RU2529876C1 - Устройство управления для транспортного средства - Google Patents

Устройство управления для транспортного средства Download PDF

Info

Publication number
RU2529876C1
RU2529876C1 RU2013114263/07A RU2013114263A RU2529876C1 RU 2529876 C1 RU2529876 C1 RU 2529876C1 RU 2013114263/07 A RU2013114263/07 A RU 2013114263/07A RU 2013114263 A RU2013114263 A RU 2013114263A RU 2529876 C1 RU2529876 C1 RU 2529876C1
Authority
RU
Russia
Prior art keywords
vehicle
combustion
internal combustion
combustion engine
angle
Prior art date
Application number
RU2013114263/07A
Other languages
English (en)
Other versions
RU2013114263A (ru
Inventor
Томоя МОРИ
Дзунсо ИТИБА
Синити КОБАЯСИ
Яйои ОКУМУРА
Томохико ТАКАХАСИ
Масаси ОНО
Кейсуке ХАМАНО
Масаюки ТОМИТА
Тосия КОУНО
Рицуо САТОУ
Хирокими КОЯМА
Тосио ТАКАХАТА
Масаюки СИМИДЗУ
Юуити ИРИЯ
Original Assignee
Ниссан Мотор Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ниссан Мотор Ко., Лтд. filed Critical Ниссан Мотор Ко., Лтд.
Application granted granted Critical
Publication of RU2529876C1 publication Critical patent/RU2529876C1/ru
Publication of RU2013114263A publication Critical patent/RU2013114263A/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/702Road conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/41Control to generate negative pressure in the intake manifold, e.g. for fuel vapor purging or brake booster
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/0225Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio or shift lever position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Изобретение относится к системам запуска двигателя внутреннего сгорания. Технический результат - расширение рабочего диапазона сгорания на основе послойного распределения заряда топлива при одновременном обеспечении отрицательного давления всасываемого воздуха, требуемого для достижения тормозной характеристики, и уменьшение содержания HC при стоянии транспортного средства на месте после холодного запуска. Двигатель внутреннего сгорания при стоянии транспортного средства на месте после холодного запуска может переключать свой режим сгорания на режим гомогенного сгорания или режим сгорания на основе послойного распределения заряда топлива. Рабочий диапазон сгорания на основе послойного распределения заряда топлива при стоянии транспортного средства на месте после холодного запуска расширяется относительно рабочего диапазона гомогенного сгорания при стоянии транспортного средства на месте после холодного запуска по мере того, как снижается угол наклона транспортного средства. 6 з.п. ф-лы, 6 ил.

