RU2511404C2 - Способ получения раствора, содержащего высокомолекулярные изолированные капсульные полисахариды streptococcus pneumoniae серотипа 19а (варианты) - Google Patents

Способ получения раствора, содержащего высокомолекулярные изолированные капсульные полисахариды streptococcus pneumoniae серотипа 19а (варианты) Download PDF

Info

Publication number
RU2511404C2
RU2511404C2 RU2011128564/10A RU2011128564A RU2511404C2 RU 2511404 C2 RU2511404 C2 RU 2511404C2 RU 2011128564/10 A RU2011128564/10 A RU 2011128564/10A RU 2011128564 A RU2011128564 A RU 2011128564A RU 2511404 C2 RU2511404 C2 RU 2511404C2
Authority
RU
Russia
Prior art keywords
fermentation culture
streptococcus pneumoniae
capsular polysaccharides
hours
fermentation
Prior art date
Application number
RU2011128564/10A
Other languages
English (en)
Other versions
RU2011128564A (ru
Inventor
Джин Хизер КРИНИН
Original Assignee
УАЙТ ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by УАЙТ ЭлЭлСи filed Critical УАЙТ ЭлЭлСи
Publication of RU2011128564A publication Critical patent/RU2011128564A/ru
Application granted granted Critical
Publication of RU2511404C2 publication Critical patent/RU2511404C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

Изобретение относится к области биотехнологии и касается способов получения раствора, содержащего высокомолекулярные изолированные капсульные полисахариды Streptococcus pneumoniae серотипа 19А. Представленные способы включают получение ферментационной культуры бактериальных клеток Streptococcus pneumoniae; ферментирование упомянутой ферментационной культуры не более 6 часов; лизис бактериальных клеток с получением раствора капсульных полисахаридов Streptococcus pneumoniae серотипа 19А, имеющих молекулярную массу, по крайней мере, 480 кДа, в клеточном лизате; и выделение таких капсульных полисахаридов из клеточного лизата с получением раствора капсульных полисахаридов Streptococcus pneumoniae серотипа 19А. В другом способе в ферментационную культуру дополнительно вводится СO2. Представленные изобретения позволяют выделять из клеточных лизатов Streptococcus pneumoniae серотипа 19А капсульные полисахариды определенного размера. 2 н. и 12 з.п. ф-лы, 6 ил.,7 табл., 1 пр.

