RU2398902C1 - Способ гидрометаллургической переработки ренийсодержащего молибденитового концентрата - Google Patents

Способ гидрометаллургической переработки ренийсодержащего молибденитового концентрата Download PDF

Info

Publication number
RU2398902C1
RU2398902C1 RU2009111621A RU2009111621A RU2398902C1 RU 2398902 C1 RU2398902 C1 RU 2398902C1 RU 2009111621 A RU2009111621 A RU 2009111621A RU 2009111621 A RU2009111621 A RU 2009111621A RU 2398902 C1 RU2398902 C1 RU 2398902C1
Authority
RU
Russia
Prior art keywords
molybdenum
rhenium
stage
solution
sorption
Prior art date
Application number
RU2009111621A
Other languages
English (en)
Inventor
Владимир Александрович Пеганов (RU)
Владимир Александрович Пеганов
Татьяна Викторовна Молчанова (RU)
Татьяна Викторовна Молчанова
Константин Михайлович Смирнов (RU)
Константин Михайлович Смирнов
Евгения Васильевна Жарова (RU)
Евгения Васильевна Жарова
Сергей Александрович Молчанов (RU)
Сергей Александрович Молчанов
Original Assignee
Российская Федерация, от имени которой выступает государственный заказчик-Государственная корпорация по атомной энергии "Росатом"
Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает государственный заказчик-Государственная корпорация по атомной энергии "Росатом", Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии" filed Critical Российская Федерация, от имени которой выступает государственный заказчик-Государственная корпорация по атомной энергии "Росатом"
Priority to RU2009111621A priority Critical patent/RU2398902C1/ru
Application granted granted Critical
Publication of RU2398902C1 publication Critical patent/RU2398902C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к гидрометаллургии редких тугоплавких металлов, в частности молибдена и рения. Способ гидрометаллургической переработки ренийсодержащего молибденитого концентрата включает автоклавное выщелачивание молибдена и рения раствором азотной кислоты с образованием раствора, содержащего азотную и серную кислоты. Затем ведут фильтрацию и промывку остатка в виде молибденовой кислоты, растворение ее в аммиачной воде, извлечение молибдена и рения. При этом из раствора после автоклавного выщелачивания проводят извлечение рения сорбцией в две стадии при продолжительности контакта фаз на каждой стадии 22-24 часа, поддержании на первой стадии суммарной концентрации серной и азотной кислот ≤120 г/л и поддержании значения рН 2-4 на второй стадии. Извлечение молибдена проводят из объединенного раствора, полученного из раствора после сорбционного извлечения рения и из аммиачного раствора растворения молибденовой кислоты и ведут его сорбцией в две ступени при продолжительности контакта фаз на каждой ступени 22-24 часа и поддержании величины рН 1,5-2,0 на первой ступени и рН 2,5-4,0 на второй ступени. Техническим результатом является повышение выхода молибдена и рения в готовую продукцию, достижение ее высокого качества, упрощение технологии и повышение производительности процесса.