Description

Область техники
Настоящее изобретение относится к устройству управления транспортного средства, оснащенного двигателем внутреннего сгорания, который при стоянии транспортного средства на месте после холодного запуска может изменять свой режим сгорания на сгорание на основе послойного распределения заряда топлива, сгорание обедненной смеси или гомогенное сгорание.
Уровень техники
К настоящему времени широко известно тормозное устройство, оснащенное усилителем для облегчения нажатия педали тормоза с помощью вакуума, сформированного посредством двигателя внутреннего сгорания.
Когда после приспособления гомогенного сгорания посредством снабжения цилиндров двигателя с гомогенной смесью "воздух-топливо" двигатель внутреннего сгорания транспортного средства переключается таким образом, что он приспосабливает сгорание на основе послойного распределения заряда топлива посредством подачи в район свечей зажигания более богатой смеси "воздух-топливо", появляется необходимость сильно открывать дроссельный клапан для вовлечения большего объема воздуха, чем в случае гомогенного сгорания, так что при сгорании на основе послойного распределения заряда топлива уменьшается (т.е. приближается к атмосферному давлению) вакуум, сформированный посредством двигателя внутреннего сгорания.
Например, в Патентном документе 1 раскрыта технология, в которой, когда, в случае получения вакуума для использования в качестве источника мощности для усилителя, требуемое значение тормозной силы равно или меньше предварительно определенного значения, запрещается переключение со сгорания на основе послойного распределения заряда топлива на гомогенное сгорание.
Технология Патентного документа 1 основана на такой предпосылке, что абсолютная величина тормозной силы определяется в соответствии со скоростью транспортного средства, и, таким образом, когда скорость транспортного средства является высокой, выполняется определение в отношении необходимости более высокой тормозной силы. Когда транспортное средство движется на подъеме, неизбежно происходит уменьшение скорости транспортного средства, и, таким образом, по мере того, как возрастает градиент подъема, выполняется такое определение, что большая тормозная сила не требуется. В Патентном документе 1 также раскрыта такая технология, в которой уровень определения тормозной силы может варьироваться в соответствии с углом наклона поверхности дороги.
Тем не менее, в технологии, раскрытой в Патентном документе 1, даже когда, при том что транспортное средство стоит на месте на дороге с уклоном, уровень определения тормозной силы управляется так, что он варьируется в соответствии с углом наклона поверхности дороги, абсолютная величина тормозной силы принудительно определяется на основе скорости транспортного средства, и, таким образом, имеется вероятность того, что требуемая тормозная сила не получается при стоянии транспортного средства на месте. Другими словами, когда, в технологии Патентного документа 1, транспортное средство стоит на месте на дороге с уклоном, существует вероятность того, что переключение между сгоранием на основе послойного распределения заряда топлива и гомогенным сгоранием не выполняется надлежащим образом в двигателе.
С учетом вышеизложенного в настоящем изобретении, когда транспортное средство стоит на месте после холодного запуска и тем самым катализатор в устройстве очистки выхлопного газа, установленном в выпускном канале двигателя, не активируется в достаточной степени, осуществляется такое управление, что рабочий диапазон сгорания на основе послойного распределения заряда топлива при стоянии на месте после холодного запуска увеличивается в соответствии с углом наклона (т.е. углом наклонения) транспортного средства, чтобы сдерживать неизбежно частое гомогенное сгорание в целях получения вакуума, направленного в тормозной усилитель, чтобы смягчать нажатие педали тормоза.
Патентные документы
Патентный документ 1: публикация выложенной заявки на патент Японии №11-50875.
Сущность изобретения
Устройство управления транспортного средства согласно настоящему изобретению применяется к двигателю внутреннего сгорания, который смонтирован в транспортном средстве и при стоянии транспортного средства на месте после холодного запуска может изменять свой режим сгорания на гомогенное сгорание, сгорание на основе послойного распределения заряда топлива или сгорание обедненной смеси, и вследствие работы устройства управления, по мере того, как снижается угол наклона транспортного средства, рабочий диапазон сгорания на основе послойного распределения заряда топлива или сгорания обедненной смеси при стоянии транспортного средства на месте после холодного запуска расширяется относительно рабочего диапазона гомогенного сгорания при стоянии транспортного средства на месте после холодного запуска.
В соответствии с изобретением рабочий диапазон сгорания на основе послойного распределения заряда топлива или сгорания обедненной смеси при стоянии транспортного средства на месте после холодного запуска расширяется в зависимости от угла наклона транспортного средства, и, таким образом, рабочий диапазон сгорания на основе послойного распределения заряда топлива или сгорания обедненной смеси может быть расширен при одновременном обеспечении отрицательного давления всасываемого воздуха, требуемого для достижения тормозной характеристики, и тем самым достигается уменьшение содержания HC при стоянии транспортного средства на месте после холодного запуска.
Краткое описание чертежей
Фиг.1 является иллюстрацией, схематично показывающей конфигурацию системы двигателя внутреннего сгорания, к которому фактически применяется настоящее изобретение;
Фиг.2 является иллюстрацией, изображающей корреляцию между вакуумом, требуемым для достижения тормозной характеристики, и углом наклона транспортного средства;
Фиг.3 является иллюстрацией, схематично изображающей диапазон сгорания на основе послойного распределения заряда топлива и диапазон гомогенного сгорания при стоянии транспортного средства на месте после холодного запуска, причем эти диапазоны управляются посредством устройства управления транспортного средства согласно настоящему изобретению;
Фиг.4 является иллюстрацией, схематично изображающей один пример переключения между пороговым значением для высокой частоты вращения и пороговым значением для низкой частоты вращения;
Фиг.5 является блок-схемой последовательности операций способа, показывающей последовательность этапов работы, выполняемую посредством устройства управления транспортного средства настоящего изобретения; и
Фиг.6 является блок-схемой последовательности операций способа, показывающей последовательность этапов работы, выполняемую посредством устройства управления транспортного средства настоящего изобретения.
Подробное описание вариантов осуществления изобретения
Далее подробно описывается вариант осуществления настоящего изобретения со ссылкой на прилагаемые чертежи. Фиг.1 является иллюстрацией, схематично показывающей конфигурацию системы двигателя 1 внутреннего сгорания (двигателя), к которому фактически применяется настоящее изобретение.
Двигатель 1 внутреннего сгорания принадлежит к типу с непосредственным впрыском, который непосредственно впрыскивает топливо в камеру 3 сгорания посредством использования клапана 2 впрыска топлива, и топливо, впрыскиваемое в камеру 3 сгорания, поджигается посредством свечи 4 зажигания. С камерой 3 сгорания соединяются впускной и выпускной каналы 6 и 8 через впускной и выпускной клапаны 5 и 7 соответственно. В клапан 2 впрыска топлива подается высоконапорное топливо посредством высоконапорного топливного насоса 9.
С двигателем 1 внутреннего сгорания соединяются датчик 12 температуры воды, который определяет температуру охлаждающей воды, протекающей в водяной рубашке 11, датчик 13 температуры масла, который определяет температуру моторного масла, и датчик 14 угла поворота коленчатого вала, который определяет частоту вращения двигателя 1 внутреннего сгорания.
Двигатель 1 внутреннего сгорания оснащается нагнетателем 16, который имеет турбину 17 с приводом от выхлопной системы и компрессор 18, смонтированный на общем валу. Нагнетатель 16 может прикладывать давление наддува, подходящее для рабочих условий, посредством регулирования степени открытия запорного клапана регулирования давления наддува (не показан).