Description

ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Изобретение относится к способам получения изолированных капсульных полисахаридов Streptococcus pneumoniae серотипа 19А путем контроля времени сбора.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Для получения поливалентных конъюгированных пневмококковых вакцин, направленных на профилактику инвазивных заболеваний, вызванных микроорганизмом Streptococcus pneumoniae (также известный как пневмококк), выращивали выбранные серотипы Streptococcus pneumoniae, чтобы получить полисахариды, необходимые для производства вакцины. Клетки выращивали в ферментаторе с лизисом индуцированным в конце ферментации прибавлением деоксихолата натрия или альтернативного лизирующего агента. Бульон лизата потом собирали для очистки выходного потока и восстановления капсульных полисахаридов, которые окружают бактериальные клетки. После конъюгации с белком-носителем полисахарид был включен в заключительный продукт вакцины и обладал иммуногенными свойствами в вакцинируемой популяции в отношении выбранных серотипов Streptococcus pneumoniae.
Размер полисахарида - качественный признак, который оценивается в каждой партии препарата и должен соответственно контролироваться. Относительно полисахарида серотипа 19А Streptococcus pneumoniae размер полисахарида может зависеть от параметров, таких как рН ферментации, температура ферментации и поддерживаемая температура. Кроме того, тепловая деградация 19А полисахаридов происходит вследствие ферментации/восстановления и процессов очистки, которые обеспечивают дополнительный вызов успешной адресации и управление различными параметрами, которые прогрессивно увеличивают процессы крупномасштабного производства 19А полисахаридов.
Соответственно необходимы улучшенные способы выделения высокомолекулярных капсульных полисахаридов серотипа 19А из клеточных лизатов Streptococcus pneumoniae.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Обеспечиваются способы получения растворов высокомолекулярных капсульных полисахаридов серотипа 19А из клеточных лизатов Streptococcus pneumoniae. В одном способе ферментационная культура бактериальных клеток Streptococcus pneumoniae, которая продуцирует капсульные полисахариды серотипа 19А, ферментируется не более 6 часов перед лизисом бактериальных клеток, и капсульные полисахариды собирают. Соответственно в одном варианте реализации изобретения способ включает стадии: 1) получение ферментационной культуры бактериальных клеток Streptococcus pneumoniae, которые продуцируют капсульные полисахариды серотипа 19А; 2) ферментирование ферментационной культуры не более 6 часов; 3) лизис бактериальных клеток в ферментационной культуре и 4) выделение капсульных полисахаридов Streptococcus pneumoniae серотипа 19А из ферментационной культуры; посредством чего был получен раствор, содержащий изолированные высокомолекулярные капсульные полисахариды Streptococcus pneumoniae cepoтипа 19А. В специфическом варианте реализации ферментационная культура ферментирована не более 5 часов. В дополнительном варианте реализации ферментационная культура ферментирована не более 4 часов. В другом варианте реализации ферментационная культура ферментирована 3-6 часов. В другом варианте реализации молекулярная масса изолированных капсульных полисахаридов Streptococcus pneumoniae составляет, по крайней мере, 480 кДа.
В другом варианте реализации данного изобретения способ также включает введение CO2 в ферментационную культуру бактериальных клеток, которые продуцируют полисахариды Streptococcus pneumoniae серотипа 19А. Соответственно в одном варианте реализации способ данного изобретения включает стадии: 1) получение ферментационной культуры бактериальных клеток Streptococcus pneumoniae, которые продуцируют капсульные полисахариды серотипа 19А; 2) введение CO2 в ферментационную культуру; 3) ферментирование ферментационной культуры не более 6 часов; 4) лизис бактериальных клеток в ферментационной культуре и 5) выделение капсульных полисахаридов Streptococcus pneumoniae серотипа 19А из ферментационной культуры; посредством чего был получен раствор, содержащий изолированные высокомолекулярные капсульные полисахариды Streptococcus pneumoniae серотипа 19А. В специфическом варианте реализации введение CO2 в ферментационную культуру включает прибавление бикарбонатного иона (HCO3-) к ферментационной культуре, например прибавление NaHCO3 (бикарбонат натрия) к ферментационной культуре. В дополнительном варианте реализации введение CO2 в ферментационную культуру включает прибавление карбонатного иона (CO32-) к ферментационной культуре, например прибавление Na2CO3 (карбонат натрия) к ферментационной культуре. В другом варианте реализации введение CO2 в ферментационную культуру включает первое прибавление NaHCO3 и второе прибавление Na2CO3. В еще одном варианте реализации введение CO2 в ферментационную культуру включает покрытие ферментационной культуры CO2. В другом варианте реализации молекулярная масса изолированных капсульных полисахаридов Streptococcus pneumoniae составляет, по крайней мере, 480 кДа.
КРАТКОЕ ОПИСАНИЕ ФИГУР
Фигура 1 показывает оптическую плотность (ОП), базовый уровень и уровень глюкозы во время фазы ферментации с Na2CO3, в качестве базового титранта, из лабораторных исследований до 3 л масштаба. Базовый титрант в граммах разделен на 10 для построения графика.
Фигура 2 показывает оптическую плотность (ОП), базовый уровень и уровень глюкозы во время фазы ферментации с NaOH, в качестве базового титранта, из лабораторных исследований до 3 л масштаба. Базовый титрант в граммах разделен на 10 для построения графика.
Фигура 3 показывает общий уровень белка и полисахарида при различных корректировках рН к дополнительной основной подаче Na2CO3 или NaOH.
Фигура 4 показывает молекулярную массу как функцию времени сбора в производстве 19А полисахаридов.
Фигура 5 показывает определенный базовый расход от времени на оптическую плотность (ОП) как функцию времени сбора в производстве 19А полисахаридов. Базовый титрант в граммах разделен на 10 для построения графика.
Фигура 6 показывает молекулярную массу как функцию использования определенного базового титранта в производстве 19А полисахаридов.
ДЕТАЛЬНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Streptococcus pneumoniae - грамположительные, ланцетоподобные кокки, которые обычно находятся в парах (диплококки), но также и в коротких цепях или как отдельные клетки. Они легко растут на чашке с кровяным агаром блестящими колониями и показывают альфа-гемолиз, если только выращены анаэробно, где они показывают бета-гемолиз. Клетки большинства серотипов пневмококков имеют капсулу, которая покрывает каждую клетку. Эта капсула - детерминанта вирулентности у людей, поскольку интерферирует с фагоцитозом, препятствуя антителам присоединяться к бактериальным клеткам. В настоящее время идентифицировано более чем 90 известных серотипов капсульных полисахаридов, с 23 самыми общими серотипами, составляющими приблизительно 90% инвазивных заболеваний во всем мире.
Как вакцина, полисахаридная оболочка пневмококков может предоставить необходимую степень иммунности к Streptococcus pneumoniae у людей с развитой или неослабленной иммунной системой, но конъюгированный белок с полисахаридом допускает иммунную реакцию у детей и пожилых, которые имеют риск пневмококковой инфекции. Пневмококковые клетки выращивали в ферментаторе с индуцированным лизисом в конце ферментации. Бульон лизата потом собирали для очистки выходного потока и восстановления капсульных полисахаридов.
Размер полисахарида - качественный признак, оцененный для каждой партии препарата, и должен соответственно контролироваться. Молекулярная масса капсульных полисахаридов серотипа 19А зависит от параметров процесса ферментации. Способы данного изобретения позволяют восстановлению капсульных полисахаридов высокой молекулярной массы серотипа 19А от клеточных лизатов Streptococcus pneumoniae.
В развитии настоящих способов концентрация HySoy и выбор базового титранта были модифицированы в попытке изменить заключительный выход полисахаридов и молекулярные массы. Были проверены четыре схемы ферментации. В первой использовался базовый NaOH процесс с 28 г/л HySoy. Во второй использовался 20% карбонат натрия в качестве базового титранта и 20 г/л HySoy. В третьей скомбинированы преимущества первых двух подходов введением карбоната путем порционирования бикарбоната натрия и используя смешанный NaOH/карбонат в качестве базового титранта. В четвертом подходе использовался карбонат в качестве базового титранта с прибавлением 10 мМ бикарбоната, чтобы поддержать рост.
