подачи энергии, например, в позициях, соответственно соответствующих углам равностороннего треугольника. Тогда, электрическая энергия от коммутируемого источника 6b энергии передается катушкам 1 для передачи энергии посредством электромагнитной индукции M с помощью первичной катушки 4.
Между тем, каждая катушка 2 для приема энергии пятого варианта осуществления является мультирезонансной катушкой, подготовленной посредством наматывания провода таким образом, чтобы постепенно изменять шаги намотки в диапазоне от a-1,5d до a+1,5d, как показано на фиг.7 или фиг.9. Три катушки 2 для приема энергии расположены поблизости от днища электрического транспортного средства V, например, в позициях, соответственно соответствующих углам равностороннего треугольника. Тогда, электрическая энергия, принятая посредством катушек 2 для приема энергии, передается схеме 8 нагрузки посредством электромагнитной индукции M с помощью вторичной катушки 5.
В пятом варианте осуществления размещены множество катушек 1 для передачи энергии, каждая из которых подготовлена посредством наматывания провода равномерно, и множество катушек 2 для приема энергии, каждая из которых подготовлена посредством наматывания провода таким образом, чтобы постепенно изменять шаги намотки. Таким образом, даже в случае изменения в резонансной частоте f0 резонансного LC-контура любой из катушек 1 для передачи энергии, энергия переменного тока может эффективно передаваться, пока изменение попадает в предварительно определенный диапазон, т.е. в диапазон объединенной полуширины Δf (см. фиг.6) резонансных LC-контуров, составляющих катушку 2 для приема энергии. Кроме того, также возможно подавлять уменьшение эффективности передачи энергии, свойственное неточному совмещению между стороной передачи энергии и стороной приема энергии. Другими словами, поскольку предусмотрено множество передающих катушек 1 и множество принимающих катушек 2, уменьшение эффективности передачи энергии может быть подавлено, даже когда позиция остановки электрического транспортного средства V отклоняется более или менее от места подачи энергии.
Хотя три катушки 1 для передачи энергии и три катушки 2 для приема энергии предусмотрены в примере, показанном на фиг.10, число каждой катушки не ограничено только тремя. Кроме того, число катушек 1 для передачи энергии и число катушек 2 для приема энергии не обязательно должно быть равным друг другу, но числа катушек могут быть различными. Более того, позиции размещения трех катушек не ограничены углами треугольника. Катушки могут быть размещены в продольном направлении или в поперечном направлении электрического транспортного средства V, например.
[6-й вариант осуществления]
Фиг.11 изображает принципиальную электрическую схему, показывающую систему подачи энергии, к которой применен 6-й вариант осуществления настоящего изобретения. В этом варианте осуществления первичная катушка 4 для передачи энергии от коммутируемого источника 6b энергии к катушке 1 для передачи энергии исключена, и катушка 1 для передачи энергии подключена напрямую к коммутируемому источнику 6b энергии. Система подачи энергии, сконфигурированная таким образом, также показывает действие и результат, аналогичные действию и результатам первого-пятого вариантов осуществления. Кроме того, исключение первичной катушки 4 приводит к эффекту того, что возможно достигать более низких затрат, меньших размеров и меньших потерь резонансных контуров.
[7-й вариант осуществления]
Фиг.12 изображает принципиальную электрическую схему, показывающую систему подачи энергии, к которой применен 7-й вариант осуществления настоящего изобретения. В то время как примеры, использующие параллельные резонансные LC-контуры, были описаны для первого-шестого вариантов осуществления, тот же результат также может быть получен с помощью последовательных резонансных LC-контуров, которые показывают противорезонансную характеристику. В частности, как показано на фиг.12, катушки 2 для приема энергии включают в себя три резонансных LC-контура, каждый из которых сформирован посредством соединения катушки L и конденсатора C последовательно, и три последовательных резонансных LC-контура подключены вместе параллельно. Хотя однорезонансные параллельные резонансные LC-контуры использованы в качестве катушки 1 для передачи энергии, последовательные резонансные LC-контуры могут быть использованы, пока контуры имеют однорезонансную структуру.
[8-й вариант осуществления]
Фиг.13 изображает принципиальную электрическую схему, показывающую систему подачи энергии, к которой применен восьмой вариант осуществления настоящего изобретения. Катушка 1 для передачи энергии или катушка 2 для приема энергии могут использовать объединенный резонансный контур, полученный объединением параллельного резонансного LC-контура и последовательного резонансного LC-контура. Фиг.13 изображает пример катушки 2 для приема энергии, которая получена посредством объединения параллельного резонансного LC-контура и последовательного резонансного LC-контура, имеющих резонансные частоты, которые взаимно отличаются, в то же время попадая в диапазон половины ширины друг друга. В частности, катушка L2 и конденсатор C21 составляют параллельный резонансный LC-контур, в то время как катушка L2 и конденсатор C22 составляют последовательный резонансный LC-контур на фиг.13.