В выпускном канале 8, размещаемом ниже турбины 17 с приводом от выхлопной системы, совместно размещаются два трехкомпонентных каталитических нейтрализатора 25 и 26 отработавших газов. Трехкомпонентные каталитические нейтрализаторы 25 и 26 отработавших газов имеют устройство, которое демонстрирует максимальную эффективность преобразования в NOx, HC и CO одновременно, когда состав смеси "воздух-топливо" находится внутри окна, которое имеет теоретический состав смеси "воздух-топливо" в центральной позиции. В позиции выше трехкомпонентного каталитического нейтрализатора 25 отработавших газов размещается A/F-датчик 27, который определяет состав отработанной смеси "воздух-топливо", а между трехкомпонентным каталитическим нейтрализатором 25 отработавших газов и другим трехкомпонентным каталитическим нейтрализатором 26 отработавших газов размещается кислородный датчик 28. Кроме того, в выпускном канале 8, размещаемом выше турбины 17 с приводом от выхлопной системы, размещается датчик 29 температуры выхлопных газов, который определяет температуру выхлопного газа. A/F-датчик 27 представляет собой глобальный датчик состава смеси "воздух-топливо", который демонстрирует, в общем, линейную выходную характеристику в соответствии с составом отработанной смеси "воздух-топливо", а кислородный датчик 28 представляет собой датчик, который определяет только богатое или бедное состояние состава смеси "воздух-топливо" при выводе изменения напряжения в виде "подается/не подается" в ограниченном диапазоне около теоретического состава смеси "воздух-топливо".
Впускной канал 6 оснащается воздушным фильтром 31, и ниже воздушного фильтра размещаются расходомер 32 воздуха, который определяет объем расхода воздуха, компрессор 18 указанного нагнетателя 16, промежуточный охладитель 33, который охлаждает нагретый воздух, который нагнетается, дроссельный клапан 34 и коллектор 35 всасываемого воздуха. С впускным каналом 6 соединяется обводной канал 36, который обходит компрессор 18. С обводным каналом 36 соединяется рециркуляционный клапан 37, который проводит рециркуляцию нагнетаемого воздуха.
Ссылочной позицией 38 на фиг.1 обозначен датчик давления всасываемого воздуха, который соединяется с впускным каналом 6, чтобы определять давление всасываемого воздуха (т.е. отрицательное давление всасываемого воздуха), возникающее между промежуточным охладителем 33 и дроссельным клапаном 34. Расходомер 32 воздуха имеет тип с установленным температурным датчиком, и тем самым он имеет возможность определять температуру всасываемого воздуха, протекающего во впускном канале выше компрессора 18.
С коллектором 35 всасываемого воздуха, размещаемым ниже дроссельного клапана 34, соединяется канал 41 для создания отрицательного давления, который подает отрицательное давление в тормозной усилитель 40, который использует отрицательное давление в качестве мощности для усиления, и продувочный канал 43, который вводит парообразное топливо, образующееся в топливном баке 42. С коллектором 35 всасываемого воздуха соединяется датчик 44 температуры всасываемого воздуха, который определяет температуру всасываемого воздуха, протекающего во впускном канале ниже промежуточного охладителя 33.
Тормозной усилитель 40 является устройством для облегчения нажатия педали тормоза, которое дополнительно усиливает силу нажатия педали тормоза с помощью отрицательного давления всасываемого воздуха, сформированного посредством коллектора 35 всасываемого воздуха.
Продувочный канал 43 имеет установленный продувочный регулирующий клапан 46. С продувочным каналом 43 соединяется бачок 47 для очистки парообразного топливного газа, образующегося в топливном баке 42. Продувочный регулирующий клапан 46 управляется, например, с возможностью увеличивать расход парообразного топливного газа для продувки с увеличением расхода всасываемого воздуха.
С продувочным портом бачка 47, с которым соединяется продувочный канал 43, соединяется датчик 48 давления, который определяет давление в продувочном порту, внутреннее давление продувочного канала 43, а именно внутреннее давление продувочного канала 43, и в варианте осуществления атмосферное давление определяется посредством использования определенного значения датчика 48 давления. Кроме того, в варианте осуществления определенное значение датчика 48 давления вводится в ECM 51 (т.е. модуль управления двигателем), и на основе определенного значения датчика 48 давления ECM 51 вычисляет высоту местоположения позиции, в которой размещается транспортное средство. В случае, например, варианта осуществления двигатель 1 внутреннего сгорания, оснащенный нагнетателем 16, требует показания атмосферного давления, и тем самым двигатель 1 имеет в дополнение к датчику 48 давления, соединенному с продувочным каналом 43, датчик атмосферного давления (не показан), который определяет атмосферное давление, можно оценивать высоту местоположения позиции посредством обработки определенного значения датчика давления.
EMC 51 имеет установленный микрокомпьютер и выполняет различные операции управления для двигателя 1 внутреннего сгорания, а также осуществляет обработку на основе сигналов из различных датчиков. В варианте осуществления в EMC 51 вводятся, помимо сигнала из вышеуказанного датчика 48 давления, сигналы из датчика 52 ускорения, который определяет угол наклона в продольном направлении транспортного средства, и датчика 53 скорости транспортного средства на основе кодирования по углу поворота, который определяет скорость транспортного средства и начало движения транспортного средства, а также различные сигналы из вышеуказанного датчика 12 температуры воды, датчика 13 температуры масла, датчика 14 угла поворота коленчатого вала, расходомера 32 воздуха, датчика 38 давления всасываемого воздуха, датчика 44 температуры всасываемого воздуха, датчика 29 температуры выхлопных газов, A/F-датчика 27 и кислородного датчика 28. Если требуется, угол наклона в продольном направлении транспортного средства может быть оценен из информации по навигации вместо сигнала из датчика 52 ускорения.
Благодаря работе ECM 51 переключение выполняется между двумя режимами сгорания в соответствии с рабочими условиями. Одним из двух режимов сгорания является режим сгорания на основе послойного распределения заряда топлива, в котором посредством впрыска топлива в цилиндр во время хода сжатия более богатая смесь "воздух-топливо" формируется вокруг свечи зажигания и поджигается, а другим из двух режимов сгорания является режим гомогенного сгорания, в котором посредством впрыска топлива в цилиндр во время хода впуска, топливо диффундирует таким образом, что формируется гомогенная смесь "воздух-топливо", и смесь поджигается. Чтобы обеспечивать сгорание на основе послойного распределения заряда топлива с крутящим моментом, равным крутящему моменту, обеспечиваемому посредством гомогенного сгорания, объем впрыска при сгорании на основе послойного распределения заряда топлива, в общем, является идентичным объему впрыска при гомогенном сгорании и посредством увеличения открытия дроссельного клапана при гомогенном сгорании сгорание становится полностью обеденным. Поскольку при гомогенном сгорании дроссельный клапан открыт в значительной степени, насосные потери уменьшаются, и тем самым гомогенное сгорание является преимущественным при сгорании топлива.
В варианте осуществления посредством работы тормозного усилителя 40, который использует отрицательное давление всасываемого воздуха в качестве мощности для усиления, усиливается нажатие педали 45 тормоза, и, таким образом, если отрицательное давление всасываемого воздуха является низким (т.е. давление изменяется в таком направлении, что оно приближается к атмосферному давлению), у водителя возникает некомфортное ощущение, когда он нажимает педаль 45 тормоза, и в некоторых случаях имеется вероятность того, что требуемая тормозная сила получается только тогда, когда водитель нажимает педаль 45 тормоза с намного большей силой. Соответственно, необходимо обеспечивать поддержание определенной величины отрицательного давления всасываемого воздуха. Следует отметить, что в этом подробном описании уменьшение отрицательного давления всасываемого воздуха означает, что отрицательное давление всасываемого воздуха изменяется в таком направлении, что оно приближается к атмосферному давлению.
Тормозная сила, требуемая для остановки транспортного средства в момент, когда запускается двигатель, варьируется в зависимости от местоположения, в котором размещается транспортное средство. Например, в случае парковки транспортного средства на дороге под уклон тормозная сила, требуемая для остановки транспортного средства, увеличивается по мере того, как возрастает угол наклона дороги под уклон.
При сгорании на основе послойного распределения заряда топлива, которое реализует сгорание очень бедной смеси посредством формирования смеси "воздух-топливо" с послойным зарядом топлива в камере 3 сгорания, необходимо вовлекать большой объем воздуха посредством большого открытия дроссельного клапана по сравнению с гомогенным сгоранием, которое формирует гомогенную смесь "воздух-топливо" в камере 3 сгорания, и, таким образом, отрицательное давление всасываемого воздуха становится относительно сниженным. Иными словами, в случае сгорания на основе послойного распределения заряда топлива отрицательное давление всасываемого воздуха понижается по сравнению с гомогенным сгоранием, и, таким образом, невозможно предоставлять тормозной усилитель 40 с отрицательным давлением, которое может быть получено при гомогенном сгорании.