Description

Изобретение относится к гидрометаллургии редких, тугоплавких металлов, в частности молибдена и рения. Наиболее эффективно заявляемый способ может быть использован для получения чистых соединений молибдена и рения из кондиционных молибденренийсодержащих концентратов.
Известны гидрометаллургические способы окислительного разложения молибденитовых концентратов [Зеликман А.Н. Металлургия тугоплавких редких металлов. М.: «Металлургия», 1986, с.129-144]. Эти способы характеризуются повышенным расходом химических реагентов, недостаточно высоким извлечением молибдена и рения в готовую продукцию, сложностью процесса.
Известен также метод извлечения молибдена из маточных растворов производства молибдата аммония с использованием анионита с последующей десорбцией аммиачными растворами [Зеликман А.Н. Молибден. М.: «Металлургия», 1970, с.155]. Недостатками указанного способа являются невысокая степень извлечения молибдена, низкая эффективность процесса извлечения молибдена и рения.
Наиболее близким по технической сущности и достигаемому результату к заявляемому способу является способ автоклавного разложения молибденитовых продуктов азотной кислотой с последующим извлечением молибдена и рения [Никитина Л.С. Разложение молибденитовых продуктов азотной кислотой. - Цветные металлы, 1983, №4, с.64]. По этому способу проводят совместное извлечение молибдена и рения после автоклавного разложения из раствора, содержащего ≤4% HNO3, экстракцией 20% смесью триоктиламина и тридециламина, 10% додеканола и 70% растворителя при соотношении о:в=1:1. Из раствора молибдатаперрената аммония сорбируют рений на сильноосновном ионите. Рений десорбируют хлорной кислотой, из хлорного элюата рений выделяют кристаллизацией.
Недостатками известного способа являются низкое извлечение молибдена и рения в готовую продукцию, сложность технологической схемы из-за первоначального совместного извлечения молибдена и рения и последующего их разделения, и как следствие, «размазывания» рения по технологической цепочке, а также применение значительных количеств органических пожароопасных и взрывоопасных веществ и возможность их попадания в сбросные растворы аммонийных солей, используемых в сельском хозяйстве, еще больше усложняет задачу промышленной реализации способа.
Техническим результатом является устранение указанных недостатков, а именно повышение извлечения молибдена и рения в готовую продукцию, упрощение технологической схемы и повышение производительности процесса.
Этот технический результат достигается тем, что в способе гидрометаллургической переработки ренийсодержащего молибденитового концентрата, включающем автоклавное выщелачивание молибдена и рения раствором азотной кислоты с образованием раствора, содержащего азотную и серную кислоты, фильтрацию и промывку остатка в виде молибденовой кислоты, растворение ее в аммиачной воде, извлечение молибдена и рения, согласно изобретению из раствора после автоклавного выщелачивания проводят извлечение рения сорбцией в две стадии при продолжительности контакта фаз на каждой стадии 22-24 часа, поддержании на первой стадии суммарной концентрации, серной и азотной кислот ≤120 г/л и поддержании значения рН 2-4 на второй стадии. Извлечение молибдена проводят из объединенного раствора, полученного из раствора после сорбционного извлечения рения и из аммиачного раствора растворения молибденовой кислоты и ведут его сорбцией в две ступени при продолжительности контакта фаз на каждой ступени 22-24 часа и поддержании величины рН 1,5-2,0 на первой ступени и рН 2,5-4,0 на второй ступени.
Сущность способа заключается в том, что первоначально из растворов после автоклавного разложения концентратов проводят сорбцию рения, а потом молибдена, что позволяет упростить процесс, так как не происходит «размазывания» рения по схеме и значительно увеличивается извлечение молибдена и рения.
Продолжительность процесса контакта фаз на каждой стадии сорбции рения и каждой ступени сорбции молибдена определена 22-24 часа. Нижний предел времени ограничен снижением извлечения металлов, а верхний - совершенно незначительным повышением извлечения.
Рений практически одинаково хорошо извлекается из растворов с кислотностью от 120 г/л и до рН 1,5; при кислотности более 120 г/л извлечение его падает, а при рН выше 1,5 увеличивается расход реагентов на нейтрализацию раствора.
Вторую стадию сорбции рения проводят из аммиачных элюатов первой стадии с корректировкой кислотности исходного раствора до значения рН 2,0-4,0. Верхний предел рН 4,0 определяется степенью извлечения рения, а нижний предел рН 2,0 ограничен расходом нейтрализующего раствора гидроксида аммония.