Следует отметить, что вторичная катушка 5 для передачи энергии от катушки 2 для приема энергии к нагрузке 8 исключена в примере, показанном на фиг.13. Исключение вторичной катушки 5 приводит к эффекту того, что возможно достигать более низких затрат, меньших размеров и меньших потерь резонансных контуров. Более того, первичная катушка 4 также может быть исключена в примере, показанном на фиг.13.
Фиг.14 изображает резонансную характеристику объединенного резонансного контура, который получен посредством объединения параллельного резонансного LC-контура (параллельного резонансного контура) и последовательного резонансного LC-контура (последовательного резонансного контура). На фиг.14, кривые, указанные пунктирными линиями, соответственно представляют резонансные характеристики параллельного резонансного контура и последовательного резонансного контура, в то время как кривая, указанная сплошной линией, представляет резонансную характеристику объединенного резонансного контура.
Катушка 1 для передачи энергии или катушка 2 для приема энергии может включать в себя любой из резонансных контуров, показанных на фиг.15(a)-15(d). Фиг.15(a)-15(d) изображают принципиальные электрические схемы, показывающие другие примеры конфигурации любой из катушки 1 для передачи энергии и катушки 2 для приема энергии, в которых каждое условное обозначение L указывает катушку, в то время как каждое условное обозначение C указывает конденсатор.
В вариантах осуществления, описанных выше, катушка 1 для передачи энергии настроена на предварительно определенную единственную резонансную частоту f0, а резонансные частоты катушки 2 для приема энергии установлены на множество резонансных частот f1, f2, f3, включая резонансную частоту f0. Здесь, конфигурации катушки 1 для передачи энергии и катушки 2 для приема энергии могут быть инвертированы. В частности, в любой из электрических схем, показанных на фиг.2, или электрических схем, сформированных посредством инвертирования катушки 1 для передачи энергии и катушки 2 для приема энергии на фиг.5, резонансная частота катушки 2 для приема энергии может быть установлена на предварительно определенную единственную резонансную частоту f0, в то время как резонансные частоты катушки 1 для передачи энергии могут быть установлены на множество резонансных частот f1, f2, f3, включая резонансную частоту f0.
Следует отметить, однако, что эффективность передачи энергии увеличивается посредством задания единственной резонансной частоты на стороне катушки 1 для передачи энергии, поскольку возможно предохранять катушку 1 для передачи энергии от вхождения в резонанс с объектом, расположенным рядом с катушкой 2 для приема энергии. Другими словами, концентрация энергии для передачи энергии от катушки 1 для передачи энергии по одной частоте делает возможным минимизацию неблагоприятных воздействий на область, окружающую катушку 1 для передачи энергии и минимизацию потерь, присущих этому.
Катушка 1 для передачи энергии соответствует "резонатору для передачи энергии" и "резонирующему средству для передачи энергии" согласно настоящему изобретению. Катушка 2 для приема энергии соответствует "резонатору для приема энергии" и "резонирующему средству для приема энергии" согласно настоящему изобретению. Источник 6a энергии высокочастотного переменного тока соответствует "источнику энергии" согласно настоящему изобретению. Электрическое транспортное средство V соответствует "транспортному средству" согласно настоящему изобретению. Параллельный или последовательный резонансный LC-контур, включенный в каждую из катушки 1 для передачи энергии и катушки 2 для приема энергии, соответствует "резонансному контуру" согласно настоящему изобретению. Катушка 1 для передачи энергии и катушка 2 для приема энергии соответствуют "паре резонаторов" согласно настоящему изобретению.
Хотя варианты осуществления настоящего изобретения были описаны выше, должно быть понятно, что варианты осуществления описаны для того, чтобы облегчать понимание настоящего изобретения, и не предназначены, чтобы ограничивать рамки настоящего изобретения. В этом контексте, компоненты, раскрытые в вышеописанных вариантах осуществления, также должны включать в себя все изменения конструкции и их эквиваленты, которые принадлежат техническим рамкам настоящего изобретения.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
Согласно настоящему изобретению, даже когда резонансная частота для одного из резонатора для передачи энергии и резонатора для приема энергии изменяется вследствие внешнего фактора или т.п., все еще возможно передавать электрическую энергию с помощью измененной резонансной частоты, поскольку другой из резонатора для передачи энергии и резонатора для приема энергии имеет множество резонансных частот, включающих в себя вышеупомянутую резонансную частоту. Таким образом, ухудшение эффективности передачи энергии может быть подавлено даже в случае относительного изменения резонансной частоты. Таким образом, установка бесконтактной подачи энергии и способ бесконтактной подачи энергии согласно настоящему изобретению являются промышленно применимыми.