При этом для того чтобы улучшать рабочие характеристики выпуска выхлопных газов во время холодного запуска, желательно выполнять сгорание на основе послойного распределения заряда топлива, т.е. сгорание более бедной смеси, чем гомогенное сгорание.
Соответственно, в варианте осуществления осуществляется такое управление, что при стоянии транспортного средства на месте после холодного запуска рабочий диапазон сгорания на основе послойного распределения заряда топлива при стоянии транспортного средства на месте увеличивается в соответствии с углом наклона (градиентом) транспортного средства, так что достигается уменьшение содержания HC и повышение низкотемпературной активации трехкомпонентных каталитических нейтрализаторов 25 и 26 отработавших газов при стоянии транспортного средства на месте после холодного запуска посредством увеличения рабочего диапазона сгорания на основе послойного распределения заряда топлива при одновременном обеспечении отрицательного давления всасываемого воздуха, требуемого для достижения тормозной характеристики.
В варианте осуществления для определения того, стоит транспортное средство на месте или нет, определенный сигнал из датчика 53 скорости транспортного средства используется для определения начала движения транспортного средства, т.е. для определения того, начало или нет движение транспортное средство. Оценка для определения того, начало или нет движение транспортное средство, может быть выполнена после того, как определенный сигнал из датчика 53 скорости транспортного средства преобразуется в скорость транспортного средства. Тем не менее, по сравнению с этим способом другой способ, в котором начало движения транспортного средства определяется из определенного сигнала из датчика 53 скорости транспортного средства, является предпочтительным вследствие своей повышенной точности определения по сравнению с определением на основе скорости транспортного средства, т.е. поскольку ошибка является небольшой, даже если измерительная система является идентичной.
Корреляция между отрицательным давлением всасываемого воздуха, требуемым для достижения тормозной характеристики, и углом наклона (т.е. углом наклонения) транспортного средства в момент, когда двигатель 1 внутреннего сгорания начинает свою работу, имеет такую тенденцию, что, как видно из фиг.2, отрицательное давление всасываемого воздуха, требуемое для достижения тормозной характеристики, понижается по мере того, как снижается угол наклона транспортного средства. Это обусловлено тем, что по мере того, как возрастает угол наклона транспортного средства, т.е. по мере того, как возрастает угол наклона уклона, на котором транспортное средство стоит на месте, увеличивается сила, которая вынуждает транспортное средство двигаться вниз под уклон. Иными словами, при стоянии транспортного средства на месте, по мере того как возрастает угол наклона транспортного средства, транспортное средство требует более высокой тормозной силы и тем самым необходимое отрицательное давление всасываемого воздуха является более высоким.
Кроме того, поскольку на отрицательное давление всасываемого воздуха оказывает влияние внешняя среда, если транспортное средство стоит на месте, отрицательное давление всасываемого воздуха понижается по мере того, как возрастает высота местоположения, даже при неизменной степени открытия дросселя и частоте вращения двигателя.
Соответственно, в варианте осуществления выполняется такая настройка, что, когда двигатель 1 работает после холодного запуска, рабочий диапазон сгорания на основе послойного распределения заряда топлива при стоянии транспортного средства на месте после холодного запуска расширяется относительно рабочего диапазона гомогенного сгорания при стоянии транспортного средства на месте после холодного запуска.
Другими словами, в варианте осуществления при стоянии транспортного средства на месте после холодного запуска сгорание на основе послойного распределения заряда топлива выполняется в таком диапазоне (т.е. в диапазоне, который не вызывает у водителя ощущения сильного нажатия тормоза, когда при сгорании на основе послойного распределения заряда топлива он нажимает педаль 45 тормоза), который даже при стоянии транспортного средства на месте после холодного запуска демонстрирует тормозную характеристику без возникновения у водителя некомфортного ощущения посредством отрицательного давления всасываемого воздуха, сформированного в режиме сгорания на основе послойного распределения заряда топлива, а гомогенное сгорание выполняется в таком диапазоне, который при операции торможения, выполненной водителем (т.е. когда он нажимает педаль 45 тормоза), вызывает у водителя ощущение сильного нажатия тормоза вследствие недостаточной подачи впускного отрицательного давления в тормозной усилитель 40 при сгорании на основе послойного распределения заряда топлива.
Вышеуказанное подробно описывается ниже. Иными словами, как видно из фиг.3, по мере того как снижается угол наклона транспортного средства и/или уменьшается высота местоположения, рабочий диапазон сгорания на основе послойного распределения заряда топлива при стоянии транспортного средства на месте после холодного запуска расширяется относительно рабочего диапазона гомогенного сгорания при стоянии транспортного средства на месте после холодного запуска.
При таком рабочем диапазоне постоянно получается впускное отрицательное давление, с которым водитель может нажимать педаль 45 тормоза без неприятного и некомфортного ощущения, и, таким образом, водителю, который управляет педалью 45 тормоза, разрешается нажимать педаль 45 тормоза привычным способом нажатия тормоза, и тем самым он может управлять педалью 45 тормоза без ощущения некомфортности.
По мере того как возрастает высота местоположения, уменьшается отрицательное давление всасываемого воздуха, сформированное посредством двигателя 1 внутреннего сгорания, и, таким образом, посредством изменения рабочего диапазона сгорания на основе послойного распределения заряда топлива при стоянии транспортного средства на месте после холодного запуска в соответствии с высотой местоположения, можно получать отрицательное давление всасываемого воздуха с величиной, которая обеспечивает тормозную характеристику, требуемую для стояния транспортного средства на месте после холодного запуска.
Кроме того, в варианте осуществления, когда, при том что транспортное средство стоит на месте после холодного запуска, частота вращения двигателя равна или выше предварительно определенной частоты вращения (например, 950 об/мин) (см. характеристическую кривую A по фиг.3), рабочий диапазон сгорания на основе послойного распределения заряда топлива при стоянии транспортного средства на месте после холодного запуска расширяется относительно рабочего диапазона гомогенного сгорания при стоянии транспортного средства на месте после холодного запуска по сравнению со случаем, в котором частота вращения двигателя ниже предварительно определенной частоты вращения (например, 950 об/мин) (см. характеристическую кривую B по фиг.3). Иными словами, рабочий диапазон сгорания на основе послойного распределения заряда топлива варьируется в соответствии с частотой вращения двигателя при стоянии транспортного средства на месте после холодного запуска. Другими словами, когда частота вращения двигателя равна или выше предварительно определенной частоты вращения, рабочий диапазон сгорания на основе послойного распределения заряда топлива определяется посредством использования характеристической кривой A, которая представляет пороговое значение для более высокой частоты вращения, а когда частота вращения двигателя ниже предварительно определенной частоты вращения, рабочий диапазон сгорания на основе послойного распределения заряда топлива определяется посредством использования характеристической кривой B, которая представляет пороговое значение для более низкой частоты вращения.
Значения предварительно определенных частот вращения представляют собой значения, которые задаются в соответствии с двигателем внутреннего сгорания и трансмиссией, которые смонтированы в транспортном средстве, и если, например, трансмиссия является автоматической трансмиссией, предварительно определенная частота вращения задается таким образом, что когда, при том что транспортное средство стоит на месте после холодного запуска, частота вращения двигателя равна или выше предварительно определенной частоты вращения, рычаг переключения передач автоматической трансмиссии переходит в позицию N-диапазона или P-диапазона, а когда, при том что транспортное средство стоит на месте после холодного запуска, частота вращения двигателя ниже предварительно определенной частоты вращения, рычаг переключения передач автоматической трансмиссии переходит в позицию D-диапазона или R-диапазона.
