RU2517510C2 - Реактор и способ применения - Google Patents

Реактор и способ применения Download PDF

Info

Publication number
RU2517510C2
RU2517510C2 RU2011105738/05A RU2011105738A RU2517510C2 RU 2517510 C2 RU2517510 C2 RU 2517510C2 RU 2011105738/05 A RU2011105738/05 A RU 2011105738/05A RU 2011105738 A RU2011105738 A RU 2011105738A RU 2517510 C2 RU2517510 C2 RU 2517510C2
Authority
RU
Russia
Prior art keywords
pressure
reactor
elements
sulfur
gaseous
Prior art date
Application number
RU2011105738/05A
Other languages
English (en)
Other versions
RU2011105738A (ru
Inventor
РЕДЛИНГСХЁФЕР Хуберт
БАРТ Ян-Олаф
ФИНКЕЛЬДАЙ Каспар-Генрих
Йоахим ХАССЕЛЬБАХ Ханс
КРЕТЦ Штефан
ХАЙНЦЕЛЬ Харальд
ВЕКБЕККЕР Кристоф
Original Assignee
Эвоник Дегусса Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эвоник Дегусса Гмбх filed Critical Эвоник Дегусса Гмбх
Publication of RU2011105738A publication Critical patent/RU2011105738A/ru
Application granted granted Critical
Publication of RU2517510C2 publication Critical patent/RU2517510C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/005Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out at high temperatures in the presence of a molten material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2455Stationary reactors without moving elements inside provoking a loop type movement of the reactants
    • B01J19/246Stationary reactors without moving elements inside provoking a loop type movement of the reactants internally, i.e. the mixture circulating inside the vessel such that the upward stream is separated physically from the downward stream(s)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/161Preparation from elemental sulfur
    • C01B17/162Preparation from elemental sulfur from elemental sulfur and hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

В изобретении описан реактор, в котором из серы и водорода получают сероводород и который частично или полностью выполнен из стойкого к действию реакционной смеси, содержащихся в ней соединений, соответственно элементов материала, который сохраняет свою стойкость и при высоких температурах. 2н. и 15 з.п. ф-лы, 1 ил.