Claims (10)

1. Установка бесконтактной подачи энергии, содержащая:
резонатор для передачи энергии; и
резонатор для приема энергии, сконфигурированный с возможностью магнитным образом связываться с резонатором для передачи энергии посредством резонанса магнитного поля, при этом
резонатор для передачи энергии магнитным образом связан с резонатором для приема энергии посредством резонанса магнитного поля, в результате чего электрическая энергия подается от источника электрической энергии к резонатору для приема энергии через резонатор для передачи энергии,
один из резонатора для передачи энергии и резонатора для приема энергии демонстрирует импедансную характеристику, которая имеет предварительно определенную единственную резонансную частоту, и
другой из резонатора для передачи энергии и резонатора для приема энергии включает в себя мультирезонансный контур, демонстрирующий импедансную характеристику, объединяющую первую импедансную характеристику, которая имеет предварительно определенную единственную резонансную частоту, и вторую импедансную характеристику, которая имеет резонансную частоту, отличную от предварительно определенной единственной резонансной частоты.
2. Установка бесконтактной подачи энергии, содержащая:
резонатор для передачи энергии, установленный за пределами транспортного средства и сконфигурированный с возможностью принимать электрическую энергию от источника электрической энергии, при этом
резонатор для передачи энергии магнитным образом связан с резонатором для приема энергии, установленным в транспортном средстве, посредством резонанса магнитного поля, в результате чего электрическая энергия передается от источника электрической энергии резонатору для приема энергии через резонатор для передачи энергии,
один из резонатора для передачи энергии и резонатора для приема энергии демонстрирует импедансную характеристику, которая имеет предварительно определенную единственную резонансную частоту, и
другой из резонатора для передачи энергии и резонатора для приема энергии включает в себя мультирезонансный контур, демонстрирующий импедансную характеристику, объединяющую первую импедансную характеристику, которая имеет предварительно определенную единственную резонансную частоту, и вторую импедансную характеристику, которая имеет резонансную частоту, отличную от предварительно определенной единственной резонансной частоты.
3. Установка бесконтактной подачи энергии, содержащая:
резонатор для приема энергии, установленный в транспортном средстве,
при этом резонатор для приема энергии магнитным образом связан с резонатором для передачи энергии посредством резонанса магнитного поля, резонатор для передачи энергии установлен за пределами транспортного средства и сконфигурирован с возможностью принимать электрическую энергию от источника электрической энергии, в результате чего электрическая энергия от источника электрической энергии принимается резонатором для приема энергии через резонатор для передачи энергии,
один из резонатора для передачи энергии и резонатора для приема энергии демонстрирует импедансную характеристику, которая имеет предварительно определенную единственную резонансную частоту, и
другой из резонатора для передачи энергии и резонатора для приема энергии включает в себя мультирезонансный контур, демонстрирующий импедансную характеристику, объединяющую первую импедансную характеристику, которая имеет предварительно определенную единственную резонансную частоту, и вторую импедансную характеристику, которая имеет резонансную частоту, отличную от предварительно определенной единственной резонансной частоты.
4. Установка бесконтактной подачи энергии по любому из пп.1-3, в которой среди предварительно определенной единственной резонансной частоты и резонансной частоты, отличной от предварительно определенной единственной резонансной частоты, которые имеет другой из резонатора для передачи энергии и резонатора для приема энергии, по меньшей мере, одна резонансная частота задана в диапазоне половины ширины другой резонансной частоты, соседней с одной резонансной частотой.
5. Установка бесконтактной подачи энергии по любому из пп.1-3, в которой один из резонатора для передачи энергии и резонатора для приема энергии содержит катушку, имеющую равномерный шаг намотки.
6. Установка бесконтактной подачи энергии по любому из пп.1-3, в которой другой из резонатора для передачи энергии и резонатора для приема энергии содержит катушку, имеющую изменяющийся шаг намотки.
7. Установка бесконтактной подачи энергии по любому из пп.1-3, в которой
один из резонатора для передачи энергии и резонатора для приема энергии содержит столько же резонансных контуров, сколько и другой из резонатора для передачи энергии и резонатора для приема энергии, и
каждый из резонансных контуров резонатора для передачи энергии расположен поблизости от соответствующего одного из резонансных контуров резонатора для приема энергии.
8. Установка бесконтактной подачи энергии по любому из пп.1-3, в которой
один из резонатора для передачи энергии и резонатора для приема энергии является резонатором для передачи энергии, и
другой из резонатора для передачи энергии и резонатора для приема энергии является резонатором для приема энергии.
9. Установка бесконтактной подачи энергии по п.8, содержащая множество резонаторов для передачи энергии и множество резонаторов для приема энергии.
10. Способ бесконтактной подачи энергии, содержащий этапы, на которых:
магнитным образом связывают пару резонаторов посредством резонанса магнитного поля, один из пары резонаторов демонстрирует импедансную характеристику, которая имеет предварительно определенную единственную резонансную частоту, другой из пары резонаторов включает в себя мультирезонансный контур, демонстрирующий импедансную характеристику, объединяющую первую импедансную характеристику, которая имеет предварительно определенную единственную резонансную частоту, и вторую импедансную характеристику, которая имеет резонансную частоту, отличную от предварительно определенной единственной резонансной частоты, и, таким образом, подают электрическую энергию от источника электрической энергии к другому резонатору через первый резонатор.
RU2012146191/07A 2010-03-31 2011-03-07 Установка бесконтактной подачи энергии и способ бесконтактной подачи энергии RU2549838C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010-080737 2010-03-31
JP2010080737 2010-03-31
JP2010-271282 2010-12-06
JP2010271282A JP5691458B2 (ja) 2010-03-31 2010-12-06 非接触給電装置及び非接触給電方法
PCT/JP2011/055193 WO2011122249A1 (ja) 2010-03-31 2011-03-07 非接触給電装置及び非接触給電方法