В состоянии, в котором рычаг переключения передач автоматической трансмиссии переходит в позицию D-диапазона или R-диапазона, т.е. в состоянии, в котором формируется крутящий момент для медленного движения, имеется сила, которая вынуждает транспортное средство двигаться, и, таким образом, отрицательное давление всасываемого воздуха, которое должно быть получено при стоянии на месте, когда формируется крутящий момент для медленного движения, выше отрицательного давления всасываемого воздуха, которое должно быть получено при стоянии на другом месте, когда не формируется крутящий момент для медленного движения.
Соответственно, например, в варианте осуществления посредством задания предварительно определенной частоты вращения двигателя таким образом, чтобы изменять рабочий диапазон сгорания на основе послойного распределения заряда топлива при стоянии транспортного средства на месте после холодного запуска в зависимости от того, формируется или нет крутящий момент для медленного движения, появляется возможность получать отрицательное давление всасываемого воздуха, требуемое для достижения тормозной характеристики при стоянии транспортного средства на месте после холодного запуска.
Касательно выбора характеристической кривой A, которая представляет пороговое значение для высокой частоты вращения, или характеристической кривой B, которая представляет пороговое значение для низкой частоты вращения, можно выполнять мгновенное переключение между двумя кривыми в момент, когда частота вращения двигателя становится ниже предварительно определенной частоты вращения или когда частота вращения двигателя становится равной или превышающей предварительно определенную частоту вращения. Тем не менее, как проиллюстрировано посредством фиг.4, переключение между характеристической кривой A и другой характеристической кривой B может выполняться в отношении предварительно определенного гистерезиса. Иными словами, как видно из фиг.4, во время выполнения переключения между характеристической кривой A и характеристической кривой B может выполняться такая настройка, что когда при выборе характеристической кривой A частота вращения двигателя становится ниже предварительно определенной частоты вращения, переключение с характеристической кривой A на характеристическую кривую B выполняется мгновенно, тогда как во время выполнения переключения с характеристической кривой B на характеристическую кривую A переключение с характеристической кривой B на характеристическую кривую A выполняется в момент, когда частота вращения двигателя становится выше предварительно определенной частоты вращения на частоту вращения, соответствующую предварительно определенному гистерезису (например, 100 об/мин).
Кроме того, в варианте осуществления, в случае если транспортное средство располагается на высоте местоположения, при которой отрицательное давление всасываемого воздуха, требуемое для достижения тормозной характеристики, получается только посредством гомогенного сгорания, другими словами, когда транспортное средство располагается на высоте местоположения, превышающей предварительно определенную высоту местоположения, сгорание в двигателе после холодного запуска задается как гомогенное сгорание независимо от угла наклона транспортного средства и частоты вращения двигателя. Другими словами, когда высота местоположения показывается посредством правой области прямой пунктирной линии C с фиг.3, представляющей то, что текущая высота местоположения выше предварительно определенной высоты местоположения, осуществляется такое управление, что гомогенное сгорание двигателя после холодного запуска выполняется независимо от угла наклона транспортного средства и частоты вращения двигателя.
Фиг.5 и 6 являются блок-схемами последовательности операций способа, иллюстрирующими последовательность операций управления варианта осуществления, которые указывают процесс определения режима сгорания во время холодного запуска.
На этапе S1 выполняется определение в отношении того, осуществляет или нет двигатель 1 внутреннего сгорания холодный запуск на основе определенного значения датчика 12 температуры воды, и если двигатель 1 внутреннего сгорания находится в холодном состоянии, последовательность операций переходит к этапу S2, а если двигатель 1 внутреннего сгорания не находится в холодном состоянии, последовательность операций переходит к этапу S8, инструктируя двигателю 1 внутреннего сгорания приспосабливать режим гомогенного сгорания. В состоянии очень низкой температуры двигатель 1 внутреннего сгорания испытывает значительное трение и тем самым имеется вероятность того, что сгорание на основе послойного распределения заряда топлива становится нестабильным. Таким образом, в таком состоянии очень низкой температуры, в котором сгорание на основе послойного распределения заряда топлива является нестабильным вследствие холодного состояния двигателя 1 внутреннего сгорания, может быть выбрано гомогенное сгорание.
На этапе S2 выполняется определение в отношении того, стоит транспортное средство на месте или нет, на основе определенного значения датчика 53 скорости транспортного средства, и если транспортное средство стоит на месте, последовательность операций переходит к этапу S3, а если транспортное средство не стоит на месте, последовательность операций переходит к этапу S8.
На этапе S3 выполняется определение в отношении того, равна или меньше текущая высота местоположения предварительно определенной высоты местоположения либо нет, и если высота местоположения равна или меньше предварительно определенной высоты местоположения, последовательность операций переходит к этапу S4, а если высота местоположения выше предварительно определенной высоты местоположения, последовательность операций переходит к этапу S8.
На этапе S4 выполняется определение в отношении того, прошла или нет одна или более секунд от запуска двигателя 1 внутреннего сгорания, и если одна или более секунд прошла от запуска (например, время, когда включен переключатель зажигания) двигателя 1 внутреннего сгорания, последовательность операций переходит к этапу S5, а если одна или более секунд не прошла от запуска двигателя 1 внутреннего сгорания, последовательность операций переходит к этапу S12. Как описано ниже, когда последовательность операций переходит от этапа S4 к этапу S5, определение режима сгорания двигателя 1 внутреннего сгорания при стоянии транспортного средства на месте после холодного запуска выполняется с помощью угла наклона транспортного средства, который вычисляется из вывода датчика 52 ускорения. При этом, когда последовательность операций переходит от этапа S4 к этапу S12, определение режима сгорания двигателя 1 внутреннего сгорания при стоянии транспортного средства на месте после холодного запуска выполняется с помощью угла наклона транспортного средства, который вычисляется из вывода датчика 52 ускорения в момент, когда выключен ключ пускового переключателя двигателя, т.е. когда остановлен двигатель 1 внутреннего сгорания после предыдущей поездки.
Причина, по которой прохождение времени от начала работы двигателя 1 внутреннего сгорания проверяется на этапе S4, заключается в следующем. Сразу после начала работы двигателя 1 внутреннего сгорания, т.е. сразу после активации, датчик 52 ускорения, определяющий угол наклона транспортного средства, не может обеспечивать стабильный вывод и тем самым имеется вероятность того, что определение в отношении угла наклона транспортного средства не выполняется точно. Таким образом, до момента времени, когда вывод датчика 52 ускорения становится стабильным, фактически используется значение, определенное посредством датчика 52 ускорения в момент, когда в прошлый раз выключен ключ пускового переключателя двигателя, т.е. когда выключен двигатель 1 внутреннего сгорания после предыдущей поездки, так что угол наклона транспортного средства точно определяется.
На этапе S5 выполняется определение в отношении того, равна или выше частота вращения двигателя для двигателя 1 внутреннего сгорания предварительно определенной частоты вращения либо нет, и если частота вращения двигателя равна или выше предварительно определенной частоты вращения, последовательность операций переходит к этапу S6, а если частота вращения двигателя ниже предварительно определенной частоты вращения, последовательность операций переходит к этапу S7. Иными словами, на этапе S5, выбор выполняется или определяется между характеристической кривой A порогового значения для более высокой частоты вращения и характеристической кривой B порогового значения для более низкой частоты вращения, которые являются пороговыми значениями, используемыми для разделения, при том что транспортное средство стоит на месте после холодного запуска, режима сгорания на диапазон для сгорания на основе послойного распределения заряда топлива и диапазон для гомогенного сгорания.