Description

Изобретение относится к реактору, который пригоден для проведения экзотермической реакции жидкого реагента с газообразным реагентом при повышенной температуре и повышенном давлении с образованием газообразного продукта реакции и в котором предусмотрены не поддерживающие давление встроенные элементы, увеличивающие продолжительность пребывания в нем газообразного реагента.
Подобный реактор преимущественно используют для получения в нем сероводорода из серы и водорода. Такой реактор имеет встроенные элементы, которые увеличивают продолжительность пребывания водорода в жидкой сере, при этом газ скапливается в частях этих встроенных элементов, а затем вновь распределяется в жидкой сере.
Сероводород является прежде всего промышленно важным промежуточным продуктом, используемым, например, для синтеза метилмеркаптана, диметилсульфида, диметилдисульфида, сульфокислот, диметилсульфоксида, диметилсульфона, а также для проведения многочисленных реакций сульфидирования. В настоящее время сероводород получают преимущественно из продуктов первичной переработки нефти и природного газа, а также реакцией серы с водородом.
Сероводород синтезируют из элементарных водорода и серы обычно путем подачи водорода в жидкую серу и дальнейшего проведения взаимодействия между ними в газовой фазе в последующем реакционном пространстве. При этом известны и катализируемые, и некатализируемые способы получения сероводорода. Синтез сероводорода обычно проводят в газовой фазе при температуре в пределах от 300 до 600°С и при давлении в пределах от 1 до 30 бар. В промышленном масштабе сероводород получают из указанных элементов - водорода и серы - в соответствии с методом, описанным в Ullmann's Encyclopedia of Industrial Chemistry, изд-во Wiley-VCH, 2002, при температуре 450°С и давлении 7 бар.
В GB 1193040 описан некатализируемый синтез сероводорода при относительно высокой температуре в пределах от 400 до 600°С и при давлении в пределах от 4 до 15 бар. В этой публикации говорится, что требуемая температура реакции определяется давлением, при котором должен протекать синтез сероводорода. В соответствии с этим при давлении 9 бар реакцию требуется проводить при температуре около 500°С.
Одним из важных аспектов при получении сероводорода из серы и водорода является прежде всего температурный режим. Проведение подобного процесса при высоких температурах обусловлено необходимостью достижения равновесного состояния, при котором молярное соотношение между водородом и серой в газовой фазе устанавливается примерно на 1:1. Только при соблюдении этого условия возможен синтез чистого сероводорода. С увеличением давления температуру реакции для достижения требуемого молярного соотношения между водородом и серой в газовой фазе, равного 1:1, необходимо в соответствии с кривой давления пара серы существенно увеличивать. При этом даже незначительные различия в давлении, составляющие, например, 1 бар и менее, уже имеют большое значение.
В CSSR 190792 описан способ получения сероводорода, при этом во избежание слишком высоких температур реакции используют относительно дорогую и сложную систему из нескольких последовательно соединенных реакторов. Согласно этой публикации высоких температур при проведении реакции стремятся избежать прежде всего по той причине, что синтез сероводорода при высоких температурах сопровождается интенсивной коррозией оборудования. Согласно CSSR 190793 интенсивная коррозия установки для синтеза сероводорода наблюдается при температуре 400°С и выше.
В US 4094961 также говорится о значительных коррозионных повреждениях оборудования при проведении синтеза сероводорода при температуре в пределах от 440 до 540°С. Поэтому в указанной публикации синтез сероводорода проводят только при температуре ниже 440°С.
В статье В.Glaser, M.Schiitze, F.Vollhardt, озаглавленной "Auswertung von Daten zum HzS-Angriff auf Stable bei verschiedenen Temperaturen und Konzentrationen" и опубликованной в Werkstoffe und Korrosion, 42, 1991, cc. 374-376, говорится, что коррозионное воздействие HaS при повышенных температурах является существенным фактором, препятствующим усовершенствованию установок, в которых следует опасаться такого коррозионного воздействия. До настоящего времени прежде всего переход к проведению соответствующих способов синтеза сероводорода при более высокой температуре и тем самым повышение их экономической эффективности все еще остаются недостижимой целью, поскольку в этом случае уже по истечении короткого времени происходят обширные коррозионные повреждения установок и, как следствие, их выход из строя. В качестве основных факторов, влияющих на интенсивность коррозии, называются температура и концентрация H2S.
Однако в зависимости от дальнейшего назначения сероводорода значительное преимущество может состоять в получении сероводорода при повышенном давлении во избежание необходимости его сжатия на отдельной стадии.
Для повышения экономической эффективности процесса получения сероводорода необходимо до минимально возможных снижать инвестиционные и эксплуатационные затраты. При этом особо высокие затраты связаны прежде всего с расходами на необходимые для проведения процесса аппараты и машины, а также с расходами энергии на синтез сероводорода, соответственно на подготовку исходной газовой смеси. Так, например, для работы компрессоров, а также нагревательных и охлаждающих контуров требуются значительные электрические мощности.
В основу настоящего изобретения была положена задача разработать реактор для получения сероводорода из серы и водорода при давлении свыше 5 бар и соответствующий способ получения сероводорода, которые позволили бы избежать обусловленной высокими температурами интенсивной коррозии поддерживающих давление частей.