При больших концентрациях H2SO4 невозможно глубоко извлечь молибден. Высокую степень извлечения молибдена с необходимой сбросной концентрацией (менее 30 мг/л) можно получить лишь в слабокислой среде. Проведение процесса сорбции в две ступени позволяет извлечь основное количество молибдена (до 80-90%) из сравнительно кислых растворов на первой ступени (рН 1,5-2,0) и обеспечить сбросные концентрации, а также высокое извлечение молибдена на второй ступени при проведении процесса в оптимальном режиме (рН 2,5-4,0).
Нижний предел величины pH 1,5 первой ступени ограничен снижением извлечения молибдена и получением сбросных концентраций молибдена в растворе, верхний предел определен образованием осадков и трудностями проведения технологического процесса.
Нижний предел величины рН 2,5 второй ступени ограничен снижением извлечения молибдена, верхний предел рН 4,0 - образованием осадков.
Данный способ позволяет повысить извлечение молибдена и рения в готовую продукцию, упростить технологическую схему и повысить производительность процесса.
Способ реализуется следующим образом.
Пример
Молибденитовый концентрат, содержащий 46,95% молибдена и 0,0256% рения, поступал на автоклавное выщелачивание при соотношении т:ж=1:8, начальной концентрации HNO3 - 10 г/л, продолжительности процесса 4 часа, реальном соотношении в конечном растворе HNO3:H2SO4=1:10-15. После разложения концентрата, фильтрации и промывки в растворе получено содержание 26,4 мг/л рения и 13,9 г/л молибдена; твердую молибденовую кислоту растворяли в аммиачной воде (22 вec.% NH3) в течение 1 часа при температуре 20°С.
Раствор после автоклавного выщелачивания концентрата и промывные воды с операции промывки молибденовой кислоты, содержащий 0,025 г/л рения и 12 г/л молибдена, кислотность по H2SO4+HNO3=100 г/л, в том числе концентрация HNO3 4% от общей суммы, поступал на первую стадию сорбции рения на амфолите ВП-14КР в течение 23 часов. Маточник сорбции рения, содержащий 0,3 мг/л рения, направляли на первую ступень сорбционного извлечения молибдена, часть маточника использовали на последующей стадии регенерации ионита после десорбции. Десорбцию рения проводили раствором с концентрацией аммиака 100 г/л в течение 16 часов; содержание рения в первом товарном десорбате составило 0,4 г/л. Из этого товарного десорбата после корректировки кислотности исходного раствора до рН 3,0 проводили вторую стадию сорбции рения аналогично первой. Маточник второй стадии сорбции рения направляли на первую ступень сорбции молибдена. Вторичные десорбаты, содержащие 2 г/л рения, направляли на экстракционное концентрирование рения триалкиламином. Реэкстракцию рения осуществляли 10%-ным раствором аммиака. Рениевый реэкстракт упаривали до концентрации рения 100 г/л и проводили кристаллизацию перрената аммония, качество которого удовлетворило требованиям ОСТ 26-46-80 марки АР-1.
На сорбционное извлечение молибдена поступал объединенный раствор, включающий маточники сорбции рения и аммиачный раствор после растворения молибденовой кислоты. Первую ступень сорбции молибдена проводили в течение 23 часов из раствора, содержащего 29,7 г/л молибдена, использовали анионит ВП-1п; нейтрализацию избыточной кислотности до рН 1,8 осуществляли раствором гидроксида аммония. Ион аммония предпочтительнее в плане получения необходимого качества готовой продукции и утилизации сбросных растворов всей схемы.
Маточник первой ступени сорбции молибдена после корректировки рН до 3,0 раствором гидроксида аммония направляли на вторую ступень, которую осуществляли в аналогичных условиях, что на первой ступени.
Процесс десорбции молибдена с насыщенного ионита на обеих ступенях проводили раствором с концентрацией аммиака 100 г/л. Товарные десорбаты с содержанием молибдена 100 г/л после дополнительной очистки от фосфора, мышьяка и кремния направляли на кристаллизацию сначала полимолибдата аммония, а затем парамолибдата аммония, качество которого превосходило нормы ТУ 95.380-82.
В результате проведенных экспериментов было установлено, что осуществление сорбционного извлечения сначала рения, а потом молибдена в указанных условиях по сравнению со способом-прототипом обеспечивает повышение выхода в готовую продукцию молибдена с 99,0 до 99,9%, а рения с 70 до 95%, создать упрощенную малоотходную, экологически безопасную технологическую схему, обеспечивающую высокое качество готовых продуктов. Дополнительным преимуществом является снижение расхода реагентов и утилизация сбросных растворов аммонийных солей.
Таким образом, реализация заявленного способа позволяет обеспечить повышение выхода молибдена и рения в готовую продукцию, достичь ее высокого качества, упростить технологию и повысить производительность процесса.