Использование NaOH как базового титранта во время ферментации давало возможность снизить деоксихолат лизата до рН 5,0, без вспенивания, чтобы удалить белок и улучшить фильтрацию, но привело к более низкой молекулярной массе полисахарида (<450 кДа). Na2CO3 обеспечил более высокую молекулярную массу, но имел результатом вспенивание, если рН деоксихолата лизата был снижен. На стадии удержания более высокого рН-6,6 ферментация с использованием Na2CO3 привела к образованию гелеподобного материала с последующими проблемами фильтрации. Минимизация количества Na2CO3 при использовании смеси NaOH и Na2CO3 в качестве рН титранта обеспечила преимущества величины молекулярной массы при Na2CO3, устраняя вспенивание и проблемы фильтрации из-за непредвиденного высвобождения большого количества CO2. Использование 20% Na2CO3 (масс./об.) в качестве базового титранта с прибавлением 10 мМ NaHCO3, чтобы поддержать рост (четвертый подход), привело к выходу однородных высокомолекулярных полисахаридов.
В дополнение к концентрации HySoy и базовому титранту был также изучен эффект времени сбора на молекулярную массу капсульного полисахарида Streptococcus pneumoniae серотипа 19А. Было найдено, что обеспечение ферментирования ферментационной культуры не более 6 часов перед лизисом бактериальных клеток привело к высокой молекулярной массе капсульных полисахаридов серотипа 19А в клеточных лизатах Streptococcus pneumoniae.
Данное изобретение, таким образом, обеспечивает улучшенные способы выделения высокомолекулярных капсульных полисахаридов серотипа 19А из клеточных лизатов Streptococcus pneumoniae. В одном из способов предоставлен способ получения раствора, содержащего изолированные капсульные полисахариды с высокой молекулярной массой Streptococcus pneumoniae серотипа 19А, который включает стадии: 1) получение ферментационной культуры бактериальных клеток Streptococcus pneumoniae, которые продуцируют капсульные полисахариды серотипа 19А; 2) ферментирование ферментационной культуры не более 6 часов; 3) лизис бактериальных клеток в ферментационной культуре; и 4) выделение капсульных полисахаридов Streptococcus pneumoniae серотипа 19А из ферментационной культуры; посредством чего был получен раствор, содержащий изолированные высокомолекулярные капсульные полисахариды Streptococcus pneumoniae серотипа 19А.
В определенных вариантах реализации изобретения ферментационная культура ферментирована в течение приблизительно не более 7 часов, приблизительно не более 6,5 часов, приблизительно не более 6 часов, приблизительно не более 5,5 часов, приблизительно не более 5 часов, приблизительно не более 4,5 часов, приблизительно не более 4 часов или приблизительно не более 3,5 часов. В другом варианте реализации ферментационная культура ферментирована между 3 часами и 7 часами, между 3 часами и 6,5 часами, между 3 часами и 6 часами, между 3 часами и 5,5 часами, между 3 часами и 5 часами, между 3 часами и 4,5 часами, между 3 часами и 4 часами, или между 3 часами и 3,5 часами. В другом варианте реализации данное изобретение относится к раствору, содержащему капсульные полисахариды высокой молекулярной массы Streptococcus pneumoniae серотипа 19А, где раствор получен способом, описанным выше.
В другом варианте реализации способ данного изобретения также включает введение CO2 в ферментационную культуру бактериальных клеток, которые продуцируют полисахариды Streptococcus pneumoniae серотипа 19А, который включает стадии: 1) получение ферментационной культуры бактериальных клеток Streptococcus pneumoniae, которые продуцируют капсульные полисахариды серотипа 19А; 2) поставку CO2 ферментационной культуре; 3) ферментирование ферментационной культуры не более 6 часов; 4) лизис бактериальных клеток в ферментационной культуре и 5) выделение капсульных полисахаридов Streptococcus pneumoniae серотипа 19А из ферментационной культуры; посредством чего был получен раствор, содержащий изолированные высокомолекулярные капсульные полисахариды Streptococcus pneumoniae серотипа 19А.
В другом варианте реализации данное изобретение относится к раствору, содержащему капсульные полисахариды с высокой молекулярной массой Streptococcus pneumoniae серотипа 19А, где раствор получен способом, описанным выше.
Способы изобретения приводят к капсульным полисахаридам с высокой молекулярной массой Streptococcus pneumoniae серотипа 19А. Как используется здесь, "высокая молекулярная масса" относится к молекулярным массам, которые составляют по крайней мере приблизительно 480 кДа, приблизительно 490 кДа, приблизительно 500 кДа, приблизительно 510 кДа, приблизительно 520 кДа, приблизительно 525 кДа, приблизительно 550 кДа, приблизительно 575 кДа, приблизительно 600 кДа, приблизительно 625 кДа, приблизительно 650 кДа, приблизительно 675 кДа, приблизительно 700 кДа, приблизительно 725 кДа, приблизительно 750 кДа, приблизительно 775 кДа, приблизительно 800 кДа, приблизительно 825 кДа, приблизительно 850 кДа, приблизительно 875 кДа, приблизительно 900 кДа, приблизительно 925 кДа, приблизительно 950 кДа, приблизительно 975 кДа или приблизительно 1000 кДа.
В определенных способах введение CO2 в ферментационную культуру включает прибавление бикарбонатного иона (HCO3-) к ферментационной культуре, например прибавление NaHCO3 к ферментационной культуре. Прибавление NaHCO3 5-50 мМ может использоваться, такое как 5 мМ, 10 мМ, 15 мМ, 20 мМ, 25 мМ, 30 мМ, 35 мМ, 40 мМ, 45 мМ или 50 мМ. В других способах введение CO2 в ферментационную культуру включает прибавление карбонатного иона (CO32-) к ферментационной культуре, например прибавление Na2CO3 к ферментационной культуре.
Добавления Na2CO3 0,1-2,0 М могут использоваться, такие как 0,1 М, 0,2 М, 0,4 М, 0,6 М, 0,7 М, 0,9 М, 1,0 М, 1,5 М, 1,8 М или 2,0 М. Массообъемный (мас./об.) эквивалент может также использоваться, такой как 5% (масс./об.) Na2CO3, 10% (масс./об.) Na2CO3 или 20% (масс./об.) Na2CO3. В остальных других способах введение CO2 в ферментационную культуру включает первое прибавление NaHCO3 и второе прибавление Na2CO3 к ферментационной культуре. В дальнейших способах введение CO2 в ферментационную культуру включает покрытие ферментационной культуры CO2. Покрытие CO2 5-100% может использоваться, например 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% или 100%.
В пределах способов данного изобретения бактериальные клетки могут быть подвергнуты лизису, используя любой литический агент. "Литический агент" является любым агентом, который способствует деструкции клеточной оболочки и высвобождению автолизина, который вызывает клеточный лизис, включая, например, детергенты. Как используется здесь, термин "детергент" относится к любому анионному или катионному детергенту, способному индуцировать лизис бактериальных клеток. Примеры таких детергентов для использования в пределах способов данного изобретения включают деоксихолат натрия (DOC), N-лаурил саркозин (NLS), хенодеоксихолат натрия и сапонины.
В одном варианте реализации данного изобретения литическим агентом, используемым для лизиса бактериальных клеток, является DOC. DOC - натриевая соль желчной кислоты - деоксихолевой кислоты, которую обычно получают из биологических источников, таких как коровы или волы. DOC активизирует LytA протеин, который является автолизином, который вовлечен в рост клеточной оболочки и деление Streptococcus pneumoniae. LytA протеин имеет холин связывающие домены в его части С-терминала, и мутации lytA гена, как известно, приводят к LytA мутантам, которые являются резистентными к лизису DOC.
Хотя нет никакого свидетельства, что использование DOC во время очистки полисахарида Streptococcus pneumoniae представляет риск для здоровья, использование таких биологических реагентов может затронуть потенциальные регулирующие вопросы. Соответственно в одном варианте реализации данного изобретения литический агент, используемый для лизиса бактериальных клеток, является литическим агентом неживотного происхождения. Литические агенты неживотного происхождения для использования в пределах способов данного изобретения включают агенты от неживотных источников с механизмом активности, подобным DOC (т.е. влияние LytA функции, приводящее к лизису клеток Streptococcus pneumoniae).