Publications (2)

Publication Number Publication Date
RU2012146191A RU2012146191A (ru) 2014-05-10
RU2549838C2 true RU2549838C2 (ru) 2015-04-27

Family

ID=44711975

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012146191/07A RU2549838C2 (ru) 2010-03-31 2011-03-07 Установка бесконтактной подачи энергии и способ бесконтактной подачи энергии

Country Status (10)

Country Link
US (1) US9525302B2 (ru)
EP (1) EP2555377B1 (ru)
JP (1) JP5691458B2 (ru)
KR (1) KR101438298B1 (ru)
CN (1) CN102823110B (ru)
BR (1) BR112012024696B1 (ru)
MX (1) MX2012011121A (ru)
MY (1) MY180282A (ru)
RU (1) RU2549838C2 (ru)
WO (1) WO2011122249A1 (ru)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2462001A4 (en) 2009-08-07 2017-07-12 Auckland UniServices Limited Roadway powered electric vehicle system
JP5530848B2 (ja) * 2010-07-28 2014-06-25 トヨタ自動車株式会社 コイルユニット、非接触電力送電装置、非接触電力受電装置、車両および非接触電力給電システム
EP2688181B1 (en) 2011-03-18 2018-12-26 Yazaki Corporation Power supply system
JP2012200031A (ja) * 2011-03-18 2012-10-18 Yazaki Corp 給電システム
US9620995B2 (en) 2011-04-26 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
BR112013031015A2 (pt) * 2011-06-03 2016-11-29 Toyota Motor Co Ltd veículo, dispositivo elétrico, e sistema de transmissão/recepção de energia
JP5885239B2 (ja) * 2011-10-20 2016-03-15 トヨタ自動車株式会社 受電装置、送電装置および電力伝送システム
DE102011086849A1 (de) * 2011-11-22 2013-05-23 Funkwerk Dabendorf-Gmbh Ladeschaltung für einen Energiespeicher eines portablen elektrischen Geräts
US9969281B2 (en) 2011-11-22 2018-05-15 Toyota Jidosha Kabushiki Kaisha Vehicle and power transfer system
US9545850B2 (en) 2011-11-25 2017-01-17 Toyota Jidosha Kabushiki Kaisha Vehicle
US9224533B2 (en) * 2011-11-29 2015-12-29 Panasonic Intellectual Property Management Co., Ltd. Wireless electric power transmission apparatus
US9246357B2 (en) * 2011-12-07 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Contactless power feeding system
US10352970B2 (en) 2011-12-21 2019-07-16 Sony Corporation Detection apparatus, power receiving apparatus, non-contact power transmission system and detection method
JP6029278B2 (ja) * 2011-12-21 2016-11-24 ソニー株式会社 受電装置及び非接触電力伝送システム
US9431856B2 (en) * 2012-01-09 2016-08-30 Pabellon, Inc. Power transmission
JP5920363B2 (ja) 2012-01-27 2016-05-18 富士通株式会社 受電装置、電力伝送システム、及び電力伝送方法
JP5915667B2 (ja) * 2012-01-31 2016-05-11 富士通株式会社 電力伝送装置、電力伝送システム、及び電力伝送方法
JP2015508940A (ja) 2012-02-16 2015-03-23 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited 複数コイル磁束パッド
JP5848182B2 (ja) * 2012-04-05 2016-01-27 トヨタ自動車株式会社 車両
JP2014030288A (ja) * 2012-07-31 2014-02-13 Sony Corp 給電装置および給電システム
US9912197B2 (en) 2012-08-03 2018-03-06 Mediatek Singapore Pte. Ltd. Dual-mode wireless power receiver
US10658869B2 (en) 2012-08-03 2020-05-19 Mediatek Inc. Multi-mode, multi-standard wireless power transmitter coil assembly
US9859744B2 (en) * 2012-08-03 2018-01-02 Mediatek Singapore Pte. Ltd. Dual-mode wireless power receiver