Затем, на этапе S6, с использованием определенных результатов этапов S4 и S5 выполняется определение в отношении того, является или нет текущий рабочий диапазон двигателя 1 внутреннего сгорания диапазоном для разрешения сгорания на основе послойного распределения заряда топлива, из характеристической кривой A порогового значения для более высокой частоты вращения, угла наклона транспортного средства, вычисленного из текущего вывода датчика 52 ускорения, и текущей высоты местоположения, и если рабочий диапазон предназначен для сгорания на основе послойного распределения заряда топлива, последовательность операций переходит к этапу S9, инструктируя двигателю 1 внутреннего сгорания приспосабливать режим сгорания на основе послойного распределения заряда топлива, а если нет, последовательность операций переходит к этапу S8.
Затем, на этапе S7, с использованием определенных результатов этапов S4 и S5 выполняется определение в отношении того, является или нет текущий рабочий диапазон двигателя 1 внутреннего сгорания диапазоном для разрешения сгорания на основе послойного распределения заряда топлива, из характеристической кривой B порогового значения для более низкой частоты вращения, угла наклона транспортного средства, вычисленного из текущего вывода датчика 52 ускорения, и текущей высоты местоположения, и если рабочий диапазон предназначен для сгорания на основе послойного распределения заряда топлива, последовательность операций переходит к этапу S10, инструктируя двигателю 1 внутреннего сгорания приспосабливать режим сгорания на основе послойного распределения заряда топлива, а если нет, последовательность операций переходит к этапу S11, инструктируя двигателю 1 внутреннего сгорания приспосабливать режим гомогенного сгорания.
На этапе S12 выполняется определение в отношении того, равна или выше частота вращения двигателя 1 внутреннего сгорания предварительно определенной частоты вращения либо нет, и если частота вращения двигателя 1 внутреннего сгорания равна или выше предварительно определенной частоты вращения, последовательность операций переходит к этапу S13, а если частота вращения двигателя 1 внутреннего сгорания ниже предварительно определенной частоты вращения, последовательность операций переходит к этапу S14. Иными словами, на этапе S12 выбор выполняется или определяется между характеристической кривой A порогового значения для более высокой частоты вращения и характеристической кривой B порогового значения для более низкой частоты вращения, которые являются пороговыми значениями, используемыми для разделения, при том что транспортное средство стоит на месте после холодного запуска, режима сгорания на диапазон для сгорания на основе послойного распределения заряда топлива и диапазон для гомогенного сгорания.
Затем, на этапе S13, с использованием определенных результатов этапов S4 и S12 выполняется определение в отношении того, является или нет текущий рабочий диапазон двигателя 1 внутреннего сгорания диапазоном для разрешения сгорания на основе послойного распределения заряда топлива, из характеристической кривой A порогового значения для более высокой частоты вращения, угла наклона транспортного средства, вычисленного из вывода датчика 52 ускорения в момент, когда остановлен двигатель 1 внутреннего сгорания после предыдущей поездки, и текущей высоты местоположения, и если рабочий диапазон предназначен для сгорания на основе послойного распределения заряда топлива, последовательность операций переходит к этапу S15, инструктируя двигателю 1 внутреннего сгорания приспосабливать режим сгорания на основе послойного распределения заряда топлива, а если нет, последовательность операций переходит к этапу S16.
Затем, на этапе S14, с использованием определенных результатов этапов S4 и S12 выполняется определение в отношении того, является или нет текущий рабочий диапазон двигателя 1 внутреннего сгорания диапазоном для разрешения сгорания на основе послойного распределения заряда топлива, из характеристической кривой B порогового значения для более низкой частоты вращения, угла наклона транспортного средства, вычисленного из вывода датчика 52 ускорения в момент, когда остановлен двигатель 1 внутреннего сгорания после предыдущей поездки, и текущей высоты местоположения, и если рабочий диапазон предназначен для сгорания на основе послойного распределения заряда топлива, последовательность операций переходит к этапу S17, инструктируя двигателю 1 внутреннего сгорания приспосабливать режим сгорания на основе послойного распределения заряда топлива, а если нет, последовательность операций переходит к этапу S18, инструктируя двигателю 1 внутреннего сгорания приспосабливать режим гомогенного сгорания.
Следует отметить, что настоящее изобретение является применимым к двигателю внутреннего сгорания с впрыском во впускные порты, который может избирательно приспосабливать режим гомогенного сгорания и режим сгорания обедненной смеси, предоставляемый посредством открытия дроссельного клапана, чтобы формировать сгорание обедненной смеси. Также двигатель этого типа имеет преимущества, которые являются практически идентичными преимуществам вышеуказанного варианта осуществления, который может избирательно приспосабливать режим гомогенного сгорания и режим сгорания на основе послойного распределения заряда топлива.
В случае применения настоящего изобретения к двигателю внутреннего сгорания, который может избирательно приспосабливать режим гомогенного сгорания и режим сгорания обедненной смеси, осуществляется такое управление, что рабочий диапазон сгорания обедненной смеси при стоянии транспортного средства на месте после холодного запуска расширяется относительно рабочего диапазона гомогенного сгорания при стоянии транспортного средства на месте после холодного запуска по мере того, как снижается угол наклона транспортного средства.
Кроме того, в случае применения настоящего изобретения к двигателю внутреннего сгорания, который может избирательно приспосабливать режим гомогенного сгорания и режим сгорания обедненной смеси, осуществляется такое управление, что рабочий диапазон сгорания обедненной смеси при стоянии транспортного средства на месте после холодного запуска в момент, когда транспортное средство находится в местоположении с меньшей высотой местоположения, расширяется относительно рабочего диапазона гомогенного сгорания при стоянии транспортного средства на месте после холодного запуска по сравнению со случаем, в котором транспортное средство находится в местоположении с большой высотой местоположения.
Кроме того, в случае применения настоящего изобретения к двигателю внутреннего сгорания, который может избирательно приспосабливать режим гомогенного сгорания и режим сгорания обедненной смеси, рабочий диапазон сгорания обедненной смеси варьируется в соответствии с частотой вращения двигателя в момент, когда транспортное средство стоит на месте после холодного запуска. Иными словами, когда, при том что транспортное средство стоит на месте после холодного запуска, частота вращения двигателя равна или выше предварительно определенной частоты вращения (например, 950 об/мин), рабочий диапазон сгорания обедненной смеси при стоянии транспортного средства на месте после холодного запуска расширяется относительно рабочего диапазона гомогенного сгорания при стоянии транспортного средства на месте после холодного запуска по сравнению со случаем, в котором частота вращения двигателя ниже предварительно определенной частоты вращения (например, 950 об/мин).
Как в вышеуказанном варианте осуществления, предварительно определенная частота вращения задается в соответствии с двигателем внутреннего сгорания и трансмиссией, которые смонтированы в транспортном средстве, и предварительно определенная частота вращения задается таким образом, что когда, при том что транспортное средство стоит на месте после холодного запуска, частота вращения двигателя равна или выше предварительно определенной частоты вращения, рычаг переключения передач автоматической трансмиссии переходит в позицию N-диапазона или P-диапазона, когда, при том что транспортное средство стоит на месте после холодного запуска, частота вращения двигателя ниже предварительно определенной частоты вращения, рычаг переключения передач автоматической трансмиссии переходит в позицию D-диапазона или R-диапазона. Иными словами, выполняется такая настройка, что в случае если не формируется крутящий момент для медленного движения в транспортном средстве, рабочий диапазон сгорания обедненной смеси при стоянии на месте после холодного запуска расширяется относительно рабочего диапазона гомогенного сгорания при стоянии на месте после холодного запуска по сравнению со случаем, в котором крутящий формируется момент для медленного движения в транспортном средстве.