Такие литические агенты неживотного происхождения включают, но не ограничиваются следующими: аналоги DOC, сурфактанты, детергенты и структурные аналоги холина и могут быть определены, используя процедуры, как описано в Экспериментальной секции здесь ниже. В одном варианте реализации литический агент неживотного происхождения выбран из группы, состоящей из следующих: декансульфоновая кислота, трет-октилфеноксиполи(оксиетилен)этанолы (например Igepal® CA-630.CAS #: 9002-93-1, доступный от Sigma Aldrich, St. Louis, МО), конденсаты октилфенолэтиленоксида (например Triton® Х-100, доступный от Sigma Aldrich, St. Louis, МО), N-лаурилсаркозиннатрий (NLS), лаурилиминодипропионат, додецилсульфат натрия, хенодеоксихолат, гиодеоксихолат, гликодеоксихолат, тауродеоксихолат, таурохенодеоксихолат и холат. В другом варианте реализации литический агент неживотного происхождения - NLS.
В пределах способов данного изобретения - выделение капсульных полисахаридов Streptococcus pneumoniae, используя стандартные способы, известные специалистам в данной области. Например, после ферментации бактериальных клеток, которые продуцируют капсульные полисахариды Streptococcus pneumoniae серотипа 19А, бактериальные клетки подвергали лизису, чтобы получить клеточный лизат. Капсульные полисахариды могут быть потом изолированы от клеточного лизата, используя способы очистки, известные в данной области, включая центрифугирование, осаждение, ультрафильтрацию и колоночную хроматографию (см., например, опубликованные патентные заявки US №20060228380, 20060228381, 20070184071, 20070184072, 20070231340 и 20080102498).
Изменения процесса, описанные выше, позволяют выделение капсульных полисахаридов с высокой молекулярной массой серотипа 19А из клеточных лизатов Streptococcus pneumoniae. Это существенное усовершенствование процесса ферментации/восстановления, который может значительно увеличить производство пневмококковых полисахаридов.
Следующие примеры предлагаются как иллюстративные, а не ограничительные.
ПРИМЕРЫ
Выращивали бактериальные клетки Streptococcus pneumoniae, которые продуцируют серотип 19А, чтобы получить полисахариды, необходимые для производства вакцины для активной иммунизации против инвазивных заболеваний, вызванных Streptococcus pneumonia, благодаря капсульным серотипам, включенным в вакцину. Клетки выращивали в ферментаторе с индуцированным лизисом в конце ферментации. Бульон лизата потом собирали для очистки выходного потока и выделения капсульных полисахаридов. Поскольку размер полисахарида - качественный признак, оцененный для каждой партии препарата, размер полисахарида должен контролироваться. Молекулярная масса капсульных полисахаридов серотипа 19А, как установили, зависела от параметров процесса ферментации. Следующий пример описывает исследования, касающиеся времени сбора и введения CO2 во время ферментации Streptococcus pneumoniae серотипа 19А.
Пример 1: Влияние введения диоксида углерода на молекулярную массу полисахарида
Ферментация
Лабораторные работы были выполнены в 3 л ферментаторах Braun Biostat В (В. Braun Biotech, Allentown, РА). Они были наполнены средой HYS 1,8 л (20 г/л HySoy, 2,5 г/л NaCl, 0,5 г/л KH2PO4, 0,013 г/л CaCl2-2H2O, 0,15 г/л L-цистеина HCl). Ферменторы потом автоклавировали в течение 60 мин при 121°C. После охлаждения добавляли 40 или 60 мл/л раствора 50% Глюкозы +1% Сульфата Магния (масс./об.) (DMS) к каждой единице. Если необходимо, бикарбонат натрия добавляли перед инокуляцией.
Две 2 л колбы для посева, содержащие 1 л HYS среды, были инокулированы Типом 19А семенного фонда и инкубированы при 36°C, без встряхивания в течение приблизительно 6-8 часов. Инокуляцию ферментатора выполняли с объемом 100 мл (~5,2% об./об.), аликвотированного от колбы с ОП600 между 0,3-0,9 и рН между 4,75-5,60. Температуру ферментации и рН контролировали при заданных значениях. Использовались стандартные условия - 36°C, воздушный поток 1 л/мин, контролированный рН до 7 и взбалтывание 75 об/мин. Два импеллера были помещены в низкие и средние положения на вал мешалки. Колба, содержащая соответствующий базовый титрант (3 N NaOH, 3 N NaOH, смешанный с различными концентрациями NaHCO3, 3 N NaOH, смешанный с различными концентрациями Na2CO3 и NaHCO3, и 20% Na2CO3), была присоединена для автоматического контроля за рН. Образцы взымали в различные периоды времени для определения рН, ОП600, глюкозы, полисахарида и белка. Процесс был закончен, когда концентрация глюкозы была близка к истощению, или никакое увеличение ОП в течение долгого времени не было отмечено.
Измерение оптической плотности (ОП600)
Определяли клеточную плотность бульона ферментации, считывая абсорбцию образцов при 600 нм, используя Shimadzu (Columbia, MD) UV-1601 (полоса пропускания 2 нм) или Spectronics (Westbury, NY) Genesys 5 спектрофотометр (полоса пропускания на 5 нм). Единица была заполнена средой HYS, разбавленной деионизированной водой (ДИ) в количестве, необходимом для растворения образца. Образец был разведен для поддержания абсорбции считывания 0,4, который в пределах линейного диапазона спектрофотометра.
Концентрация Глюкозы
Определяли уровни глюкозы, центрифугируя клетки и используя супернатант непосредственно или 3× разведенный ДИ водой. Образцы анализировали на Nova Biomedical (Waltham, MA) BioProfile 400.
Анализ Полисахарида
Отбирали образцы при снятии показаний по окончании ферментации и обрабатывали 12% деоксихолатом натрия (DOC) до концентрации 0,13% (масс./об.) и осторожно перемешивали. Их выдерживали 8-24 час при 5°С, потом рН доводили до 5,0 50% уксусной кислотой, чтобы осадить большую часть DOC и белка. После другого интервала выдержки 12-24 часов при 5°С образцы центрифугировали (14000 об/мин, Sorvall (Thermo Fisher Scientific, Waltham, MA) ротор SS34, 10 минут при 15°С). рН супернатанта доводили до 6,0. Супернатант потом фильтровали через 0,45 мкм Pall (East Hills, NY) HT Tuffryn Membrane шприц-фильтр (низкое связывание белка). Фильтрованный продукт анализировали высокоэффективной эксклюзионной хроматографией (HPLC-SEC), используя стандартную методику, известную в данной области (см., например, Aquilar, М. «HPLC of Peptides and Proteins: Methods and Protocols" Totowa, NJ: Humana Press (2004)).
Анализ Белка
Уровни белка анализировали электрофорезом на полиакриламидном геле натрий додецилсульфата (SDS-PAGE), способом, известным в данной области (see, e.g., Walker, J.M. "The Protein Protocols Handbook" Totowa, NJ: Humana Press (2002)). Фильтрованный клеточный лизат (супернатант), как был получен выше, помещали аликвотами в пробирки микроцентрифуги 65 мкл/пробирку. Добавки восстанавливающего агента (10 мкл дитиотреитола (DTT)) и NuPAGE® (Invitrogen, Carlsbad, СА) 4× литий додецилсульфат (LDS) буфер для образца (25 мкл) были сделаны к каждому образцу. Образцы встряхивали и нагревали в течение 10 минут перед выгрузкой 10 мкл/ряд на 4-12% NuPAGE® Bis-Tris 12 лунки с гелем. Гели запускали в буфер NuPAGE® MES-SDS при 150 V, ограничиваясь примерно 60 минутами и впоследствии окрашивали, используя протокол окрашивания Zoion ((Zoion Biotech, Worcester, MA)). Анализ образцов выполняли, используя визуализатор UVP (UVP Inc, Upland, СА) с LabWorks™ (UVP Inc) с программным обеспечением V.3, чтобы получить приблизительные концентрации определенных полос интересующего белка. Бычий сывороточный альбумин (BSA), Фракция V использовался, чтобы построить калибровочную кривую белка, чтобы вычислить приблизительные значения белка в образцах (в бульоне клеточного лизата).
Анализ Молекулярной массы
Ферментированные образцы 1-2 л обрабатывали 12% натрий DOC до концентрации 0,13% (масс./об.) при встряхивании 200 об/мин. Образцы выдерживали 8-24 час или при 5°С, или при 20°С рН образцов потом доводили до 5,0 или 6,6 50% уксусной кислотой, чтобы осадить большую часть DOC и белка. После другого интервала выдержки 12-24 часов при 5°С образцы центрифугировались (11000 об/мин, Sorvall (Thermo Fisher Scientific, Waltham, MA) ротор SLA-3000, 15 минут при 10°С). РН образцов супернатантов потом корректировали до 6,0 3 N NaOH и фильтровали, используя фильтры МР60 0,45 мкм Millipore (Billerica, MA). Образцы затем подвергали модифицированному процессу очистки, состоящему из диафильтрации обрезанной молекулярной массы 100 К (MWCO) (5× концентрация, с последующей 7,5× диафильтрацией ДИ водой), 0,1% НВ осаждения, углеродной фильтрации. Очищенный материал затем подвергали анализу Multi Angle Laser Light Scattering (MALLS).