В соответствии с этим в изобретении предлагается реактор, который пригоден для проведения экзотермической реакции жидкого реагента с одним или несколькими газообразными реагентами, прежде всего с одним газообразным реагентом, при повышенной температуре и повышенном давлении с образованием газообразного продукта реакции и в котором предусмотрены не поддерживающие давление встроенные элементы, увеличивающие продолжительность пребывания в нем газообразного(ых) реагента(ов).
Специалистам в данной области при этом очевидно, что обычно жидкий реагент перед реакцией переходит в газообразное состояние. Не поддерживающие давление встроенные элементы окружены жидкими реагентами.
Применительно к получению сероводорода встроенные элементы увеличивают продолжительность пребывания прежде всего водорода в жидкой сере. Газообразный(ые) реагент(ы) по меньшей мере частично скапливается(ются) в таких встроенных элементах, а затем вновь распределяется(ются) в жидкой сере, если он(и) еще не прореагировали с ней с образованием сероводорода.
В процессе барботирования жидкой серы водородом он насыщается газообразной серой и в ходе высокоэкзотермической реакции в газовой фазе превращается в сероводород. Такую реакцию можно ускорить ее проведением в присутствии катализатора или же можно также проводить без катализатора при явно повышенных температурах. С целью обеспечить перевод серы в достаточном количестве в газовую фазу и при высоком давлении, а также с целью достичь полного превращения водорода необходимы высокие температуры, преимущественно свыше 400°С. Однако вследствие экзотермического характера реакции выделяется столько тепла, что при температуре жидкой серы около 400°С локально в зонах реактора над жидкой серой температура согласно уровню техники повышается до значений, существенно превышающих 450°С. Столь высокие температуры приводят к воздействию высокой нагрузки на конструкционные материалы и к их коррозии и обусловливают необходимость технически сложного охлаждения оборудования.
Согласно изобретению были найдены решения по конструктивному исполнению реакторов, позволяющие проводить подобные экзотермические процессы синтеза при повышенном давлении и помогающие избежать перегрева поддерживающих давление частей в результате их нагрева до высоких температур ("сверхтемператур"). Одновременно с этим локальные "сверхтемпературы" в зоне встроенных элементов целенаправленно используются для того, чтобы обеспечить быстрое, а также полное превращение водорода с высоким выходом продукта с единицы объема в единицу времени. Такое предлагаемое в изобретение решение по конструктивному исполнению реактора позволяет, кроме того, использовать теплоту реакции для нагрева и испарения исходных веществ, в данном случае серы. Благодаря этому сами исходные вещества могут использоваться для тепловой интеграции.
Благодаря предлагаемому в изобретении оснащению реактора не поддерживающими давление встроенными элементами насыщенный серой водород, который тонко распределен в жидкой серной фазе, вновь скапливается в этих встроенных элементах в виде сплошной газовой фазы. Продолжительность пребывания газообразных реагентов в таких газосборных зонах, соответственно газоулавливающих конструкциях значительно, т.е. примерно в 3-20 раз, прежде всего в 5-15 раз, больше по сравнению с продолжительностью пребывания поднимающихся газовых пузырьков в реакторах без встроенных элементов. При слишком короткой продолжительности пребывания водорода в жидкой сере обогащенный газообразной серой водород скапливается в пространстве над жидкой серой в реакторе и превращается в сероводород. Отсюда следует, что без предлагаемых в изобретении встроенных элементов реактор в зоне над жидкой серой нагревался бы выделяющимся теплом до высоких температур, поскольку в этом месте невозможно обеспечить удовлетворительный, соответственно эффективный отвод тепла. Согласно же изобретению благодаря увеличенной продолжительности пребывания реагентов в заполненной жидкой серой зоне реактора реакционная смесь не попадает в пространство над жидкой серой. Поэтому согласно изобретению выделяющееся тепло приводит к повышению температуры сверх 450°С только в пределах газосборных зон, соответственно газоулавливающей конструкции, что способствует в этом месте развитию реакции и испарению серы. Локальное ограничение зоны реакции и тем самым зоны возникновения "сверхтемператур" зоной, в которой расположены встроенные элементы, позволяет избежать нагрева всего поддерживающего давление (работающего под давлением) реактора и особенно его зоны над жидкой серой до температур свыше 450°С и тем самым избежать обусловленного нагревом до столь высоких температур повреждения конструкционного материала. Согласно изобретению сбор и распределение газовой фазы в реакторе благодаря размещению в нем встроенных элементов может происходить однократно либо, что более предпочтительно, многократно. В реакторе предусматривают прежде всего от 3 до 100, предпочтительно от 3 до 50, расположенных одна над другой газосборных зон. Между ними можно встроить газораспределители (барботеры).
Продолжительность пребывания газообразных реагентов - водорода и серы, прежде всего водорода, - в выполняющем функцию газосборной или газоулавливающей зоны встроенном элементе в предпочтительном варианте составляет от более 0,5 до 60 с, особенно предпочтительно от 2 до 60 с, прежде всего от 3 до 30 с. Температура, преобладающая в газосборных зонах, соответственно во встроенных элементах, может превышать 550°С. Нагрев поддерживающего давление кожуха или корпуса реактора до таких температур был бы недопустим с учетом происходящей при них интенсивной коррозии, а также с учетом требований техники безопасности. При размещении нескольких газоулавливающих конструкций в реакторе их предпочтительно располагать последовательно в направлении восходящего потока водорода. Газосборные или газоулавливающие объемы отдельных встроенных элементов могут при этом увеличиваться или уменьшаться от одного встроенного элемента к следующему за ним в направлении потока водорода встроенному элементу либо могут оставаться постоянными. Предпочтительно же использовать встроенные элементы с увеличивающимися в направлении потока водорода газосборными объемами с тем, чтобы скомпенсировать замедление реакции, связанное со снижением, например, концентрации водорода в газовой смеси из водорода и серы, путем увеличения продолжительности пребывания реагентов в реакторе.
