RU2536312C1 - Способ извлечения урана из фосфорнокислых растворов - Google Patents

Способ извлечения урана из фосфорнокислых растворов Download PDF

Info

Publication number
RU2536312C1
RU2536312C1 RU2013151273/02A RU2013151273A RU2536312C1 RU 2536312 C1 RU2536312 C1 RU 2536312C1 RU 2013151273/02 A RU2013151273/02 A RU 2013151273/02A RU 2013151273 A RU2013151273 A RU 2013151273A RU 2536312 C1 RU2536312 C1 RU 2536312C1
Authority
RU
Russia
Prior art keywords
uranium
solution
ammonia
phosphate solutions
precipitate
Prior art date
Application number
RU2013151273/02A
Other languages
English (en)
Inventor
Николай Борисович Алхимов
Юрий Павлович Ефремов
Леся Григорьевна Чумак
Дмитрий Валерьевич Стефановский
Original Assignee
Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") filed Critical Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ")
Priority to RU2013151273/02A priority Critical patent/RU2536312C1/ru
Application granted granted Critical
Publication of RU2536312C1 publication Critical patent/RU2536312C1/ru

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к области гидрометаллургии, в частности к способу извлечения урана из отработанных фосфорнокислых растворов. Способ заключается в том, что в исходный раствор предварительно вводят окислитель, который выбирают из ряда: KMnO4, K2Cr2O7, HNO3, H2O2, KClO3. Затем проводят осаждение урансодержащего осадка путем корректировки кислотности аммиаком до значения pH 2,8÷4,0 при температуре 20÷35°C. Полученный после фильтрации осадок обрабатывают 20÷35%-ным раствором NaOH при температуре 80÷85°C в течение 1,5÷2,0 часов. Техническим результатом является высокая степень извлечения урана, возврат высокообогащенного урана в топливный цикл, ликвидация значительного объема среднеактивных жидких отходов посредством их переведения в категорию низко активных, а также сокращение затрат, связанных с поддержанием режима их безопасного долговременного хранения, учета и контроля. 1 з.п. ф-лы, 1 табл., 4 пр.