Исследование Процесса Ферментации
Базируясь на предыдущих исследованиях, процесс ферментации был оптимизирован, заменяя Na2CO3 на NaOH, в качестве базового титранта. Использование NaOH позволило восстановить рН до сниженного 5,0, что привело к существенному осаждению белка. Na2CO3 высвобождает CO2 при низком рН (<6,6), создавая пенообразование. Воздействие базового титранта на Тип 19А полисахарида и уровни белка было исследовано. Два 3 л ферментатора устанавливали с одним ферментатором, служащим в качестве контроля над процессом, используя 20% раствор Na2CO3 (масс./об.) как основную подачу. В другом ферментаторе использовался 3 N NaOH как основная подача.
Во время фазы восстановления клетки были лизированы в ферментаторе с DOC (конечная концентрация 0,13% (масс./об.)), ферментатор выдерживали при 36°С в течение 30 минут. После этой стадии лизат оставляли на ночь при встряхивании при температуре окружающей среды (22°С). После выдержки лизата рН лизата титровали в диапазоне от неоткорректированного до 4,5 с образцами, взятыми при различных заданных значениях рН. Эти образцы выдерживали ночь при температуре окружающей среды перед обработкой и анализом полисахаридов и концентраций белка. ОП, базовый и уровень глюкозы во время фазы ферментации показаны на Фиг.1 и Фиг.2. Главным различием была более высокая заключительная ОП в случае использования карбоната.
Эффект пост-регулирования рН DOC лизата на общие уровни белка был также исследован и показан на Фиг.3. Более низкие уровни рН уменьшали белковую нагрузку в клетке, свободной от бульона и при использовании NaOH, и при использовании Na2C03. Более низкий рН (<6,6) не оказывал негативного воздействия на выход полисахаридов. Результаты анализа ферментации служили признаком, что основная подача NaOH была приемлемой альтернативой процессу, использующему основную подачу Na2CO3 во время ферментации, но привела к более низким выходам, чем при подаче Na2CO3.
Эффект базового титранта на молекулярную массу 19А
Выполняли ряд ферментаций при 3 л процессе, чтобы определить влияние базового титранта, концентрации HySoy и рН стадии выдержки на молекулярную массу серотипа 19 А. Определение молекулярной массы осуществляли, используя исследование MALLS с последующим модифицированным процессом очистки. Результаты показаны в Таблице 1.
Таблица 1
Эффект базового титранта на молекулярную массу серотипа 19А (L29331-94)
N цикла РН /температура HySoy Удержание pН Базовый титрант MALLS (кДа)
D 7,0/36°С 28 г/л 5,0 3 N NaOH 340
Е 7,0/36°С 20 г/л 5,0 3 N NaOH 350
F 7,0/36°С 20 г/л 5,0 20% Na2CO3 713
Н 7,0/36°С 20 г/л 6,6 20% Na2CO3 713
Влияние бикарбонатого и смешанного базового рН титранта
В первом исследовании (Процессы L29331-122 и -139), переменные уровни начального бикарбоната натрия и базовых смесей гидроксида натрия и карбоната натрия использовались в связи с рН 5,0 стадии выдержки после стадии выдержки DOC.
Начальные добавления бикарбоната колебались 10-50 мМ, и карбонат натрия, добавленный к 3N гидроксиду натрия в качестве базового титранта, колебался 0,2-1,8 мМ. Один процесс включал 50 мМ начального бикарбоната, и NaOH использовался в качестве базового титранта. Уровни карбоната в конце ферментации колебались в интервале 14-111 мМ. Молекулярная масса серотипа 19А колебалась от 520 до 713 кДа. Параметры ферментационного процесса и результаты показаны в Таблице 2.
Таблица 2
Na2CO3 против смешанного базового титранта рН
N цикла NaHCO3 (мМ) Базовый титрант MALLS (кДа) Выход полисахарида (мг/мл)
Na2CO3 NaOH
Часть I L29331-122 20 г/л HySoy Е 0 20% 0 759 0,836
F 10 0,2 М 3N 520 0,308
G 10 0,4 М 3 N 648 0,538
Н 10 0,9 М 3 N 563 0,334
Часть II L29331-139 28 г/л HySoy С 20 0,9 М 3N 662 1,027
D 20 1,8 М 3N 611 0,903
G 50 0,9 М 3N 713 0,924
Н 50 ОМ 3N 713 1,051
Во втором исследовании (L29331-159 и-185) использовали начальные добавления бикарбоната 15-30 мМ и базовые смеси, используя 0,4-1,0 М Na2CO3. Уровни карбоната в конце ферментации колебались от 24-62 мМ. Молекулярная масса серотипа 19А колебалась от 502 до 763 кДа. Параметры ферментационного процесса и результаты показаны в Таблице 3.
Таблица 3
NaHCO3 со смешанным базовым рН титрантом
N цикла HySoy/DMS NaHCO3 (мМ) Na2CO3/NaOH MALLS (кДа) Выход полисахарида (мг/мл)
G2 28 г/л/60 мл/л 15 1,0 M/3N 657 0,853
Н2 28 г/л/60 мл/л 15 0,4 М/3 N 605 0,755
С 20 г/л/60 мл/л 20 0,4 М/3 N 571 0,386
Е 20 г/л/60 мл/л 20 1,0 М/3 N 763 0,439
F 20 г/л/60 мл/л 25 0,7 М/3 N 462 0,382
G 20 г/л/60 мл/л 30 0,4 М/3 N 502 0,355
Н 20 г/л/60 мл/л 30 1,0 М/3 N 594 0,415
Сравнение смешанного и чистого процессов ферментации карбонатного базового титрования
Проводили эксперимент для того, чтобы сравнить процесс при базовой смеси (0,7 М Na2CO3 /3 N NaOH) и процесс карбонатного титрования (20% раствор Na2CO3, масс./об.). Результаты (Таблица 4) подтвердили, что молекулярная масса от процесса карбонатного титрования была выше и более однородной (778, 781 кДа), чем молекулярная масса от процесса титрования базовой смесью (561-671 кДа). Выход полисахарида был также выше при процессе Na2CO3.
Таблица 4
Процесс L29399-1 Na2CO3 против базовой смеси
N цикла NaHCO3 (мМ) Базовый титрант ММ (кДа) Выход полисахарида (мг/мл)
Na2CO3 NaOH
С 25 0,7 М 3 N 565 1,106
D 25 0,7 М 3 N 561 0,908
Е 25 0,7 М 3 N 612 0,894
G 25 0,7 М 3 N 671 0,873
F 0 20% 0 778 1,282
Н 0 20% 0 781 1,249
Пилотное производство
Осуществляли несколько экспериментальных процессов (100 л) с серотипом 19А с различными базовыми титрантами. Определение молекулярной массы осуществляли, используя исследование MALLS после полного процесса очистки, и данные предоставляли для очищенной заключительной партии. Результаты показаны в Таблице 5.
Таблица 5
Влияние базового титранта на молекулярную массу серотипа 19А в экспериментальном процессе
Партия Ферментации Базовое титрование Партия Очистки MALLS FBC (кДа)
RRP19A-0008 3 N NaOH L26563-10 390
RRP19A-0009 3 N NaOH L26563-11 380
IPPPN19A-005 3 N NaOH/0,6 М Na2CO3 L26260-37 492
IPPPN19A-006 3 N NaOH/0,6 M Na2CO3 L26260-38 480
IPPPN19A-007 3 N NaOH/0,6 M Na2CO3 L26260-39 490
IPPPN19A-014 20% Na2CO3 L26260-49 580
IPPPN19A-016 20% Na2CO3 L26260-50 559
IPPPN19A-017 20% Na2CO3 L26260-51 599
Влияние базового титранта и покрытия на молекулярную массу серотипа 19А
Выполняли ряд ферментаций при 3 л процессе, чтобы определить, влияет ли базовый титрант и атмосферное покрытие на молекулярную массу. Определение молекулярной массы осуществляли, используя исследование MALLS с последующим модифицированным процессом очистки. Результаты показаны в Таблице 6.
Таблица 6
Влияние базового титранта и покрытия на молекулярную массу серотипа 19А
N цикла Базовый титрант Покрытие MALLS (кДа)
Контроль 3 N NaOH Воздух 350
С 0,7 M Na2CO3 Воздух 855
D 1,5M Na2CO3/ 1,5 N NaOH Воздух 710
Е 3 N NaOH 100% CO2 634
F 3 N NaOH 50% CO2 646
G 3 N NaOH 20% CO2 567
Н 3 N NaOH 10% CO2 547
Влияние времени сбора на молекулярную массу 19А
Было также изучено влияние времени сбора на молекулярную массу полисахаридов серотипа 19А. Таблица 7 суммирует данные от одного цикла, показывая уменьшение ММ как функции ОП ферментации и времени сбора.
Таблица 7
Молекулярная масса (MW) как Функция ОП Ферментации и Времени сбора
ОП (время) MALLS
2,2 (3 часа) 1065
4,2 (4 часа) 845
5,5 (5,5 часов) 756
5,9 (6,6 часов) 653
Дальнейшие исследования с несколькими экспериментальными процессами также показали уменьшение ММ как функции ОП ферментации и времени сбора. Фигура 4 показывает молекулярную массу как функцию оптической плотности ферментации (ОП) и время сбора в производстве 19А полисахаридов. Фигура 5 показывает определенный базовый расход на время на оптическую плотность (ОП) как функцию времени сбора в производстве 19А полисахаридов. Фигура 6 показывает молекулярную массу как функцию использования определенного базового титранта в производстве 19А полисахаридов.
Все публикации и заявки на патент, упомянутые в описании, являются показательными, исходя из уровня специалистов в данной области, которым принадлежит это изобретение. Все публикации и заявки на патент здесь включены в отношении той же самой степени, как каждая индивидуальная публикация или заявка на патент были определенно и индивидуально указаны, чтобы быть включенными ссылкой.
Хотя предшествующее изобретение было описано в некоторых деталях посредством иллюстрации и примеров в целях ясности понимания, определенные изменения и модификации могут быть осуществлены в рамках прилагаемой формулы изобретения.