Claims (7)

1. Устройство управления транспортного средства, оснащенного как двигателем внутреннего сгорания, который может избирательно изменять свой режим сгорания на гомогенное сгорание, сгорание на основе послойного распределения заряда топлива или сгорание обедненной смеси, так и тормозным усилителем, который использует в качестве источника мощности отрицательное давление всасываемого воздуха, создаваемое двигателем внутреннего сгорания, содержащее:
средство определения угла наклона для определения или оценки угла наклона транспортного средства в направлении вперед и назад;
при этом устройство управления выполнено с возможностью осуществления такого управления, чтобы управлять режимом сгорания двигателя внутреннего сгорания при стоянии транспортного средства на месте после холодного запуска в соответствии с углом наклона транспортного средства, полученным от средства определения угла наклона, таким образом, чтобы режим сгорания двигателя внутреннего сгорания становился сгоранием на основе послойного распределения заряда топлива или сгоранием обедненной смеси, когда угол наклона транспортного средства меньше порогового значения, и режим сгорания становился гомогенным сгоранием, когда угол наклона транспортного средства превышает пороговое значение.
2. Устройство по п.1, в котором двигатель внутреннего сгорания является двигателем внутреннего сгорания с непосредственным впрыском, который избирательно изменяет свой режим сгорания на гомогенное сгорание или сгорание на основе послойного распределения заряда топлива, и в котором осуществляется такое управление, чтобы режим сгорания становился сгоранием на основе послойного распределения заряда топлива, когда угол наклона транспортного средства меньше порогового значения.
3. Устройство по п.1, дополнительно содержащее средство определения высоты местоположения, которое определяет высоту местоположения позиции, в которой размещается транспортное средство, и в котором выполняется управление для того, чтобы задавать пороговое значение в соответствии с высотой местоположения таким образом, что пороговое значение становится меньшим по мере того, как возрастает высота местоположения.
4. Устройство по любому из пп.1-3, в котором в течение заданного периода после запуска двигателя внутреннего сгорания угол наклона транспортного средства, определенный средством определения высоты местоположения в момент, когда прекращена предыдущая работа двигателя внутреннего сгорания, используется фактически в качестве текущего угла наклона транспортного средства.
5. Устройство по п.4, в котором заданный период является периодом с момента, когда начинается активация средства определения высоты местоположения, до момента, когда вывод средства определения высоты местоположения становится стабильным.
6. Устройство по любому из пп.1-3, в котором:
транспортное средство дополнительно оснащено автоматической трансмиссией;
при этом осуществляется такое управление, чтобы инструктировать пороговому значению приспосабливать разностные значения между случаем, в котором, при том что транспортное средство стоит на месте, трансмиссия допускает позицию из одного диапазона, формирующего определенный крутящий момент для медленного движения, и другим случаем, в котором, при том что транспортное средство стоит на месте, трансмиссия допускает другой диапазон, не формирующий крутящий момент для медленного движения, при этом пороговое значение, предоставляемое, когда формируется определенный крутящий момент для медленного движения, ниже порогового значения, предоставляемого, когда не формируется крутящий момент для медленного движения.
7. Устройство по п.6, в котором на основе частоты вращения двигателя внутреннего сгорания различается один диапазон, который формирует определенный крутящий момент для медленного движения, и другой диапазон, который не формирует крутящего момента для медленного движения.
RU2013114263/07A 2010-09-01 2011-08-09 Устройство управления для транспортного средства RU2529876C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-195252 2010-09-01
JP2010195252 2010-09-01
PCT/JP2011/068145 WO2012029513A1 (ja) 2010-09-01 2011-08-09 車両の制御装置