Description

Изобретение относится к области гидрометаллургии, в частности к способу извлечения урана из отработанных фосфорнокислых растворов, образующихся в результате химического анализа, проводимого стандартизированным титриметрическим методом Дэвиса-Грея, на содержание урана в его различных производных (оксидах, нитридах, карбидах и др.).
Известен способ извлечения урана из растворов с использованием ионообменной смолы, селективно сорбирующей уран с последующим элюированием (вымыванием) его в десорбат (Патент РФ №2159741, МПК C01G 43/00, B01D 15/04, опубл. 27.11.2000).
Недостаток этого метода заключается в низкой удельной емкости смолы и соответственно необходимости применения громоздкого ядерно-безопасного оборудования.
Известен также способ извлечения урана из фосфорнокислых растворов путем многоступенчатой противоточной экстракции с использованием в качестве органической фазы смеси диалкилфосфорной кислоты и триалкилфосфиноксида в инертном разбавителе (Патент СССР №858572, МПК C22B 60/02, опубл. 23.08.81).
Большое количество задействованного оборудования и высокие капитальные затраты, необходимые для создания замкнутого экстракционного цикла, ограничивают применение этого метода.
Наиболее близким по технической сущности и решаемой задаче к заявляемому изобретению прототипом является способ извлечения урана из фосфорсодержащих растворов, полученных в результате кислотного вскрытия монацитовых концентратов. Метод заключается в практически полной нейтрализации свободной кислоты аммиаком (pH~6,0) и последующем отделении урансодержащего осадка посредством фильтрации (И.Н. Бекман, Лекции МГУ «Торий», 2010 г., 136 с.).
Недостатком метода является низкая степень осаждения урана, обусловленная тем, что в техногенных растворах, образовавшихся в результате применения методики Дэвиса-Грея, по крайней мере, часть урана имеет валентность U4+ и образует не осаждаемый аммиаком химический комплекс. Кроме того, образующийся в более щелочной среде фосфат аммония обладает существенно меньшей растворимостью по сравнению с его ди- и гидро-фосфатами, что реально затрудняет дальнейший передел ввиду склонности системы к спонтанной кристаллизации.
Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении степени извлечения урана из концентрированных по фосфат иону растворов, с получением перерабатываемого концентрата урана и низкоактивных маточных растворов.
Технический результат достигается тем, что в способе извлечения урана из фосфорнокислых растворов, включающем введение в исходный раствор осадителя, корректировку кислотности, фильтрацию и переработку полученного осадка, согласно изобретению в исходный фосфорнокислый раствор предварительно вводят окислитель, проводят корректировку кислотности аммиаком до значения pH (2.8÷4,0) при температуре (20÷35)°C, а полученный после фильтрации осадок обрабатывают (20÷35)% раствором NaOH при температуре (80÷85)°C в течение (1,5÷2,0) часов.
При этом окислитель может быть выбран из ряда: KMnO4, K2Cr2O7, HNO3, H2O2, KClO3.
Заявляемый способ отличается от известного тем, что в исходный раствор вводят окислитель, например насыщенный водный раствор перманганата калия до получения устойчивой фиолетовой окраски, свидетельствующей о завершении перехода U4+=>U6+. Далее свободную кислоту нейтрализуют водным раствором аммиака до pH 2,8÷4,0, одновременно поддерживая температуру в диапазоне 20÷35°C.
Необходимость поддержания обозначенного температурного диапазона обусловлена тем, что при температуре более 35°C имеет место термическое разложение перманганата калия и, соответственно, его непроизводительный расход, в то время как снижение температуры ниже 20°C существенно замедляет протекание жидкофазных окислительно-восстановительных реакций. Выбор интервала значений pH определяется тем, что при pH менее 2,8 возрастает содержание урана в маточном растворе, а при pH более 4,0 происходит образование фосфата аммония, существенно менее растворимого, чем гидрофосфатные формы.
Достижению технического результата способствует то, что полученный после фильтрации осадок обрабатывают 20÷35% раствором едкого натра при температуре 80÷85°C в течение 1,5÷2,0 часов. Это сделано для того, чтобы сократить содержание фосфора в выделенном из исходного раствора урановом концентрате, обеспечив тем самым его безусловную пригодность для дальнейшей аффинажной переработки.
Сущность предложенного технического решения поясняется примерами конкретного осуществления.
В таблице представлен типичный химический состав отработанных урансодержащих фосфатных растворов в результате химического анализа, проводимого стандартизированным титриметрическим методом Дэвиса-Грея, на содержание урана в его различных производных (оксидах, нитридах, карбидах и др.). (Отраслевая инструкция. Методика потенциометрического определения урана, 2000, 33 с. ОИ 001.493-00).
Таблица
Химическое вещество Концентрация
Уран общий (2,0-4,6) г/л
Ортофосфорная кислота 384 г/л; 4M; 12N
Сульфаминовая кислота 5,7 г/л
Бихромат калия 1,2 г/л
Азотная кислота 43,4 г/л; 0,7N
Молибдат аммония 0,36 г/л
Сульфат железа 6,72 г/л
Серная кислота 2,16 г/л
Ванадат аммония 0,044 г/л
Пример 1. Исходный раствор представленного выше состава, взятый в количестве 1,0 л, обработали 25% аммиаком до получения значения pH=6,8. После фильтрации получили 1,66 л маточного раствора, содержащего 0,6 г/л урана. Таким образом, его степень осаждения не превысила 80%.
Пример 2. В 1,0 л исходного раствора ввели ≈20 мл насыщенного раствора KMnO4 до получения устойчивой слабо-фиолетовой окраски. Затем, избегая перегрева раствора, ввели 25% аммиак до pH=3,5. После фильтрации, остаточное содержание урана в маточном растворе составило 0,03 г/л. Удельная активность таких растворов при соотношении изотопов 235/238≈9 не превышает 3,7·105 Бк/кг. Это позволяет отнести их к категории низкоактивных и существенно упрощает и удешевляет дальнейшую утилизацию.
Пример 3. В 1,0 л исходного раствора добавили ≈25 мл раствора перманганата калия до получения слабо-фиолетовой окраски, а затем, постепенно добавляя аммиак, довели pH раствора до значения 4,5. Отфильтровали выпавший осадок, а раствор проанализировали на содержание урана, которое составило 0,07 г/л. Следовательно, дальнейшее снижение кислотности системы не способствует полноте осаждения.
Пример 4. 30 л исходного раствора обработали аммиаком по предлагаемой процедуре, отфильтровали полученный осадок и обработали его 25% раствором едкого натра при температуре 85°C в течение 1,5 часов. Вес полученного в итоге химического концентрата составил 422 г при содержании урана 25,0% мас., что соответствует степени извлечения >96%.
Таким образом, как видно из приведенных примеров, заявляемое техническое решение в виде совокупности предлагаемых операций и параметров их проведения, обладает новизной, технически осуществимо и обеспечивает экономическую эффективность.
Экономическая эффективность от использования изобретения обусловлена высокой степенью извлечения урана, возвратом высокообогащенного урана в топливный цикл, ликвидацией значительного объема среднеактивных жидких отходов посредством их переведения в категорию низкоактивных, сокращением затрат, связанных с поддержанием режима их безопасного долговременного хранения, учета и контроля.

Claims (2)

1. Способ извлечения урана из фосфорнокислых растворов, включающий осаждение урансодержащего осадка из исходного раствора путем корректировки кислотности, фильтрацию и переработку полученного осадка, отличающийся тем, что в исходный фосфорнокислый раствор предварительно вводят окислитель, корректировку кислотности проводят аммиаком до значения pH 2,8÷4,0 при температуре 20÷35°C, и полученный после фильтрации осадок обрабатывают 20÷35%-ным раствором NaOH при температуре 80÷85°C в течение 1,5÷2,0 часов.
2. Способ по п.1, отличающийся тем, что окислитель выбирают из ряда: KMnO4, K2Cr2O7, HNO3, H2O2, KClO3.
RU2013151273/02A 2013-11-19 2013-11-19 Способ извлечения урана из фосфорнокислых растворов RU2536312C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013151273/02A RU2536312C1 (ru) 2013-11-19 2013-11-19 Способ извлечения урана из фосфорнокислых растворов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013151273/02A RU2536312C1 (ru) 2013-11-19 2013-11-19 Способ извлечения урана из фосфорнокислых растворов