CN102946156B (zh) * 2012-11-21 2015-02-18 中国科学院电工研究所 一种无线电力传输装置
KR102227504B1 (ko) * 2013-08-07 2021-03-15 삼성전자주식회사 복수의 무선 전력 수신 장치에 대해 안정적으로 전력을 송신하는 무선 전력 송신 방법 및 장치
WO2015025438A1 (ja) * 2013-08-23 2015-02-26 三菱電機エンジニアリング株式会社 共振型電力伝送装置及び共振型電力多重伝送システム
KR20150026874A (ko) * 2013-08-30 2015-03-11 삼성전기주식회사 전원 공급 장치
JP6191562B2 (ja) * 2013-08-30 2017-09-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. 電源供給装置
WO2015072863A1 (en) 2013-11-13 2015-05-21 Powerbyproxi Limited Transmitter for inductive power transfer systems
JP5842901B2 (ja) * 2013-12-05 2016-01-13 トヨタ自動車株式会社 非接触電力伝送システム
JP2015128347A (ja) * 2013-12-27 2015-07-09 富士通コンポーネント株式会社 無線受電装置、無線送電装置
US10325719B2 (en) 2014-05-19 2019-06-18 Apple Inc. Magnetically permeable core and an inductive power transfer coil arrangement
WO2015178780A1 (en) 2014-05-19 2015-11-26 Powerbyproxi Limited Magnetically permeable core and inductive power transfer coil arrangement
AU2015302418B2 (en) 2014-08-12 2020-08-20 Apple Inc. System and method for power transfer
KR101609467B1 (ko) 2014-09-05 2016-04-05 금오공과대학교 산학협력단 3원계 리튬 이차 전지 양극 재료 원료액 조성 분석 방법
NO341430B1 (en) * 2015-01-19 2017-11-13 Waertsilae Norway As An apparatus and a method for wireless transmission of power between DC voltage sources
FR3032312B1 (fr) * 2015-01-30 2017-02-10 Continental Automotive France Dispositif de chargement par induction magnetique
KR20160104403A (ko) * 2015-02-26 2016-09-05 삼성전자주식회사 무선 충전 방법 및 그 전자 장치
KR101825899B1 (ko) * 2015-04-08 2018-02-05 닛산 지도우샤 가부시키가이샤 지상측 코일 유닛
CN106300572A (zh) * 2015-06-02 2017-01-04 介面光电股份有限公司 吊挂式可挠无线充电装置
JP6515015B2 (ja) * 2015-11-11 2019-05-15 株式会社ダイヘン 非接触電力伝送システム
JP2017183020A (ja) * 2016-03-29 2017-10-05 三菱電機株式会社 加熱調理システム、受電装置、及び誘導加熱調理器
JP6510455B2 (ja) * 2016-03-30 2019-05-08 矢崎総業株式会社 非接触電力伝送装置
WO2017204663A1 (en) 2016-05-25 2017-11-30 Powerbyproxi Limited A coil arrangement
WO2017209630A1 (en) 2016-06-01 2017-12-07 Powerbyproxi Limited A powered joint with wireless transfer
US10483786B2 (en) 2016-07-06 2019-11-19 Apple Inc. Wireless charging systems with multicoil receivers
EP3280030B1 (en) * 2016-08-04 2023-08-30 General Electric Company System and method for charging receiver devices
KR101846715B1 (ko) * 2016-09-26 2018-04-10 연세대학교 산학협력단 무선 전력 송신 장치, 무선 전력 수신 장치 및 무선 전력 전송 시스템
CN206834025U (zh) 2016-11-18 2018-01-02 鲍尔拜普罗克西有限公司 感应式电力传输线圈组件
US10978911B2 (en) 2016-12-19 2021-04-13 Apple Inc. Inductive power transfer system
US11177680B2 (en) * 2017-04-04 2021-11-16 Intel Corporation Field shaper for a wireless power transmitter
CN108879990A (zh) * 2017-05-12 2018-11-23 中惠创智无线供电技术有限公司 一种供电电路
US10593468B2 (en) 2018-04-05 2020-03-17 Apple Inc. Inductive power transfer assembly
KR102172179B1 (ko) * 2018-12-14 2020-10-30 영남대학교 산학협력단 전력 전송 방향 제어 장치 및 이를 포함하는 무선 충전 시스템
JP7447457B2 (ja) * 2019-12-12 2024-03-12 株式会社デンソー 非接触給電システム