Claims (14)

1. Способ получения раствора, содержащего высокомолекулярные изолированные капсульные полисахариды Streptococcus pneumoniae серотипа 19А, в котором:
a) получают ферментационную культуру бактериальных клеток Streptococcus pneumoniae, которые продуцируют капсульные полисахариды серотипа 19А;
b) ферментируют упомянутую ферментационную культуру не более 6 часов;
c) лизируют бактериальные клетки в упомянутой ферментационной культуре с получением раствора капсульных полисахаридов Streptococcus pneumoniae серотипа 19А, имеющих молекулярную массу, по крайней мере, 480 кДа, в клеточном лизате;
d) выделяют капсульные полисахариды Streptococcus pneumoniae серотипа 19А из клеточного лизата, полученного на стадии с), с получением раствора капсульных полисахаридов Streptococcus pneumoniae серотипа 19А.
2. Способ по пункту 1, где стадия b) включает ферментирование упомянутой ферментационной культуры не более 5 часов.
3. Способ по пункту 1 или 2, где стадия b) включает ферментирование упомянутой ферментационной культуры не более 4 часов.
4. Способ по пункту 1 или 2, где стадия b) включает ферментирование упомянутой ферментационной культуры 3-6 часов.
5. Способ получения раствора, содержащего высокомолекулярные изолированные капсульные полисахариды Streptococcus pneumoniae серотипа 19А, в котором:
a) получают ферментационную культуру бактериальных клеток Streptococcus pneumoniae, которые продуцируют капсульные полисахариды серотипа 19А;
b) вводят СO2 в упомянутую ферментационную культуру;
c) ферментируют упомянутую ферментационную культуру не более 6 часов;
d) лизируют бактериальные клетки в упомянутой ферментационной культуре с получением раствора капсульных полисахаридов Streptococcus pneumoniae серотипа 19А, имеющих молекулярную массу, по крайней мере, 480 кДа, в клеточном лизате; и
е) выделяют капсульные полисахариды Streptococcus pneumoniae серотипа 19А из клеточного лизата, полученного на стадии с), с получением раствора капсульных полисахаридов Streptococcus pneumoniae серотипа 19А.
6. Способ по пункту 5, где стадия с) включает ферментирование упомянутой ферментационной культуры не более 5 часов.
7. Способ по пункту 5 или 6, где стадия с) включает ферментирование упомянутой ферментационной культуры не более 4 часов.
8. Способ по пункту 5 или 6, где стадия с) включает ферментирование упомянутой ферментационной культуры 3-6 час.
9. Способ по пункту 5, где введение СO2 в упомянутую ферментационную культуру включает прибавление бикарбонатного иона (НСO3-) к ферментационной культуре.
10. Способ по пункту 9, где прибавление НСO3- к ферментационной культуре включает прибавление NaHCO3.
11. Способ по пункту 5, где введение СO2 в упомянутую ферментационную культуру включает прибавление карбонатного иона (СO32-) к ферментационной культуре.
12. Способ по пункту 11, где прибавление СO32- к ферментационной культуре включает прибавление Na2CO3.
13. Способ по пункту 5, где введение СO2 в упомянутую ферментационную культуру включает первое прибавление NaHCO3 и второе прибавление Na2CO3.
14. Способ по пункту 5, где введение СO2 в упомянутую ферментационную культуру включает покрытие ферментационной культуры СO2.
RU2011128564/10A 2008-12-18 2009-12-17 Способ получения раствора, содержащего высокомолекулярные изолированные капсульные полисахариды streptococcus pneumoniae серотипа 19а (варианты) RU2511404C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13856308P 2008-12-18 2008-12-18
US61/138,563 2008-12-18
PCT/US2009/068429 WO2010080486A2 (en) 2008-12-18 2009-12-17 Method for controlling streptococcus pneumoniae serotype 19a polysaccharide molecular weight