Во избежание нагрева поддерживающих давление стенок реактора до температур свыше 450°С вследствие экзотермического характера реакции встроенные элементы окружены жидкой серой. Благодаря этому газосборные зоны и соответствующие встроенные элементы охлаждаются окружающей их жидкой серой.
В одном из предпочтительных вариантов осуществления изобретения реализуют распределение потока жидких реагентов, прежде всего серы, благодаря которому обеспечиваются циркуляция серы и тем самым эффективное распределение тепла. Циркуляцию серы целесообразно обеспечить прежде всего в заполненном жидкостью пространстве между встроенными элементами и поддерживающим давление кожухом. Параметры циркуляции серы и тепловой режим в реакторе можно также целенаправленно регулировать путем выбора точки подачи свежей серы и/или точек возврата непрореагировавшей серы в реактор. Подаваемую по подводящему трубопроводу свежую серу и возвращаемую в реактор по рециркуляционным трубопроводам (рецикловую) серу предпочтительно использовать для охлаждения внутренней стороны поддерживающего давление кожуха реактора и для охлаждения содержащего продукт газа (газообразного продукта).
Газосборные или газоулавливающие зоны и соответствующие встроенные элементы в предпочтительном варианте зафиксированы на одной или нескольких внутренних трубах и тем самым расположены в работающем под давлением реакторе. Для изготовления и сборки реактора используют известные способы, такие, например, как сварка.
В этом отношении для обработки поверхностей или для соединения конструктивных элементов реактора можно также использовать пригодные для этой цели присадочные материалы, такие, например, как присадочные материалы для сварки. В данном случае по причине высоких температур предпочтительно также применение материалов со специальными свойствами или керамических материалов. При применении широко используемой высококачественной стали для изготовления газоулавливающих конструкций их предпочтительно выполнять с припуском на коррозию более 1 мм.
В одном из предпочтительных вариантов осуществления изобретения встроенные элементы размещены в реакторе таким образом, что их можно извлечь из него сверху, например, с помощью крана.
Объектом изобретения является также способ проведения экзотермической реакции жидкого реагента с одним или несколькими газообразными реагентами при повышенной температуре и повышенном давлении с образованием газообразного продукта реакции в реакторе, в котором предусмотрены не поддерживающие давление встроенные элементы, увеличивающие продолжительность пребывания в нем газообразного(ых) реагента(ов) и окруженные жидким реагентом.
Объектом изобретения является далее способ получения сероводорода из водорода и серы при повышенном давлении и высокой температуре с применением предлагаемого в изобретении реактора.
Температура при синтезе сероводорода составляет от 300 до 600°С, прежде всего от примерно 400 до 600°С. Температура поддерживающих давление частей реактора ниже температуры, до которой нагреваются встроенные элементы, предпочтительно не выше 450°С, особенно предпочтительно ниже 450°С. Температура в газосборных или газоулавливающих зонах, соответственно температура встроенных элементов преимущественно превышает 450°С, прежде всего достигает 600°С.
Не контактирующие с жидкой серой поверхности реактора расположены преимущественно выше ее уровня и не нагреваются до температур свыше 450°С.
На форму реактора и встроенных элементов не накладывается никаких особых ограничений. В предпочтительном варианте реактор имеет цилиндрическую форму. Выполняющие функцию газосборных или газоулавливающих зон не поддерживающие давление встроенные элементы, например, могут иметь форму перевернутых чашек или раковин, могут иметь тарельчатую конструкцию с газосборниками и газораспределителями, могут представлять собой насыпные слои из насадочных или полых тел, насадки, монолитные изделия, вязаные изделия либо их комбинации.
На прилагаемом к описанию чертеже схематично показан предлагаемый в изобретении реактор, выполненный по одному из возможных вариантов.
Необходимо отметить, что специалист свободен в выборе комбинируемых между собой стадий способа получения сероводорода, при этом в сочетании между собой можно также использовать несколько предлагаемых в изобретении реакторов и различных аппаратов для отделения побочных продуктов или неизрасходованных исходных веществ.
В целом процесс получения сероводорода проводят при давлении в пределах от 5 до 20 бар и при этом давлении в находящуюся в предлагаемом в изобретении реакторе жидкую серу вводят водород.
Помимо этого предлагаемую в изобретении реакцию прежде всего по получению сероводорода согласно изобретению можно также проводить в присутствии известного гетерогенного катализатора. Речь при этом преимущественно идет о стойком к действию серы катализаторе гидрирования, который в предпочтительном варианте состоит из носителя, такого, например, как диоксид кремния, оксид алюминия, диоксид циркония или диоксид титана, а также содержит один или несколько активных элементов из числа молибдена, никеля, вольфрама, железа, ванадия, кобальта, серы, селена, фосфора, арсена, сурьмы и висмута. Катализатор можно использовать и в жидкой, и в газовой фазе. Катализатор может быть представлен в виде насыпных слоев из гранул, в виде суспендированного в жидкой сере порошка, в виде покрытия на насадочных телах, монолитных изделиях или вязаных изделиях. Катализатор можно располагать в реакторе в одном или нескольких местах. В предпочтительном варианте катализатор размещают в выполняющих функцию газосборных зон встроенных элементах. Для обеспечения полноты превращения водорода в еще одном варианте осуществления изобретения насыпной слой катализатора размещают над жидкой серой и всеми газоулавливающими конструкциями. Возможно также использование насыпного слоя катализатора, окруженного жидкой серой.