US20220181913A1 (en) * 2020-11-11 2022-06-09 Quaze Technologies Inc. Apparatus for wireless power transmission and method of use thereof
US11133714B1 (en) * 2020-11-11 2021-09-28 Quaze Technologies Inc. Apparatus for wireless power transmission and method of use thereof
WO2023062685A1 (ja) * 2021-10-11 2023-04-20 日本電信電話株式会社 アンテナ装置、及び非接触電力伝送システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1130417A1 (ru) * 1982-12-16 1984-12-23 Особое Конструкторское Бюро Ордена Ленина Института Физики Земли Им.О.Ю.Шмидта Электродинамический возбудитель колебаний
RU2004130458A (ru) * 2002-03-14 2005-04-10 Инвиста Текнолоджиз С.А.Р.Л. (Us) Реактор с индукционным нагревом для газофазных каталитических реакций
WO2009054221A1 (ja) * 2007-10-25 2009-04-30 Toyota Jidosha Kabushiki Kaisha 電動車両および車両用給電装置
US20100052431A1 (en) * 2008-09-02 2010-03-04 Sony Corporation Non-contact power transmission device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3522456B2 (ja) * 1996-07-29 2004-04-26 日立機電工業株式会社 非接触給電装置
SG54559A1 (en) * 1996-09-13 1998-11-16 Hitachi Ltd Power transmission system ic card and information communication system using ic card
US7388379B2 (en) * 2003-05-01 2008-06-17 Pathfinder Energy Services, Inc. Series-resonant tuning of a downhole loop antenna
CN1813396B (zh) * 2003-05-23 2010-04-28 奥克兰联合服务有限公司 谐振变换器及其方法以及感耦电能传送系统
US7989986B2 (en) * 2006-03-23 2011-08-02 Access Business Group International Llc Inductive power supply with device identification
US7539465B2 (en) * 2006-10-16 2009-05-26 Assa Abloy Ab Tuning an RFID reader with electronic switches
NZ565234A (en) * 2008-01-18 2010-11-26 Telemetry Res Ltd Selectable resonant frequency transcutaneous energy transfer system
JP2009268181A (ja) 2008-04-22 2009-11-12 Olympus Corp エネルギー供給装置
EP2161811A1 (en) * 2008-09-05 2010-03-10 Koninklijke Philips Electronics N.V. Inductive charger and charging method
PL2347494T3 (pl) * 2008-10-03 2019-08-30 Philips Ip Ventures B.V. System zasilający
EP2357715B1 (en) * 2008-12-12 2018-06-27 GE Hybrid Technologies, LLC Contactless charging station equipped with a ptps core having a planar spiral core structure, contactless power receiving apparatus, and method for controlling same
CN102362408B (zh) * 2009-03-30 2015-01-21 富士通株式会社 无线供电系统、无线送电装置及无线受电装置
JP2011200052A (ja) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc 給電装置
JP2011205757A (ja) * 2010-03-25 2011-10-13 Toyota Central R&D Labs Inc 電磁界共鳴電力伝送装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1130417A1 (ru) * 1982-12-16 1984-12-23 Особое Конструкторское Бюро Ордена Ленина Института Физики Земли Им.О.Ю.Шмидта Электродинамический возбудитель колебаний
RU2004130458A (ru) * 2002-03-14 2005-04-10 Инвиста Текнолоджиз С.А.Р.Л. (Us) Реактор с индукционным нагревом для газофазных каталитических реакций
WO2009054221A1 (ja) * 2007-10-25 2009-04-30 Toyota Jidosha Kabushiki Kaisha 電動車両および車両用給電装置
US20100052431A1 (en) * 2008-09-02 2010-03-04 Sony Corporation Non-contact power transmission device