Publications (2)

Publication Number Publication Date
RU2529876C1 true RU2529876C1 (ru) 2014-10-10
RU2013114263A RU2013114263A (ru) 2014-10-10

Family

ID=45772618

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013114263/07A RU2529876C1 (ru) 2010-09-01 2011-08-09 Устройство управления для транспортного средства

Country Status (9)

Country Link
US (1) US8948987B2 (ru)
EP (1) EP2613043B1 (ru)
JP (1) JP5391385B2 (ru)
CN (1) CN103080515B (ru)
BR (1) BR112013005162B1 (ru)
MX (1) MX354714B (ru)
MY (1) MY164341A (ru)
RU (1) RU2529876C1 (ru)
WO (1) WO2012029513A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JOP20080381B1 (ar) 2007-08-23 2023-03-28 Amgen Inc بروتينات مرتبطة بمولدات مضادات تتفاعل مع بروبروتين كونفيرتاز سيتيليزين ككسين من النوع 9 (pcsk9)
CN113829824A (zh) * 2021-11-04 2021-12-24 中国第一汽车股份有限公司 车辆空气悬架系统控制方法、装置、空气悬架系统及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151970A (ja) * 1996-09-30 1998-06-09 Toyota Motor Corp 内燃機関の負圧制御装置
JPH1150875A (ja) * 1997-08-01 1999-02-23 Nissan Motor Co Ltd 車両用ブレーキ装置
RU2126893C1 (ru) * 1997-04-10 1999-02-27 Савин Михаил Александрович Способ ускорения выхода двигателя транспортного средства на рабочий режим
JP2006083830A (ja) * 2004-09-17 2006-03-30 Honda Motor Co Ltd エンジン制御装置
JP2009133225A (ja) * 2007-11-29 2009-06-18 Nissan Motor Co Ltd 筒内直接燃料噴射式火花点火エンジンの燃焼制御装置
RU2376175C1 (ru) * 2007-09-28 2009-12-20 Мицубиси Дзидося Когио Кабусики Кайся Устройство управления транспортным средством

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484342B2 (ja) * 1998-04-15 2004-01-06 トヨタ自動車株式会社 バキュームブースタ装置およびブレーキ装置
DE69919648T2 (de) * 1998-09-28 2005-09-08 Toyota Jidosha K.K., Toyota Start-stopvorrichtung für Kraftfahrzeugmotor
JP3536717B2 (ja) 1999-03-25 2004-06-14 トヨタ自動車株式会社 車両のエンジン自動停止・再始動制御装置
JP4552365B2 (ja) * 2001-06-27 2010-09-29 株式会社デンソー エンジン自動停止再始動装置
DE10151964A1 (de) * 2001-10-20 2003-05-08 Bosch Gmbh Robert Verfahren zum Betreiben einer nach dem Otto-Prinzip arbeitenden Brennkraftmaschine im Magerbetrieb
JP3812653B2 (ja) * 2002-01-17 2006-08-23 三菱自動車工業株式会社 車両用内燃機関の排気浄化装置
US6912989B2 (en) 2003-04-30 2005-07-05 Nissan Motor Co., Ltd. Fuel injection control device for a direct fuel injection engine
JP4085881B2 (ja) 2003-04-30 2008-05-14 日産自動車株式会社 筒内直接噴射エンジンの燃料噴射制御装置
JP4127139B2 (ja) * 2003-07-10 2008-07-30 日産自動車株式会社 筒内直噴内燃機関の始動制御装置
JP4438378B2 (ja) * 2003-10-28 2010-03-24 日産自動車株式会社 直噴火花点火式内燃機関の制御装置
KR100527502B1 (ko) * 2003-12-24 2005-11-09 현대자동차주식회사 아이들 스톱 차량의 브레이크 시스템
JP2006037907A (ja) 2004-07-29 2006-02-09 Toyota Motor Corp 内燃機関
JP2009114993A (ja) * 2007-11-07 2009-05-28 Nissan Motor Co Ltd 筒内直接燃料噴射式エンジンの制御装置
JP2010150970A (ja) * 2008-12-24 2010-07-08 Mazda Motor Corp 火花点火式直噴エンジン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151970A (ja) * 1996-09-30 1998-06-09 Toyota Motor Corp 内燃機関の負圧制御装置
RU2126893C1 (ru) * 1997-04-10 1999-02-27 Савин Михаил Александрович Способ ускорения выхода двигателя транспортного средства на рабочий режим
JPH1150875A (ja) * 1997-08-01 1999-02-23 Nissan Motor Co Ltd 車両用ブレーキ装置
JP2006083830A (ja) * 2004-09-17 2006-03-30 Honda Motor Co Ltd エンジン制御装置
RU2376175C1 (ru) * 2007-09-28 2009-12-20 Мицубиси Дзидося Когио Кабусики Кайся Устройство управления транспортным средством
JP2009133225A (ja) * 2007-11-29 2009-06-18 Nissan Motor Co Ltd 筒内直接燃料噴射式火花点火エンジンの燃焼制御装置

Also Published As

Publication number Publication date
EP2613043A4 (en) 2016-07-06
MX2013002389A (es) 2013-04-03
BR112013005162B1 (pt) 2020-11-24
BR112013005162A2 (pt) 2016-04-26
JPWO2012029513A1 (ja) 2013-10-28
US20130151091A1 (en) 2013-06-13
MY164341A (en) 2017-12-15
CN103080515B (zh) 2016-10-26
MX354714B (es) 2018-03-16
US8948987B2 (en) 2015-02-03
EP2613043A1 (en) 2013-07-10
CN103080515A (zh) 2013-05-01
RU2013114263A (ru) 2014-10-10
WO2012029513A1 (ja) 2012-03-08
JP5391385B2 (ja) 2014-01-15
EP2613043B1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
EP1437495B1 (en) Internal combustion engine driven with change-over of compression ratio, air-fuel ratio, and boost status
US7089913B2 (en) Compression ignition internal combustion engine
US7957887B2 (en) Engine controller
US10598110B2 (en) Control device for engine
RU2676905C2 (ru) Способ управления работой топливного насоса высокого давления (варианты) и топливная система
RU2699149C2 (ru) Способ координации подачи вторичного воздуха и продувочного воздуха в двигатель (варианты)
US6877479B2 (en) Apparatus and a method for controlling an internal combustion engine
JP2009167841A (ja) 内燃機関の空燃比制御装置
US7716915B2 (en) Exhaust purification catalyst warm-up system of an internal combustion engine and method of the same
US20030226528A1 (en) Compression ignition internal combustion engine
US20080305929A1 (en) Shift control system, shift control method, vehicle control system and vehicle control method
RU2167325C2 (ru) Способ и устройство для управления мощностью или регулирования мощности двигателя внутреннего сгорания с наддувом
RU2529876C1 (ru) Устройство управления для транспортного средства
JP3564520B2 (ja) エンジンのアイドル回転数制御装置
SE521717C2 (sv) Förfarande för styrning av förbränningsmotor, samt arrangemang för sådant förfarande
KR102452681B1 (ko) 엔진의 소기 제어 시의 배기 가스 저감 방법
JP4325505B2 (ja) 圧縮着火内燃機関の燃焼制御システム
JP2009013872A (ja) 内燃機関の吸気制御装置
JP4736485B2 (ja) 内燃機関の制御装置
RU2813612C2 (ru) Способ управления двигателем с непрямым впрыском
JP2019039405A (ja) エンジンの制御装置
CN111433445B (zh) 车辆用内燃机的控制方法以及控制装置
JP2007211766A (ja) 内燃機関の制御装置
JP2001214749A (ja) エンジンの制御装置
JP2008309139A (ja) エンジンの制御装置