Вместо чистого водорода через жидкую серу можно также пропускать содержащий примеси водород (загрязненный водород). Такие примеси могут представлять собой, например, диоксид углерода, сероводород, воду, метанол, метан, этан, пропан либо другие легколетучие углеводороды. Для получения сероводорода предпочтительно использовать водород с чистотой от более 65 до 100 об.%, из которых преимущественно от более 98 до 100 об.% от всего количества используемого водорода превращаются в сероводород. Примеси в водороде или продукте его реакции предпочтительно не отделять перед синтезом метилмеркаптана, а оставлять в используемой для его получения исходной газовой смеси. Используемая сера также может содержать различные примеси.
В целом предлагаемое в изобретении решение обеспечивает, с одной стороны, возможность экономически эффективной эксплуатации производственных установок для получения сероводорода особенно при давлении свыше 5 бар, поскольку предлагаемый в изобретении реактор даже при длительной работе на протяжении нескольких лет или десятилетий требует лишь минимальных обслуживания и ремонта и не требует частичной или полной замены. Предлагаемый в изобретении реактор позволяет избежать нагрева поддерживающих давление частей до "сверхтемператур" и благодаря этому повысить надежность и безопасность установки, поскольку снижение интенсивности или скорости коррозии в этом месте уменьшает опасность повреждения или разрушения материала и вероятность несчастных случаев из-за выхода опасных веществ наружу. Подобный фактор имеет особое значение при работе с высокотоксичными веществами, такими как сероводород.
Сравнительный пример 1
В трубчатый реактор с внутренним диаметром 5 см, заполненный жидкой серой до уровня 1 м, через фритту на его дне непрерывно подавали водород с расходом 1000 л/ч при нормальных условиях. Израсходованное количество серы восполняли путем последующего дозирования жидкой серы, поддерживая ее уровень постоянным. Серу, отделенную от потока содержащего продукт газа путем конденсации, возвращали в жидком виде в верхнюю часть трубчатого реактора. Выше уровня жидкой серы в кожухе реактора были размещены термопары для измерения температуры, расположенные с 10-сантиметровыми интервалами. В процессе электронагрева реактора через его наружную стенку до 400°С в объеме жидкой серы преобладала равномерная температура примерно 397°С. Однако максимальная температура, измеренная термопарами, расположенными выше уровня жидкой серы, составляла 520°С. Помимо этого выше уровня жидкой серы в месте максимальной температуры размещали новые образцы из широко используемой высококачественной стали (марки 1.4571). По истечении примерно 400 ч работы реактора извлеченные из него образцы из высококачественной стали имели значительные коррозионные повреждения в виде отслоений и потери массы.
Сравнительный пример 2
Повторяли сравнительный пример 1, за исключением того, что уровень заполнения реактора жидкой серой повышали до 4 м. Значение максимальной температуры выше уровня жидкой серы оставалось таким же. Образцы из высококачественной стали также имели значительные коррозионные повреждения.
Сравнительный пример 3
Повторяли сравнительный пример 2, за исключением того, что в жидкой сере суспендировали порошкообразный Со3O4МоО3/Аl2O3 в качестве катализатора в количестве 15 мас.%. Значение максимальной температуры выше уровня жидкой серы оставалось таким же. Образцы из высококачественной стали также имели значительные коррозионные повреждения.
Пример 1
Повторяли сравнительный пример 2, за исключением того, что в заполненной жидкой серой зоне реактора предусматривали три газосборных зоны, образованные встроенными элементами в виде перевернутых чашек. В этих зонах скапливался восходящий газ при продолжительности пребывания в них, составляющей от 10 до 50 с. Температура, измеренная выше уровня жидкой серы, была такой же, что и в жидкой сере. Никакого перегрева не наблюдалось. Помимо этого на образцах из высококачественной стали, находившихся выше уровня жидкой серы, не было обнаружено никаких коррозионных повреждений. По результатам анализа содержащего продукт газа газовой хроматографией степень превращения водорода превышала 60% (при температуре серы 400°С, аналогично сравнительному примеру), при температуре 420°С превышала 90%, а при температуре 440°С превышала 96%.
Пример 2
Повторяли сравнительный пример 2, за исключением того, что в заполненной жидкой серой зоне реактора предусматривали насыпной слой из керамических насадочных тел с наружным диаметром 5 мм и с объемом пустот между ними 70%. Значение максимальной температуры выше уровня жидкой серы лишь на 5°С превышало заданную температуру серы, равную 397°С.
Помимо этого на образцах из высококачественной стали, находившихся выше уровня жидкой серы, не было обнаружено никаких коррозионных повреждений. По результатам анализа содержащего продукт газа газовой хроматографией степень превращения водорода превышала 99%.
Приведенные выше примеры свидетельствуют о том, что благодаря предлагаемому в изобретении решению высокоэкзотермическая реакция завершается уже в пределах заполненной жидкой серой зоны с расположенными в ней встроенными элементами, соответственно газосборными зонами и не происходит в заполненном газом пространстве выше уровня жидкой серы. В результате этого выше уровня жидкой серы отсутствует обусловленная нагревом до высоких "сверхтемператур" коррозия. Образовавшийся сероводород имеет высокую чистоту.