Also Published As

Publication number Publication date
KR101438298B1 (ko) 2014-09-04
MX2012011121A (es) 2012-12-17
MY180282A (en) 2020-11-26
US20130026850A1 (en) 2013-01-31
EP2555377A4 (en) 2016-02-17
JP2011229360A (ja) 2011-11-10
KR20130018811A (ko) 2013-02-25
CN102823110B (zh) 2015-01-14
RU2012146191A (ru) 2014-05-10
BR112012024696B1 (pt) 2021-09-21
EP2555377A1 (en) 2013-02-06
WO2011122249A1 (ja) 2011-10-06
CN102823110A (zh) 2012-12-12
US9525302B2 (en) 2016-12-20
BR112012024696A2 (pt) 2021-03-30
EP2555377B1 (en) 2018-07-11
JP5691458B2 (ja) 2015-04-01

Similar Documents

Publication Publication Date Title
RU2549838C2 (ru) Установка бесконтактной подачи энергии и способ бесконтактной подачи энергии
Chen et al. A study of loosely coupled coils for wireless power transfer
US10103581B2 (en) Wireless power transmission system
Kim et al. Optimal design of a wireless power transfer system with multiple self-resonators for an LED TV
US10103785B2 (en) Apparatus and method for resonance power transmission and resonance power reception
EP2465179B1 (en) Electric power supply system for vehicle
EP2489107B1 (en) Electric power supply system for vehicle
US20140175868A1 (en) Electric power supply apparatus, contactless electricity transmission apparatus, vehicle, and contactless electric power transfer system
US20120049644A1 (en) Resonance power transmission system based on power transmission efficiency
CN102437656B (zh) 基于磁共振阵列的无线能量传输系统
CN106208416A (zh) 电磁链式无线电能传输系统
Alhamrouni et al. Application of inductive coupling for wireless power transfer
US9531196B2 (en) Wireless power transmission system and method for designing the same
Wang et al. Finite-element analysis and corresponding experiments of resonant energy transfer for wireless transmission devices
JP2012034524A (ja) 無線電力伝送装置
JP2014096872A (ja) 結合共振器型の無線電力伝送システム、及び結合共振器型の無線電力伝送システムに用いる受電側共振器
US20200336011A1 (en) Resonant circuit for transmitting electric energy
Dionigi et al. Efficiency investigations for wireless resonant energy links realized with resonant inductive coils
Jiang et al. Optimization of coils for magnetically coupled resonant wireless power transfer system based on maximum output power
US20200313461A1 (en) Resonant circuit for transmitting electric energy without a power amplifier
Yi et al. A Comparative Study on the Influence of Inductive Coupling WPT Using 6.78 MHz and 120kHz Dual Bands for Mobile Electronic Devices
WO2020122017A1 (ja) 受電機器
Mishra Investigation for Performance Measures of Wireless Power Transfer (WPT) using MATLAB
KR101883655B1 (ko) 무선 전력 수신기 및 그 제어 방법
CN114696474A (zh) 一种磁偶极子线圈多向无线电能传输系统