Publications (1)

Publication Number Publication Date
RU2536312C1 true RU2536312C1 (ru) 2014-12-20

Family

ID=53286325

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013151273/02A RU2536312C1 (ru) 2013-11-19 2013-11-19 Способ извлечения урана из фосфорнокислых растворов

Country Status (1)

Country Link
RU (1) RU2536312C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809327A (en) * 1954-12-31 1959-02-25 Atomic Energy Authority Uk Recovery of uranium from ores thereof
FR2376215A1 (fr) * 1976-12-28 1978-07-28 Minatome Corp Procede d'extraction de l'uranium de ses minerais utilisant des solutions de carbonates et de bicarbonates alcalinoterreux en presence de gaz carbonique
US4430308A (en) * 1982-12-13 1984-02-07 Mobil Oil Corporation Heated ion exchange process for the recovery of uranium
EP0204217A1 (en) * 1985-05-28 1986-12-10 Sumitomo Chemical Company, Limited Recovery of metals adsorbed on chelating agents
RU2323989C2 (ru) * 2005-05-17 2008-05-10 Александр Васильевич Вальков Способ переработки монацита
RU2489510C2 (ru) * 2011-06-08 2013-08-10 Закрытое акционерное общество "Далур" Способ извлечения концентрата природного урана из сернокислых растворов подземного выщелачивания и установка для его осуществления

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809327A (en) * 1954-12-31 1959-02-25 Atomic Energy Authority Uk Recovery of uranium from ores thereof
FR2376215A1 (fr) * 1976-12-28 1978-07-28 Minatome Corp Procede d'extraction de l'uranium de ses minerais utilisant des solutions de carbonates et de bicarbonates alcalinoterreux en presence de gaz carbonique
US4430308A (en) * 1982-12-13 1984-02-07 Mobil Oil Corporation Heated ion exchange process for the recovery of uranium
EP0204217A1 (en) * 1985-05-28 1986-12-10 Sumitomo Chemical Company, Limited Recovery of metals adsorbed on chelating agents
RU2323989C2 (ru) * 2005-05-17 2008-05-10 Александр Васильевич Вальков Способ переработки монацита
RU2489510C2 (ru) * 2011-06-08 2013-08-10 Закрытое акционерное общество "Далур" Способ извлечения концентрата природного урана из сернокислых растворов подземного выщелачивания и установка для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БЕКМАН И.Н. Лекции МГУ "ТОРИЙ".2010, лекции 2-7. *

Similar Documents

Publication Publication Date Title
Liu et al. Separation and recovery of vanadium and aluminum from oxalic acid leachate of shale by solvent extraction with Aliquat 336
Tavakoli et al. Separation of vanadium from iron by solvent extraction using acidic and neutral organophosporus extractants
EP2964794B1 (en) A method for re-extraction of rare-earth metals from organic solutions and preparing concentrate of rare-earth metals
Kulkarni Recovery of uranium (VI) from acidic wastes using tri-n-octylphosphine oxide and sodium carbonate based liquid membranes
US4599221A (en) Recovery of uranium from wet process phosphoric acid by liquid-solid ion exchange
US20190139663A1 (en) Method for Collecting Uranium by Treatment Process of Washing Waste Liquid Generated in Uranium Hexafluoride Cylinder Washing Process
BR112017001370B1 (pt) método para recuperação de terras raras por meio de extração fracionada
CN101760650B (zh) 一种含钒石煤中钒的湿法浸出方法
Xu et al. Separation of zirconium and hafnium by solvent extraction using mixture of DIBK and P204
Barghusen et al. Processing of monazite sands
RU2536312C1 (ru) Способ извлечения урана из фосфорнокислых растворов
US2849286A (en) Method of processing monazite sand
CN108707766B (zh) 一种从石煤酸浸液中分离回收铀和钼的方法
CN106636690A (zh) 一种酸性含硝酸铵含铀废水中铀的回收方法
CA2596708A1 (en) Chemical beneficiation of raw material, containing tantalum-niobium
US3104940A (en) Process for the separation of thorium and uranium salts
CN107151031A (zh) 一种从铪钛富集渣中制备氧化铪的方法
Mukhachev et al. Purification of rare earth elements from thorium, uranium, and radioactive isotopes
FI66823C (fi) Foerfarande foer tillvaratagning av uran ur oren fosforsyra
CN107805727B (zh) 一种从湿法磷酸中回收铀的方法
RU2398902C1 (ru) Способ гидрометаллургической переработки ренийсодержащего молибденитового концентрата
DE3005163A1 (de) Verfahren zur trennung von vanadium und molybdaen durch reaktiven ionenaustausch
RU2477758C1 (ru) Способ извлечения америция
RU2611001C1 (ru) Способ экстракционного разделения скандия и тория
RU2654818C1 (ru) Способ извлечения палладия из кислого медьсодержащего раствора