Claims (17)

1. Реактор, который пригоден для проведения экзотермической реакции жидкого реагента с одним или несколькими газообразными реагентами при повышенной температуре и повышенном давлении с образованием газообразного продукта реакции и в котором предусмотрены не поддерживающие давление встроенные элементы, увеличивающие продолжительность пребывания в нем газообразного(ых) реагента(ов) и окруженные жидким реагентом, причем в качестве не поддерживающих давление встроенных элементов используются газосборные и газоулавливающие зоны.
2. Реактор по п.1, в котором выделяющаяся теплота реакции отводится циркулирующими жидкими реагентами.
3. Реактор по п.1, в котором в качестве не поддерживающих давление зон используются насыпные слои из насадочных или полых элементов.
4. Реактор по п.1, в котором продолжительность пребывания газообразного(ых) реагента(ов) увеличена за счет использования насыпных слоев из пригодных для этого катализаторов.
5. Реактор по пп.1 или 4, в котором катализатор находится в пределах газосборной зоны.
6. Реактор по одному из пп.1-4, который имеет от 3 до 100 не поддерживающих давление встроенных элементов.
7. Реактор по одному из пп.1-4, в котором продолжительность пребывания газообразного(ых) реагента(ов) в газосборной или газоулавливающей зоне составляет от более 0,5 до 60 с.
8. Реактор по одному из пп.1-4, в котором продолжительность пребывания газообразного реагента в 3-20 раз превышает продолжительность пребывания в реакторах без встроенных элементов.
9. Реактор по п.7, в котором продолжительность пребывания газообразного реагента в 3-20 раз превышает продолжительность пребывания в реакторах без встроенных элементов.
10. Реактор по одному из пп.1-4, в котором встроенные элементы окружены жидким реагентом и стенкой отделены от стенки реактора таким образом, что через пространство, образованное между указанными стенками вследствие их расположения на расстоянии друг от друга, циркулирует жидкий реагент в направлении, противоположном направлению подъема газообразного реагента.
11. Реактор по одному из пп.1-4, используемый для проведения реакции жидкой серы с газообразным водородом с образованием сероводорода.
12. Способ проведения экзотермической реакции жидкого реагента с одним или несколькими газообразными реагентами при повышенной температуре и повышенном давлении с образованием газообразного продукта реакции в реакторе, в котором предусмотрены не поддерживающие давление встроенные элементы, увеличивающие продолжительность пребывания в нем газообразного(ых) реагента(ов) и окруженные жидким реагентом, причем в качестве не поддерживающих давление встроенных элементов используются газосборные и газоулавливающие зоны.
13. Способ получения сероводорода из серы и водорода при повышенном давлении, заключающийся в том, что реакцию между газообразным водородом и жидкой серой проводят в реакторе по одному из пп.1-11 при температуре в пределах от 300 до 600°C, при этом температура не поддерживающих давление встроенных элементов выше температуры поддерживающей давление стенки реактора.
14. Способ по п.13, при осуществлении которого температура не поддерживающих давление встроенных элементов превышает 450°C, а температура поддерживающей давление стенки реактора составляет менее 450°C.
15. Способ по пп.12 или 13, при осуществлении которого реакцию проводят при давлении в пределах от 8 до 20 бар.
16. Способ по одному из пп.13-14, при осуществлении которого реакцию проводят в присутствии катализатора.
17. Способ по п.15, при осуществлении которого используют стойкий к действию серы катализатор гидрирования, который предпочтительно состоит из носителя, такого, например, как диоксид кремния, оксид алюминия, диоксид циркония или диоксид титана, а также содержит один или несколько активных элементов из числа молибдена, никеля, вольфрама, железа, ванадия, кобальта, серы, селена, фосфора, арсена, сурьмы и висмута.
RU2011105738/05A 2008-07-18 2009-07-03 Реактор и способ применения RU2517510C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008040544A DE102008040544A1 (de) 2008-07-18 2008-07-18 Reaktionsbehälter und Verfahren zur Verwendung
DE102008040544.2 2008-07-18
PCT/EP2009/058388 WO2010006932A1 (de) 2008-07-18 2009-07-03 Reaktionsbehälter und verfahren zur verwendung