Claims (1)

  1. Способ гидрометаллургической переработки ренийсодержащего молибденитового концентрата, включающий автоклавное выщелачивание молибдена и рения раствором азотной кислоты с образованием раствора, содержащего азотную и серную кислоты, фильтрацию и промывку остатка в виде молибденовой кислоты, растворение ее в аммиачной воде, извлечение молибдена и рения, отличающийся тем, что из раствора после автоклавного выщелачивания проводят извлечение рения сорбцией в две стадии при продолжительности контакта фаз на каждой стадии 22-24 ч, поддержании на первой стадии суммарной концентрации серной и азотной кислот ≤120 г/л и поддержании значения рН=2-4 на второй стадии, а извлечение молибдена проводят из объединенного раствора, полученного из раствора после сорбционного извлечения рения и из аммиачного раствора растворения молибденовой кислоты, и ведут его сорбцией в две ступени при продолжительности контакта фаз на каждой ступени 22-24 ч и поддержании величины рН=1,5-2,0 на первой ступени и рН=2,5-4,0 на второй ступени.
RU2009111621A 2009-03-30 2009-03-30 Способ гидрометаллургической переработки ренийсодержащего молибденитового концентрата RU2398902C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009111621A RU2398902C1 (ru) 2009-03-30 2009-03-30 Способ гидрометаллургической переработки ренийсодержащего молибденитового концентрата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009111621A RU2398902C1 (ru) 2009-03-30 2009-03-30 Способ гидрометаллургической переработки ренийсодержащего молибденитового концентрата

Publications (1)

Publication Number Publication Date
RU2398902C1 true RU2398902C1 (ru) 2010-09-10

Family

ID=42800529

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009111621A RU2398902C1 (ru) 2009-03-30 2009-03-30 Способ гидрометаллургической переработки ренийсодержащего молибденитового концентрата

Country Status (1)

Country Link
RU (1) RU2398902C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361500A (zh) * 2013-07-25 2013-10-23 江西铜业股份有限公司 一种含铼钼焙砂中铼的分离方法
RU2693223C1 (ru) * 2019-02-01 2019-07-01 Илья Евгеньевич Колпаков Способ гидрометаллургической переработки ренийсодержащего молибденитового сырья

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
НИКИТИНА Л.С. Разложение молибденитовых продуктов азотной кислотой, Цветные металлы, 1983, № 4, с.64. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361500A (zh) * 2013-07-25 2013-10-23 江西铜业股份有限公司 一种含铼钼焙砂中铼的分离方法
CN103361500B (zh) * 2013-07-25 2014-12-24 江西铜业股份有限公司 一种含铼钼焙砂中铼的分离方法
RU2693223C1 (ru) * 2019-02-01 2019-07-01 Илья Евгеньевич Колпаков Способ гидрометаллургической переработки ренийсодержащего молибденитового сырья

Similar Documents

Publication Publication Date Title
EP3093354B1 (en) Scandium recovery method
CN104831075B (zh) 一种废钒钼系scr催化剂的钒、钼分离和提纯方法
CN100420761C (zh) 一种从钼精矿焙烧烟道灰及淋洗液中提取铼的方法
EP3904546B1 (en) Process for recovering components from alkaline batteries
US10156002B2 (en) Method for recovering scandium
CN111630001B (zh) 高纯度氧化钪的制造方法
DE2501284C3 (de) Verfahren zur Aufarbeitung von Manganknollen und Gewinnung der in ihnen enthaltenen Wertstoffe
KR102514227B1 (ko) 리튬 회수 방법
KR102172325B1 (ko) 폐기물 소각으로부터 회분을 회수하는 방법
RU2736539C1 (ru) Способ получения оксида ванадия батарейного сорта
AU2011243991B2 (en) Industrial extraction of uranium using ammonium carbonate and membrane separation
US3458277A (en) Process for the recovery of molybdenum values as high purity ammonium paramolybdate from impure molybdenum-bearing solution,with optional recovery of rhenium values if present
CN113003592A (zh) 用于处理酸洗酸残余物的方法
CN104609683B (zh) 一种铬鞣污泥中重金属铬的再生方法
CN114959311B (zh) 一种从高铜钼精矿中综合回收稀贵金属的方法
WO2004099079A1 (en) A method for producing an electrolytic solution containing vanadium
EP2557067A1 (en) Method for preparing manganese sulfate monohydrate
JP5867727B2 (ja) 希土類元素の分離方法
RU2398902C1 (ru) Способ гидрометаллургической переработки ренийсодержащего молибденитового концентрата
CN104556522A (zh) 一种处理含钒、铬废水的方法
WO2016201456A1 (ru) Способ комплексной переработки черносланцевых руд
RU2608117C1 (ru) Способ переработки растворов после карбонатного вскрытия вольфрамовых руд
RU2506331C1 (ru) Способ получения вольфрамата аммония
JPH07286221A (ja) 非鉄金属製錬工程からのレニウムの回収方法
EP4163257A1 (en) Method for producing cobalt sulfate

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180331