Publications (2)

Publication Number Publication Date
RU2011128564A RU2011128564A (ru) 2013-01-27
RU2511404C2 true RU2511404C2 (ru) 2014-04-10

Family

ID=42266457

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011128564/10A RU2511404C2 (ru) 2008-12-18 2009-12-17 Способ получения раствора, содержащего высокомолекулярные изолированные капсульные полисахариды streptococcus pneumoniae серотипа 19а (варианты)

Country Status (19)

Country Link
US (1) US8795689B2 (ru)
EP (1) EP2379734B1 (ru)
JP (1) JP5843612B2 (ru)
KR (2) KR20110091546A (ru)
CN (1) CN102257155B (ru)
AU (1) AU2009335826B2 (ru)
BR (1) BRPI0922981A8 (ru)
CA (1) CA2743710C (ru)
DK (1) DK2379734T3 (ru)
ES (1) ES2666698T3 (ru)
HK (1) HK1163750A1 (ru)
HU (1) HUE037465T2 (ru)
IL (1) IL213169A (ru)
MX (1) MX2011006432A (ru)
PL (1) PL2379734T3 (ru)
PT (1) PT2379734T (ru)
RU (1) RU2511404C2 (ru)
SI (1) SI2379734T1 (ru)
WO (1) WO2010080486A2 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE046859T2 (hu) * 2008-12-18 2020-03-30 Wyeth Llc Eljárás Streptococcus pneumoniae poliszacharid molekulatömegének szabályozására szén alkalmazásával
MX340830B (es) 2009-04-30 2016-07-26 Coley Pharm Group Inc Vacuna neumococica y usos de la misma.
CN104080904B (zh) * 2011-12-15 2017-06-30 血清研究所印度私人有限公司 培养细菌以提高荚膜多糖产率的新方法
MX363051B (es) 2012-09-07 2019-03-06 Sk Bioscience Co Ltd Metodo para producir un polisacárido capsular con un serotipo de neumococo.
US11951165B2 (en) 2016-12-30 2024-04-09 Vaxcyte, Inc. Conjugated vaccine carrier proteins
CN110225764A (zh) 2017-01-31 2019-09-10 默沙东公司 制备多糖-蛋白缀合物的方法
KR20240011879A (ko) 2017-02-24 2024-01-26 머크 샤프 앤드 돔 엘엘씨 스트렙토코쿠스 뉴모니아에 폴리사카라이드-단백질 접합체의 면역원성의 증진
US10729763B2 (en) 2017-06-10 2020-08-04 Inventprise, Llc Mixtures of polysaccharide-protein pegylated compounds
WO2018227177A1 (en) 2017-06-10 2018-12-13 Inventprise, Llc Multivalent conjugate vaccines with bivalent or multivalent conjugate polysaccharides that provide improved immunogenicity and avidity
WO2019050813A1 (en) 2017-09-07 2019-03-14 Merck Sharp & Dohme Corp. ANTI-PNEUMOCOCCAL POLYSACCHARIDES AND THEIR USE IN IMMUNOGENIC CONJUGATES POLYSACCHARIDE-PROTEIN CARRIER
MX2020002556A (es) 2017-09-07 2020-07-13 Merck Sharp & Dohme Polisacaridos neumococicos y su uso en conjugados de polisacarido inmunogenico con proteina transportadora.
US20210177957A1 (en) 2017-12-06 2021-06-17 Merck Sharp & Dohme Corp. Compositions comprising streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof
CN111989114A (zh) * 2018-04-18 2020-11-24 Sk生物科学株式会社 肺炎链球菌的荚膜多糖以及其免疫原性缀合物
WO2019212844A1 (en) 2018-04-30 2019-11-07 Merck Sharp & Dohme Corp. Methods for providing a homogenous solution of lyophilized mutant diptheria toxin in dimethylsulfoxide
CN112074293A (zh) 2018-04-30 2020-12-11 默沙东公司 生产肺炎链球菌荚膜多糖载体蛋白缀合物的方法
AU2019401535B2 (en) 2018-12-19 2023-12-14 Merck Sharp & Dohme Llc Compositions comprising Streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228381A1 (en) * 2005-04-08 2006-10-12 Wyeth Separation of contaminants from Streptococcus pneumoniae polysaccharide by pH manipulation
WO2007052168A2 (en) * 2005-11-01 2007-05-10 Novartis Vaccines And Diagnostics Srl Fed batch culture methods for streptococci
US20080286838A1 (en) * 2007-03-23 2008-11-20 Wyeth Shortened purification process for the production of capsular streptococcus pneumoniae polysaccharides