Publications (2)

Publication Number Publication Date
RU2011105738A RU2011105738A (ru) 2012-08-27
RU2517510C2 true RU2517510C2 (ru) 2014-05-27

Family

ID=41165616

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011105738/05A RU2517510C2 (ru) 2008-07-18 2009-07-03 Реактор и способ применения

Country Status (12)

Country Link
US (1) US7833508B2 (ru)
EP (2) EP2300144A1 (ru)
JP (1) JP5886045B2 (ru)
KR (1) KR101633140B1 (ru)
CN (1) CN102099103B (ru)
BR (1) BRPI0916797B1 (ru)
DE (1) DE102008040544A1 (ru)
ES (1) ES2709122T3 (ru)
MX (1) MX2010013441A (ru)
MY (1) MY179997A (ru)
RU (1) RU2517510C2 (ru)
WO (1) WO2010006932A1 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX341595B (es) 2011-02-23 2016-08-26 Evonik Degussa Gmbh Metodo para producir 2-hidroxi-4-(metiltio)butironitrilo a partir de 3-(metiltio)propanal y cianuro de hidrogeno.
MY171361A (en) 2011-08-30 2019-10-10 Evonik Operations Gmbh Method for producing a methionine salt
DE102011081828A1 (de) 2011-08-30 2013-02-28 Evonik Degussa Gmbh Verfahren zur Umsetzung von Methylmercaptopropionaldehyd aus Roh-Acrolein und Roh-Methylmercaptan
CN102500285B (zh) * 2011-11-03 2014-04-23 烟台大学 一种硫化氢合成装置
EP2676926A1 (de) * 2012-06-22 2013-12-25 Evonik Industries AG Reaktor und Verfahren zur Herstellung von Schwefelwasserstoff
EP2676928A1 (de) * 2012-06-22 2013-12-25 Evonik Industries AG Reaktor und Verfahren zur Herstellung von Schwefelwasserstoff
EP2676927A1 (de) 2012-06-22 2013-12-25 Evonik Industries AG Reaktor und Verfahren zur Herstellung von Schwefelwasserstoff
EP2676925A1 (de) 2012-06-22 2013-12-25 Evonik Industries AG Reaktor und Verfahren zur Herstellung von Schwefelwasserstoff
CN103272538A (zh) * 2013-04-26 2013-09-04 中昊光明化工研究设计院有限公司 液埋气室式反应塔
CN108473690A (zh) 2015-11-24 2018-08-31 嘉士伯有限公司 用于注塑成型的植物基材料
EP3386624B1 (en) 2015-12-10 2022-11-02 Chevron Phillips Chemical Company Lp Hydrogen sulfide production process and related reactor vessels
US10577314B2 (en) 2016-05-31 2020-03-03 Novus International, Inc. Process for producing methyl mercaptan from dimethyl sulfide
KR102623738B1 (ko) * 2021-08-11 2024-01-11 주식회사 레이크테크놀로지 황화수소 반응기 및 황화수소 제조방법
KR102674768B1 (ko) * 2021-10-28 2024-06-13 주식회사 레이크테크놀로지 황화수소 반응기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2876071A (en) * 1955-05-31 1959-03-03 Chemetron Corp Method for producing hydrogen sulfide by synthesis
US2876070A (en) * 1955-03-28 1959-03-03 Chemetron Corp Method for producing hydrogen sulfide by synthesis
SU833479A1 (ru) * 1979-10-29 1981-05-30 Институт Газа Академии Наук Усср Способ получени восстановительногогАзА, СОдЕРжАщЕгО СЕРОВОдОРОд и ОКиСьуглЕРОдА
EP0339818A1 (en) * 1988-04-07 1989-11-02 JGC Corporation Process for the manufacture of hydrogen sulfide

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE558432C (de) * 1930-09-27 1932-09-07 I G Farbenindustrie Akt Ges Verfahren zur Herstellung von Schwefelwasserstoff
US2877099A (en) * 1956-08-15 1959-03-10 Socony Mobil Oil Co Multistage concurrent-countercurrent liquid gas contact and apparatus therefor
DE1193040B (de) 1960-03-10 1965-05-20 Inventa A G Fuer Forschung Verfahren zur Herstellung von Cyclohexanon
FR1593276A (ru) 1967-12-19 1970-05-25
US4094961A (en) 1974-11-07 1978-06-13 Ralph M. Parsons Company Hydrogen sulfide production
CA1088276A (en) * 1976-08-02 1980-10-28 Paul T. Pendergraft Process for removal of hydrogen sulfide and hydrogen polysulfide from liquid sulfur
CS190793B1 (en) 1976-11-25 1979-06-29 Pavol Klucovsky Process for preparing hydrogen sulphide from gaseous hydrogen and sulphide vapours
CS190792B1 (en) 1976-11-25 1979-06-29 Milan Karvas Process for preparing hydrogen sulphide
JPH01257109A (ja) * 1988-04-07 1989-10-13 Jgc Corp 硫化水素の製造方法
JPH03103311A (ja) * 1989-09-14 1991-04-30 Jgc Corp 硫化水素の製造方法およびその製造装置
US5130102A (en) * 1990-06-11 1992-07-14 Chemical Research & Licensing Company Catalytic distillation reactor
US5686056A (en) * 1996-02-05 1997-11-11 Bechtel Group, Inc. Methods and apparatus for purifying hydrogen sulfide
JPH10192692A (ja) * 1997-01-13 1998-07-28 Jgc Corp 気液接触反応器
DE102006019590A1 (de) * 2006-04-27 2007-10-31 Degussa Gmbh Reaktionsbehälter für die Herstellung von Schwefelwasserstoff

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2876070A (en) * 1955-03-28 1959-03-03 Chemetron Corp Method for producing hydrogen sulfide by synthesis
US2876071A (en) * 1955-05-31 1959-03-03 Chemetron Corp Method for producing hydrogen sulfide by synthesis
SU833479A1 (ru) * 1979-10-29 1981-05-30 Институт Газа Академии Наук Усср Способ получени восстановительногогАзА, СОдЕРжАщЕгО СЕРОВОдОРОд и ОКиСьуглЕРОдА
EP0339818A1 (en) * 1988-04-07 1989-11-02 JGC Corporation Process for the manufacture of hydrogen sulfide

Also Published As

Publication number Publication date
EP2300144A1 (de) 2011-03-30
BRPI0916797A2 (pt) 2018-02-20
ES2709122T3 (es) 2019-04-15
MY179997A (en) 2020-11-19
US20100015037A1 (en) 2010-01-21
EP3067115B1 (de) 2018-10-31
MX2010013441A (es) 2011-01-21
KR20110044205A (ko) 2011-04-28
WO2010006932A1 (de) 2010-01-21
EP3067115A1 (de) 2016-09-14
RU2011105738A (ru) 2012-08-27
US7833508B2 (en) 2010-11-16
CN102099103B (zh) 2015-06-03
BRPI0916797B1 (pt) 2018-09-18
DE102008040544A1 (de) 2010-01-21
JP5886045B2 (ja) 2016-03-16
CN102099103A (zh) 2011-06-15
JP2011528277A (ja) 2011-11-17
KR101633140B1 (ko) 2016-06-23

Similar Documents

Publication Publication Date Title
RU2517510C2 (ru) Реактор и способ применения
JP5393483B2 (ja) 硫化水素を連続的に製造するための方法および装置
JP5306231B2 (ja) 硫化水素を製造するための反応器および方法
JP6157610B2 (ja) 硫化水素の製造のための反応器および方法
JP6157609B2 (ja) 硫化水素の製造のための反応器および方法
EP2864246B1 (en) Reactor and process for preparing hydrogen sulphide
JP6173448B2 (ja) 硫化水素の製造のための反応器および方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200704