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1115210A (en) 1977-11-28 1981-12-29 Dennis J. Carlo Pneumococcal vaccine
US4221906A (en) * 1979-03-19 1980-09-09 American Cyanamid Company Stabilization of pneumococcal polysaccharides
US4242501A (en) 1979-08-08 1980-12-30 American Cyanamid Company Purification of pneumococcal capsular polysaccharides
FR2495939B1 (fr) 1980-12-11 1985-10-11 Merieux Inst Procede de purification de polyosides de streptococcus pneumoniae et vaccin a base de polyosides ainsi purifies
BE889979A (fr) 1981-08-14 1982-02-15 Smith Kline Rit Procede de preparation de polysaccharides bacteriens capsulaires antigeniques purifies, produits obtenus et leur utilisation
US4686102A (en) * 1984-04-12 1987-08-11 American Cyanamid Company Multivalent pneumococcal vaccine and preparation thereof
CA2059692C (en) * 1991-01-28 2004-11-16 Peter J. Kniskern Pneumoccoccal polysaccharide conjugate vaccine
CA2059693C (en) 1991-01-28 2003-08-19 Peter J. Kniskern Polysaccharide antigens from streptococcus pneumoniae
US5314822A (en) * 1992-10-15 1994-05-24 Merck & Co., Inc. Method of clonal growth of Streptococcus pneumoniae
US5714354A (en) * 1995-06-06 1998-02-03 American Home Products Corporation Alcohol-free pneumococcal polysaccharide purification process
US6146902A (en) * 1998-12-29 2000-11-14 Aventis Pasteur, Inc. Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions
DK1268844T3 (da) * 2000-03-16 2009-11-16 Philadelphia Children Hospital Modulering af fremstilling af pneumococcus kapselformigt polysaccharid
US6743610B2 (en) * 2001-03-30 2004-06-01 The University Of Chicago Method to produce succinic acid from raw hydrolysates
ITTS20010013A1 (it) 2001-06-04 2002-12-04 Ct Ricerche Poly Tec H A R L S Nuovi derivati di ialuronano.
CA2538691C (en) * 2003-09-11 2014-01-14 Nederlands Vaccininstituut Process for producing polysaccharide for conjugate vaccine
ATE548051T1 (de) 2005-04-08 2012-03-15 Wyeth Llc Multivalente pneumokokken- polysaccharidproteinkonjugatzusammensetzung
US7955605B2 (en) 2005-04-08 2011-06-07 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US7709001B2 (en) * 2005-04-08 2010-05-04 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US20070184072A1 (en) * 2005-04-08 2007-08-09 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
CL2007002909A1 (es) * 2006-10-10 2008-04-18 Wyeth Corp Metodo para reduccion o extraccion de impurezas de proteinas a partir de lisado celular de streptoccocus pneumoniae que comprende calentar dicho lisado, separar a los precipitantes a partir de dicho lisado produciendo un lisado que contiene polisacar
US7860500B2 (en) * 2006-10-27 2010-12-28 Motorola, Inc. Method and apparatus for determining appropriate channels for communication
HUE046859T2 (hu) * 2008-12-18 2020-03-30 Wyeth Llc Eljárás Streptococcus pneumoniae poliszacharid molekulatömegének szabályozására szén alkalmazásával

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228381A1 (en) * 2005-04-08 2006-10-12 Wyeth Separation of contaminants from Streptococcus pneumoniae polysaccharide by pH manipulation
WO2007052168A2 (en) * 2005-11-01 2007-05-10 Novartis Vaccines And Diagnostics Srl Fed batch culture methods for streptococci
US20080286838A1 (en) * 2007-03-23 2008-11-20 Wyeth Shortened purification process for the production of capsular streptococcus pneumoniae polysaccharides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 5847112 A1, , 08.12.1998 *

Also Published As

Publication number Publication date
BRPI0922981A2 (pt) 2015-08-25
IL213169A0 (en) 2011-07-31
WO2010080486A2 (en) 2010-07-15
DK2379734T3 (en) 2018-04-23
PT2379734T (pt) 2018-04-27
EP2379734B1 (en) 2018-03-21
ES2666698T3 (es) 2018-05-07
US8795689B2 (en) 2014-08-05
AU2009335826B2 (en) 2013-10-31
KR20130136011A (ko) 2013-12-11
CN102257155B (zh) 2016-03-02
JP5843612B2 (ja) 2016-01-13
SI2379734T1 (en) 2018-05-31
HUE037465T2 (hu) 2018-09-28
PL2379734T3 (pl) 2018-08-31
HK1163750A1 (zh) 2012-09-14
US20100158953A1 (en) 2010-06-24
RU2011128564A (ru) 2013-01-27
WO2010080486A3 (en) 2010-11-04
AU2009335826A1 (en) 2010-07-15
JP2012512660A (ja) 2012-06-07
EP2379734A2 (en) 2011-10-26
IL213169A (en) 2015-02-26
CA2743710A1 (en) 2010-07-15
KR20110091546A (ko) 2011-08-11
KR101593770B1 (ko) 2016-02-15
CA2743710C (en) 2017-01-24
MX2011006432A (es) 2011-09-29
CN102257155A (zh) 2011-11-23
BRPI0922981A8 (pt) 2019-11-26

Similar Documents

Publication Publication Date Title
RU2511404C2 (ru) Способ получения раствора, содержащего высокомолекулярные изолированные капсульные полисахариды streptococcus pneumoniae серотипа 19а (варианты)
RU2524436C2 (ru) Способ получения жидкой фракции, содержащей изолированные высокомолекулярные капсульные полисахариды streptococcus pneumoniae, и жидкая фракция, полученная таким способом
US8652480B2 (en) Shortened purification process for the production of capsular Streptococcus pneumoniae polysaccharides
CN104487086B (zh) 无动物源的不含酒精的疫苗组合物及其制备方法
JPS5852227A (ja) 淋菌からの免疫原性複合体
RU2407792C1 (ru) СПОСОБ ПОЛУЧЕНИЯ IgAl-ПРОТЕАЗЫ ИЗ КУЛЬТУРЫ NEISSERIA MENINGITIDIS СЕРОГРУППЫ А И ИММУНОГЕННЫЙ ПРЕПАРАТ НА ЕЕ ОСНОВЕ
TWI545192B (zh) 用於製備肺炎鏈球菌血清型之莢膜多醣的方法
RU2353387C1 (ru) Способ получения антигенного пастереллезного эритроцитарного диагностикума
BR102014021245A2 (pt) processo rápido para produzir e purificar hib-prp

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner